
Annals of Operations Research 6(1986)3 13 - 3 19

N. MEGIDDO

IBM Almaden Research Center, San Jose, California 95120, USA, and
Tel-Aviv University, Tel-A viv, Israel

Abstract

A class of dynamic location problems is introduced. The relationship between a
static problem and its corresponding dynamic one is studied. We concentrate on
two types of dynamic problems. The first is the global optimization problem, in
which one looks for the all-times optimum. The second is the steady-state problem
in which one seeks to determine the steady-statebehavior of the system if one exists.
General approaches to these problems are discussed.

Keywords and phrases

Dynamic location, euclidean center problem, global optimization.

1 . Introduction

The purpose of this paper is to present a class of dynamic location problems
which can be solved by modifying existing algorithms for corresponding static ones.
The present paper is based in part on [5] and was prepared for the ISOLDE I11 Sym-
posium.

We concentrate here on geometric location problems. Usually, a geometric
location problem is defined by a set of n points in a Euclidean space. A dynamic prob-
lem is generated when we let the points move in space. Such a framework for dealing
with dynamic problems was also presented in [I] . As an example, consider the tradi-
tional (static) 1-center problem in the plane (also referred to as the problem of the

* Supported in part by the National Science Foundation under grants MCS-8300984,
ECS-8218181 and ECS-8121741.

O J.C. Baltzer A.G., Scientific Publishing Company

N. Megiddo, Dynamic location problems

minimum spanning circle). The problem is defined by n (demand) points, and one is
asked to find another (supply) point whose distance to the farthest demand point is
minimized. Now, suppose the demand points are moving. The motion can in general
be complicated. However, we discuss here only motion which is linear in the sense
that the points follow straight line trajectories, possibly with different constant speeds.
Equivalently, the coordinates of the points are linear functions of time. Many of the
results for this linear case can be carried over to a more general case in which the
motion is determined by low-order polynomials or even rational functions.

Various questions can be asked within the dynamic framework. We concentrate
here on two types of questions. The first may be called the "global optimization"
problem. The global optimization problem is to find an instant of time t* at which the
optimum of the static problem (obtained by freezing the points at t*) is the best over
all times. For example, in the context of the dynamic 1-center problem, we would
look for an instant of time and a supply point that minimizes (over all times) the
distance to the farthest demand point at that time. An obvious "application" is for
finding an instant of time at which the smallest bomb could hit all the moving objects.

The second type of question may be called the "steady-state" problem. This
type of question, which was recently raised in the context of computational geometry
by Atallah [I] , calls for determining the "steady-state" behavior in the following
sense. Let us distinguish the "solution", (that is, the optimal objective-function value)
from the "basis" at the optimum. For example, it is known that in the plane the 1-
center is determined by two or three demand points. These points may be regarded as
the basis and this definition can also be justified on traditional optimization theoretic
grounds. If the demand points are moving in a polynomial manner, then there exists a
basis that supports the solutions of all the static problems for sufficiently large t . In
other words, the 1-center (which is itself moving) enters a steady state in which it is
determined by the same two or three moving demand points. There are two facets to
the steadystate problem. The first is to find the steady-state basis. The second is
usually more difficult and calls for determining the precise time at which the system
enters the steady state. The steady-state problem can also be regarded as the sensitivity
analysis question at infinity. A similar type of question is also discussed in [3] (see
also references at the end of that paper).

We use the dynamic 1-center problem to demonstrate solutions for the two
types of questions we have presented.

2. Global optimization

In this section we demonstrate a solution of a global optimization problem. We
work with the dynamic 1-center problem. To be more specific, consider the problem
as follows. Given are n objects that follow straight line trajectories in R~ at various
speeds. Find a time and a place at which a smallest ball encloses all the objects. This

N. Megiddo, Dynamic location problems

problem is not equivalent to that of finding the smallest ball enclosing n points in R 4 .
Also, a related problem of finding the smallest ball that touches all the n trajectories
(that is, each object touches the ball at some time) is easier than our present problem.
These other two problems are somewhat "static" and can be solved in linear time
(whenever the dimension is fixed) by methods resembling those of [8] . It is interest-
ing to mention that several related problems of computational geometry in R3 (see
[l]) are not known to have algorithms that run in o(n2) time. For some, like the one
of recognizing whether any two of n given lines in R 3 meet, we know how to design algo-
rithms with time complexity of 0 (n 2 - ') [lo] and it is still an open question whether
an algorithm of order O(n p (log n)) (where p is a polynomial) exists. Surprisingly, the
dynamic smallest ball problem in R3 can be solved in O(n (log n)4 log log n) time.
Moreover, a randomizing algorithm for the same problem solves it in an expected time
of O(n (10gn)~ (log 1 0 ~ n) ~). This can be accomplished by applying two powerful
results: (i) The general scheme of using parallel algorithms in the design of serial ones,
as proposed in [4,6] , and (ii) fast parallel algorithms for the static smallest ball prob-
lem in R3 [5,7].

In general, for dealing with a global optimization problem (of the type of
dynamic l-center) in sequential computation, it is useful to have a good parallel
computation algorithm for its static counterpart. A poly-logarithmic parallel algorithm
for the static problem, on O (n p (logn)) processors, would in certain cases give rise to
an O(n p (log n)) algorithm for the dynamic problem.

Following is a brief sketch of the algorithm for the dynamic smallest ball
problem. Let F(t) denote the radius of the smallest ball enclosing the objects at time t .
The function F(t) is convex and we know how to evaluate it at any t in O(n) time
[7]. Moreover, we have developed in [5] a parallel algorithm for evaluating F(t) in
O ((1 0 ~ n) ~ log logn) time with n processors. Denote the minimum by t*. Simulating
this parallel algorithm, we can run in ~ ((l o g n) ~ log logn) stages with t not specified
but confined to an interval [ak, Pk] during stage k. Typically, there will also be a
value yk (ak < yk < Pk) such that F(ak) > F(3jc) and F(Pk) > F (T ~) , and therefore
ak < t* < Pk. The task of each processor is the same for all t E [ak, 7,) and for all
t E [yk, Ok] . However, each processor may produce a small number (independent of
n) of critical values of t which determine how the algorithm should proceed in the
succeeding stage. Denoting these values by ak = t i , . . . , t, = Pk (where yk = tQ for
some Il), we then search for j such that F(tj-) > F(tj) and F(tj+) > F (t j) The next
interval is [ak, Pk] = [tj- l , tj+] . Since F is convex, we can perform a "Fibonacci
search" over the set { t , , . . . , t,} which amounts to O(1og m) evaluations of F. Each
processor may need to compare two pairs of polynomials of degree 9 in t (one pair
over [ak, yk) and another one over [yk, Pk)), SO it may produce at most eighteen
critical values. It follows that m < 18n. The effort per stage is therefore O(n logn)
and the total effort is O (n (l ~ ~ n) ~ log logn). We should mention here that this is in
fact the number of equations of degree not greater than 9 that we may need to solve.

N. Megiddo, Dynamic location problems

However, the effort involved in solving a single equation is of course independent of n.
A randomizing algorithm can be designed with the aid of a parallel randomizing algo-
rithm for the static smallest ball problem. The latter runs in O(1ogn (log 1 0 g n) ~) ex-
pected parallel time. For the dynamic 1-center problem in R~ it yields a sequential
randomizing algorithm which runs in O(n (1 0 ~ n) ~ (log 1 0 ~ n) ~) expected time.

3. Steady-state problems

In this section we deal with a class of parameterizations which is relatively
convenient for analysis, that is, the case in which the coordinates of the points are
polynomial functions of bounded degree in terms of the time parameter t. The
steady-state problem is to find a basis which supports the solution for all sufficiently
large values of t (assuming there exists such a basis). The existence of a steady-state
solution is closely related to the fact that any two distinct polynomial functions
intersect only finitely many times. A constructive way of investigating the existence
of a steady-state solution is to look at algorithms for the corresponding static problem.
Suppose P is a static problem and denote by P(t) the dynamic problem where each
numerical input a is a polynomial function a(t) = a. + a, t + . . . + aktk of the time.
Suppose we know an algorithm A that can solve P(t) for any given t , using only com-
parisons and the arithmetic operations +, - and X. For the ease of presentation, we
omit divisions from our discussion. Thus, all the program variables in this case are
polynomial functions of t. We can view the algorithm as working in the ring of poly-
nomials, where comparisons are performed relative to the obvious lexicographic order.
Unless we need to make some comparisons, we can solve P(t) simultaneously for all
values of t. In the context of steady-state computation, we can always assume that t
is sufficiently large. More precisely, suppose we need to compare two polynomials
pl(t) and p 2 (t) From the steady-state computation point of view, the comparison is
concluded with one of the following three possibilities:

(i) There is to such that for all t > to, pl(t) > p2(t).
(ii) There is to such that for all t > to, p l (t) < p2(t).
(iii) There is to such that for all t > to, p l (t) = p2(t).

It is straightforward to compare any two polynomials in this sense. Notice that at this
point we do not require that the value of to be determined.

Now, the steadystate problem can be solved as follows. Run an algorithm for
the static problem with the value of t undetermined. Carry out any comparisons by
assuming a sufficiently large value of t. The steady-state solution is then represented as
a polynomial function of t which is correct for all t 2 to for some unknown to . The
issue of determining the exact value at which the system enters the steady-state is
more difficult and is discussed later.

We can now relate the complexity of the steady-state problem to that of the
static one. Essentially, the progress of the algorithm for the steady-state problem is

N. Megiddo, Dynamic location problems

the same as that of the static one. However, the cost of making one comparison in the
context of steady state may be k + 1 times the cost of a regular comparison, where k
is the common degree of the two polynomials involved. This is because such a com-
parison is in fact an operation on (k + 1)-vectors. What is even more severe is that
degrees of polynomials may grow exponentially, if the algorithm for the static prob-
lem multiplies the program variables in a certain way. Fortunately, this does not occur
very often in the solution of the common geometric and graphic problems. Let us first
define the height h (A) of an algorithm A as follows. Let the height h(I) of each input
number I be defined as 1. Inductively, when the algorithm computes variable I3 from
variables Il and I,, where Il and I, are available and have well-defined heights, then,
depending on the operation, the height of I3 is as follows. If I3 = Il + I, or I3 = Il - I,,
then h(13) = max{h(Il), h(12)}. If I, = I, XI,, then h(13) = h(Il) + h(12). Let hL(A)
denote the maximum height h (I) of a variable computed by algorithm A while solving
an instance with input length of L bits. Obviously, there are algorithms for which
hL(A) is not bounded. Thus, let us define h(A) to be the maximum of hL(A) with the
possibility of h(A) = . We note that in most of the problems we know, the "height"
is usually a small number. This follows from the fact that for solving most of the
geometric problems, it suffices to have a small number of primitives. For example,
compare the distances between input points, find the intersection of lines which are
determined by input points (e.g. perpendicular bisectors), compare distances between
points and lines determined by input points, etc. Usually in geometric problems, none
of the input points are involved in a polynomial of degree greater than 5. Also, in
computational problems on graphs the role of multiplication is fairly limited. One is
usually required to add up weights associated with edges or vertices, or linear combina-
tions thereof. However, the "height" of multiplication is again fixed and small. We
can state the following theorem.

THEOREM 3.1.

Suppose P is a problem and A is an algorithm of finite height h(A) that solves
any instance of P of size L in time less than T(L), employing comparisons, additions,
subtractions and multiplications. Assume the numerical inputs of P are polynomials of
degree smaller than k in terms of a parameter t. Under these conditions, algorithm A
can be modified to solve the steady-state dynamic problem associated with P in
O(T(L) time.

The proof follows from the discussion preceding the theorem. Note that kh (A)
is an upper bound on the degree of any polynomial that may be generated throughout
the computation. The cost of comparisons, additions and subtractions (of polynomials)
performed by the modified algorithm are therefore at most kh (A) times the respective

3 18 N. Megiddo, Dynamic location problems

costs of these operations in the original algorithm. Let g(s) denote the number of
elementary operations required for multiplying two polynomials of degree less than s.
Obviously, g(s) = o(s2). Thus, the cost of a multiplication performed by the modified
algorithm is no more than g(kh(A)) times the cost of an elementary operation. Thus,
we obtain an upper bound of O(g(kh(A)) T(L)) for the steady-state problem.

The theorem implies that, for most of the problems we know in computational
geometry and on weighted graphs, the complexities of the steady-state problem and
the static problem are related by a factor which is in the worst case proportional to
the square of the maximum degree of a polynomial in the parameterization. The
theorem generalizes in an obvious way to algorithms of unbounded height. The cost
of an operation (in the ring of polynomials) of the modified algorithm is no more than
g(khL (A)) times the cost of an elementary operation when the instance is of length L.
Thus, we obtain an upper bound of O(g(khL(A)) T(L)) for the steady-state problem
in any case. Our theorem unifies the results about steady state in [I] and can be
applied to many other examples. In particular, it follows that the steady-state be-
havior of the 1-center can be determined in linear time.

Finally, we discuss the difficulties involved in calculating the exact time at
which the system enters its steady state. Let to denote the exact value of t at which
the system enters the steady state. We note that determining just some upper bound
on to is not difficult. All one has to do is maintain the maximum of upper bounds
that can be associated with individual comparisons. Given that p,(t) > p2(t) for
sufficiently large t , it is easy to state some value t ' such that this inequality holds
for all t 2 t ' . Determining the exact value of to is in general much more difficult.
Obviously, one needs to be able to solve the following problem: given a polynomial
p(t), find the largest root of p(t). However, assuming this operation can be performed
(at least approximately), it is still a problem to decide which of the critical values
obtained along the way is really critical for the result. More specifically, suppose a
certain comparison is concluded with p l (t) > p2(t) for all t > t ' and it is also known
that p, (t') = p2(t1) and that p1 (t) < p2 (t) for t ' - E < t < t ' . This does not imply
that the solution corresponding to t , such that t ' - E < t < t ' , is not the steady-state
solution. There is another inherent difficulty. In most of the problems, the steady-
state basis may support the optimal solution several times, alternating with other
bases, even before the system enters its steady state. Thus, by evaluating the basis at
an arbitrary time t , we may sometimes be able to tell that t < to (in case we obtain
a different basis), but if the basis at t is the steady-state basis, then it does not imply
that t 2 to. Of course, if we know a value t ' > to , then we can trace t backwards
until the optimal basis changes and the point at which this happens is equal to to.
However, it is desirable to have a more efficient way of computing to. A case in which
this would be possible is when the objective function is piecewise linear and convex
in t . Then, a method described in [2] could apply.

N. Megiddo, Dynamic location problems

For the case of the dynamic 1-center problem, the following idea is due to
Arie Tamir [9]. Suppose we have identified the steadystate basis, that is, we have
either two or three points that determine the 1-center for all sufficiently large values
of t. Thus, we actually have a formula describing the motion of the center during the
steady state. We can evaluate the distances of all demand points from the center and
then to is determined as the last time the distance between a demand point and the
center exceeds the radius of the steady-state circle. So, to can be found in linear time
once the steady-state basis is known. We may get some more insight into the difficulty
in general as follows. The critical time to is in general the last time a change of the
optimal "basis" occurs. In the 1-center problem, the change is local in the sense that
bases differ by one coordinate (so it is actually a "pivot" step). Thus, the number of
possibilities for the previous basis is only linear. In contrast, consider the dynamic
problem of the two farthest points. The steady-state pair does not have to intersect
the pair of farthest points immediately before the system enters the steady state.

References

M.J. Atallah, Dynamic computational geometry, in: hot. 24th IEEE Symposium on
Foundations of Computer Science (1 9 83 p . 9 2.
D. Gusfield, Parametric combinatorial computing and a problem of program module distri-
bution, JACM 30(1983)551.
R.G. Jeroslow, Asymptotic linear programming, Oper. Res. 21(1973)1128.
N. Megiddo, Combinatorial optimization with rational objective functions, Math. of Oper.
Res. 4(1979)414.
N. Megiddo, Poly-log parallel algorithms for LP with an application to exploding flying
objects, Carnegie-Mellon University (1982), manuscript.
N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms,
JACM 30(1983)852.
N. Megiddo, Linear time algorithms for linear programming in R3 and related problems,
SIAM J. on Computing 12(1983)759.
N. Megiddo, Linear programming in linear time when the dimension is fixed, JACM 31
(1984)114.
A. Tamir, private communication.
F.F. Yao, private communication.

