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ABSTRATI. An algorithm IS developed whtch finds the nth largeat element of a Ilnearly ordered \el S. glven In 
the form of rn pairwise dlsjo~nt subsets. Each of the rn subsets satisfies the property that 11s kth largest element 
can be computed tn a constant amount of time. The algor~thm terminate5 in time O(rn.logL(lSl/rn)! The 
selection algorithm applies to the problem of optimum distr~bution of effort. namely. the maumizat~on o f  the 
total utility of allocating n persons to rn acttbiuea, where the utility u fk  persons assigned to activity j la a concave 
function u,(k). Consequently, this problem can be solved in time 0(rn.log2n). 
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1. Introduction 
The problem of optimum distribution of effort has been dealt with in the literature of 
operations research for a long time. Selected references are [3, 4, 9-12, 141. We shall be 
dealing with the following version. 

Problem 1. Given m concave functions u,:[O, n ]  -+ R ( j = 1. ... . m), find a nonnegative 
integral m-vector x which maximizes CJ u,(x,) subject to C , x, 5 n. 

Solution techniques for this problem which appear in the literature use Kuhn-Tucker 
conditions or dynamic programming, and usually only particular forms of the uJ are 
considered. Karush [lo] solves the problem for general (not necessarily concave) u, in time 
0(mn2) using a dynamic programming approach. 

Our study is motivated by the observation that Problem 1 is reducible to finding the nth 
largest entry of the matrix D = (d,)), where d ,  = uJ (i) - u,(i - 1) (i = 1. ... . n, 
j = 1, ... , m). Concavity implies that d,] 2 d,+,, , ( 1  i 9 n - 1, 1 5 j 5 m). This is in fact 
a special case of the so-called selection problem (i.e. finding the nth largest element of a 
linearly ordered set S ) .  An algorithm which solves the problem in time O(I Sl) appears in 
[2] (see also [I]). This implies an O(mn) algorithm for Problem I .  However, this immediate 
solution does not take advantage of the monotonicity in the columns of D and the fact that 
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D need not be precomputed. (We assume that the time to compute d,  is independent of i 
and j.) 

Another simple solution for this special case of the selection problem is the following: 
Let Ro = 0 and To = {(  1 ,  j ) : 1 9 j 9 rn} . After defining R, and T k  for 0 i k 9 n choose 
d,,, = max ,,,,,, T, d,,, and define Rh+, = RA U ((i. j ) }  and TL+, = ( T A  - {(i. j ) ) )  U (( i  + 1. 
j ) } .  R,, is the set of indices of the n largest entries of D. (It is easy to see that if {(i. j ) )  = 

Th+, - Th, then d, , ,  is the (k + 1)-th largest entry in D.) A straightforward implementation 
of this algorithm yields an O(mn) running time. but using a suitable data structure (any 
efficient implementation of a priority queue [I]) it can be implemented in time O(n log rn 
+ m). This solution follows from the work of Fox [ S ] ,  where a more general problem is 
solved by similar methods. In [6] Fox used a so-called heap to maintain the analogue of 
Tk and to obtain an O(n log rn + rn) running time. Note that the time bound is sublinear 
in the size of D(mn) because it is not necessary to precompute D. The algorithm inspects 
only n + m of the mn entries of D, and it computes each such entry when needed. Our 
algorithms will satisfy a similar property. 

In Section 2 we develop a selection algorithm for a set S with a special structure, namely. 
S is partitioned into m disjoint subsets S,, 1 j S rn, and for I S k 5 IS,[ the kth largest 
element of S, can be computed in a constant amount of time. Our algorithm runs in time 
O(m. log2([ SI lm)).' 

In Section 3 we reduce Problem 1 to the above special selection problem. This reduction 
is implicit in the work of Fox. As a result we derive an algorithm of time complexity 
0(m.log2n). Note that unlike the previously mentioned algorithms for Problem 1, this time 
bound is sublinear in n. Hence, in case n is very large and it is much larger than m this 
algorithm may be the only tractable technique. Moreover, for practical purposes this 
algorithm successfully approximates a solution for the continuous version of the problem 
(relax the integrality constraint and replace n by some real number B) by choosing a 
sufficiently large n. Another method for this case that involves a systematic search for a 
suitable Lagrange multiplier appears in [7]. 

2. The Selection Algorithm 
We deal with the following particular selection problem. 

Problem 2. Given a multiset2 S = {v,(i):j = 1, ... , m, p, < i 5 q,) wherep, < q,, and 
v,: N --+ R is monotone nonincreasing for 1 S j 5 rn, and a number n, 1 5 n 5 I SJ. find an 
a in S such that there exist n - 1 elements of S not smaller than a and all the other 
elements of S are not larger than a. 

We develop below two algorithms that solve Problem 2 in time which is sublinear in the 
size of S. Denote s = IS1 and let S, = {v,(i):p, < i 5 q,) and n, = I S,( = q, - PI 
( j  = 1, ... , m). (Without loss of generality n, 5 n and s 5 nm.) We assume that the time to 
compute v,(i) is independent of i and j. Hence it takes a constant amount of time to 
compute the kth largest element of S,, namely, v, (p, + k). 

For the sake of convenience define v, (p,) = +m and v, (q, + I) = -a, ( j  = 1, ... , m). 
Denote by (I, k) + FIND(a, j) the operation which, given a real number a and j (1 5 j 
S m), finds a pair of indices (I, k), p, 5 I < k 5 q, + 1, such that v, (I) > a > v, (k) and v, ( I ]  
= a for I < i < k. (Note that a I$ S, if and only if k - I = 1.) The cost of FIND(a, j) is 
O(1og n,) since it can be carried out by using binary search (see [I]). 

For a E S letfi(a) = #{b:bES, b > a),  fi(a) = #{b:bES, b 2 a ) .  Note that a is the nth 
largest element of S if and only iffi(a) < n 5fi(a). The pair (ft(a).b(a)) can be computed 
as follows: 

Hence, the cost of computing the pair (f,(a), f2(a)) is O ( x ; I ,  log n,). Let P = {(I, k ) : O  < I 

' Throughout the paper log(x) will stand for max(logl x ,  I )  
' A multiset is a set in which some of the elements may appear more than once 



< k 2 s) ,  and consider the following partial order on P: ( I , .  k l )  5 ( I P ,  k ~ )  iff kl  5 12. Note 
that if a S b (a. h E S )  then fL(a) I f , ( b )  and therefore the restriction of the partial order 
to the elements of { (  fl(a), f i(a)):a E S} C P is a linear order. Hence, a solution to the 
selection problem is simply obtained as follows: 

SELECT(S. n) 
for j - I until m do 

begin 
use b~nary search on ((fi(a).f>(a)):a E S,) to look for a E S, such thatfi(a) < n 2 fj(ai. if such an a is 
found then return (a)  

end 

Obviously, the search in the loop must succeed for at least one j ( 1  S j 5 m) since 
U,,S {fi(a) + 1, ... ,P(a))  = { 1, 2, ... , s). 

The binary search in the jth execution of the loop requires log n, computations of 
(fi(a),P(a)) for the a in S,. Each computation costs C.C;l log n, and hence the time 
bound for SELECT1 is C.(C:l log n,)'. Using the fact that the geometric mean is not 
larger than the arithmetic mean, we get the bound of 0(m210g2(s/m)). 

It is possible to improve SELECT1 by using the information which is obtained in each 
execution of the loop to narrow the search in the subsequent executions of the loop. 
However, this improvement does not yield a better asymptotic upper bound, so we omit 
the details here. 

We describe below another solution to the problem which runs in time O(m.Iog,'. 
(dm)). The algorithm is inspired by the linear-time algorithm for the selection problem 
[2]. If T = {a,:i = 1, ... , t )  where a, S a,+, (i = 1, ... , t - I )  then the number (art/2l 
+ a1t/z1+i)/2 is called the median of T. Note that the number of elements of T which are 
greater [less] than or equal to its median is at least t/2. 

Before stating the complete algorithm, we first describe it with the aid of the following 
general scheme: 

1. If the size, s, of the set (s = C;I1 n,) is not larger than m, then find the nth largest 
element directly by first sorting the set; otherwise, execute steps 2 through 5.  

2. Find the median a, of each S, and generate a set T = {(a,, j ) : j  = 1, ... , m). 
3. Sort the elements of T according to their first component. (Thus the set of medians 

is sorted and the algorithm keeps track of the sorting permutation.) Assume that the sorted 
Tis  ((a,,, j11, ... , (aJm, j d ) .  

4. Find the unique k (I S k S m) such that CfF;' n,, c s/2 and nJz 2 s/2, and set 
a = a,,. 

5. Employ (I , ,  k, )  c FIND(a, j )  ( j  = 1, ... , m) to partition S into the subsets S1 = 
{b :bE  S, b > a ) ,  S 2 =  { b : b ~  S, b = a ) , a n d  r3= { b : b E  S, b < a ) . ( N o t e  that IS'[ = 

C;l ( 4  -pJ)  and IS1( + IS21 = C/"=~(kj - 1 -pJ) . )  
6. Depending on the sizes of S1, S', and S3, continue as follows: 

6(a). If n S IS' 1 then look (recursively) for the nth largest element in S1. 
6(b). If I S1 I < n 5 I S1 I + I S21 then a is the nth largest element in S; terminate. 
6(c). If IS1[ + IS2/ < n then look (recursively) for the (n - ISII - I S21)-th largest 
element in 9. 

We now compute the time complexity ~ ( s )  of the algorithm. It is obvious that steps 2 
and 4 take time O(m), steps 1 and 3 take time O(m. log m), and step 5 takes time O(z  
log nJ) 5 O(m.log(s/m)). We prove below that I S 1  ( + I S21 2 s/4 and I S21 + I S31 2 s/4. 
Hence I S1( S 3s/4 and IS" I 3s/4 and therefore the recursive call (in 6(a) or 6(c)) takes 
7(3s/4) at most. Thus the following inequality holds: 

C.m.log rn i f s S  m; 
T(S) s C. m log s + ~(3s/4)  otherwise. 

Hence T(S) 5 C. m. log s.log(s/m). To prove that I S1 ( + ( S" s/4, consider Figure 1. 
The number of elements of S in the upper left [lower right] box in Figure 1 is at least 

Cf-l nI,/2[CEk nJ,/2], which is at least s/4, by the choice of k. However, all these elements 
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belong to s2 U s3 [S1 U s2] since each such element is not larger [smaller] than the 
median of the corresponding subset, which is in turn not larger [smaller] than a.  Hence, 
the claim is proved. 

A detailed algorithm SELECT2(n, Spy) (where P = ( p , ,  ... . p,) and Q = {ql ,  ... , q,) 
define the set S )  is given below. The numerals at the left refer to the corresponding steps 
of the scheme described above. 

SELECTZ(n, Spg) 
besin 

s + 1% (91 -PI) 
1 if s S m then do 

begin 
SORT(S) 
return (nth element of S) 

end 
else do 

begin 
2 T t 0  

for j  t I until m do 
besin 

x t (p ,+  q,+ 1)/2 
b +- (v,([xI) + v,([xI + 1))/2 
T +  T U  { ( b , j ) )  

end 
SORT( T) 
s u m t 0 ; i t O  
while sum < s/2 do 

begin i + i + I ;  sum t sum + (q,, - p,,) end 
a + a,, 
lsum +- 0; ksum t 0 
for j  + I until m do 

begin 
(I,, k,) +- FIND(a, j )  
lsum +- [sum + ( I ,  - p,) 
ksum ksum + (k,  - I - p,) 

end 
6 if n d [sum then do 
6(a) begin 

for j + I until m do q; + I, 
return (SELECTZ(n. S p u , ) )  

end 
else do 

6 ( b )  if n 5 ksum then return ( a )  
6 ( c )  else do 

begin 
for] - I until m doy; - k,  - I 
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return ( S E L E C T 2 ( n  - ksum. SP,Q))  
end 

end 
end SELECT2 

Note that we use recursion only for the ease of presentation. We can easily replace the 
recursion by an iterative process which modifies p and q as in 6(a) and 6(c) and goes back 
to the beginning as long as s > m. 

As was shown above, SELECT2 runs in time bounded by C. m-log s. log(s/m) and if 
s > m2 (n > m in case s = mn), then the run time is bounded by 2C.m.logZ(s/m). It is 
possible to change SELECT2 so that this bound holds also for small values of s: The 
results of steps 1 and 4 can be achieved without sorting and in time O(m). In step 1 the nth 
largest element is found directly by using the linear-time selection algorithm of [2] which 
we denote by SELECTO. In steps 3 and 4 a = a,, is found by the following binary search 
on the set T, which we denote by BS(T, s/2): Using SELECTO we find the median b of the 
set of first components of elements of T. We partition T into two sets TI and T2 in such a 
way that for every (a,, i ) E TI, a, d b, and for every (a,, i) E TL, a, 2 b and I TI ( = [ I  T1/2]. 
(This is possible by appropriately partitioning the pairs (a,, i) with a, = 6.) Let p = 
&T, n ,,. I fp  2 s/2 we repeat the same with TI by calling BS(T1, s/2); otherwise we repeat 
the same with TZ by calling BS(T2, s/2 - p). So each time we deal with a set that is half the 
size, and the time it takes to find a is bounded by Cm + Cm/2 + Cm/4 + ... 2 2Cm. As 
a result, if we denote by ~ ' ( s )  the time complexit;of the modified algorithm, the following 
inequality holds: 

i f s 5 m ;  T'(s) 5 {% log(s/m) + r1(3s/4) otherwise. 

Hence, T'(s) 5 C. m - logZ(s/m). 
We did not include this modification in the detailed algorithm because of several 

reasons. First, the modified algorithm is much more involved and it improves the algorithm 
only for the case s << rn2. Our main motivation for constructing SELECT2 was Problem 
I and in particular the case n >> m (i.e. s = mn >> m2). Moreover, if s = rnn 5 m2 the 
solution due to Fox takes time bounded by C(m + (sl/m)log m) d C.m.log2(s/m). 

3. Optimum Distribution of Effort 

It can be easily verified that there is actually no loss of generality in assuming that u, 
( j  = 1, ... , rn) (see Problem I )  are monotone nondecreasing. Indeed, if x solves Problem 1, 
then uJ (x,) 2 U, (x, - 1) L 2 u, (0) ( j  = I, ... , m). 

A nonnegative integral m-vector x such that CJ x, 5 n is called feasible; if x also solves 
Problem 1 then it is called optimal. Optimality is characterized as follows. 

PROPOSITION 1. A feasible x is optimal if and only if max {u, (x, + 1) - uJ (x,): 
x, < n )  5 min {u, (x,) - u, (x, - 1): x, > 0). 

Proposition 1 is due to Gross 18). Its proof can also be found in 1131. In terms of the d,, 
(Section I) optimality is characterized as follows: 

PROPOSITION 2. Let A be the nth largest entry of D. A feasible x is optimal if and ontv if 
max(d, , :x,<i5 n) dA5 min(d,,:I 5 i s x , ) .  

Proposition 2 follows immediately from Proposition 1. It is also implicit in [5]. 
The following algorithm is based on Proposition 2. 

ALGORITHM 
I. Find the nth largest entry A of the  matrix D. 
2. In each column J of D compute ( I , .  k,) - FIND(A. j ). 

3. L e t / =  C % , I , a n d A , =  1 ; - , ( k , - I , -  1). r =  I . . . .  m . ( N o t e t h a t I < n S I + A  ,,,.) 
4. F ~ n d  the smallest r ( I  S r 5 m )  such that I + A, 2 n and let r, = h ,  - I f o r /  < r :  r, = ( k ,  - I )  - ( I  + A, - n )  

1'or j = r :  r, = I, for j > r 

The time bounds for steps 2,  3, and 4 are O(m.log n). O(m), O(m). respectively, and 
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hence are dominated by the time bound for step 1. which is O(m log'n). In case the u, are 
not monotone. then if A < 0 all we have to do is to replace A in the Algorithm by 0. 

4. Conclusion 

We constructed two algorithms for solving Problem 2. We used them to obtain new 
algorithms for Problem I ;  but we feel th:! Problem 2 is important by itself. The simple 
algorithm due to Fox described in the Introduction takes O(n log m + m) time. Note that 
the time bounds of SELECT1 and SELECT2 do not depend on n. So in case n is small, 
Fox's algorithm is better. But in general n can be as large as s. (For example, finding the 
median of S by Fox's algorithm will take O(s log m) time.) 

Let SELECTO' be the straightforward algorithm for the general selection problem that 
first sorts the set and takes time C a n  log n. Recall that SELECTO is the O(n) time algorithm 
of [2] for the selection problem. There is an analogy between the new algorithms SELECT1 
and SELECT2, and the pair of algorithms SELECTO' and SELECTO. SELECT1 [SE- 
LECTO'] is simpler and SELECT2 [SELECTO] is asymptotically faster. But while the 
asymptotic bound for SELECTO is better than that of SELECTO' by a factor of log n, the 
bound for SELECT2 is better than that of SELECT1 by a factor of m, and m can be 
proportional to the size of the problem. So by using similar ideas to those used in SELECTO 
we were able to derive for the special case of Problem 2 a better improvement than the one 
obtained for the general selection problem. 

Finally, we compare the new algorithm for Problem 1 with Fox's algorithm. The former 
takes O(m .log%) time and the latter takes O(n .log m + m) time. Hence our algorithm is 
better if n is very large and much larger than m. More precisely, the point where the 
asymptotic times are the same is when n/(log n)' - m/log m. Near this point Fox's 
algorithm is better because the constant factor in the bound for our algorithm is larger 
than the one for Fox's algorithm. 

In addition Fox's algorithm has two advantages: 
(1) Our algorithm assumes that d,, can be computed in time independent of i and j, 

while for Fox's algorithm it suffices that given d,. ,,, it is possible to compute d, , in time 
independent of i and j. Application I in [ S ]  is an example when the latter condition, but not 
the former, is satisfied. 

(2) Fox's algorithm finds the n largest elements of S one by one in decreasing order. So 
if after finding the nth largest element of S we want to find the kth element of S for 
k < n, then no extra work is needed if Fox's algorithm is used. This is not the case if 
SELECT2 is used. If, however, k > n, then both algorithms can exploit effectively the 
information obtained while finding the nth largest element of S. 

Postscript 

Don Johnson has pointed out to us that it is possible to modify the improved version of 
SELECT2 outlined at the end of Section 2 to get an O(rn.log(lSl/m)) algorithm for 
Problem 2 [an O(m log n) algorithm for Problem I]. The modification is based on ideas 
attributed to Jefferson, Shamos, and Tarjan (see Theorem 3.4 in M.I. Shamos. Geometry 
and statistics: Problems at the interface, in Algorithms and Complexity: New Dzrections and 
Recent Results, J.F. Traub, Ed., Academic Press, New York, 1976, pp. 25 1-280). 

This new improved version of SELECT2 uses heavily SELECTO. the recursive linear 
time selection algorithm, and consequently it has a much larger constant than SELECT2. 
Therefore, SELECT2 may be better in many practical cases. 

Theoretically, the O(m log n) solution for Problem I can be combined w ~ t h  Fox's 
O(n log m + m) to yield an O(rnin(n. m)log(max(n, m)) + m) algorithm. 
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