¥

Poly-log parallel algorithms for LP with an

application to exploding flying objects*

Nimrod Megiddo
Carnegie-Mellon University
and Tel Aviv University

November 1982
Abstract

The main results of this paper are the following: (i) LP is
solvable in poly-log time when the number of variables is fixed (despite
the general problem being log-space hard for P). (ii) Probabilistic
parallel algorithms are designed with the aid of a probabilistic constant-
time algoritﬁm for maximum-finding (on the WRAM model) and random searches,
We solve d-variable LP in 0(1ogn(loglogn)d-2) time, probabilistically;
the deterministic algorithms run in 0(logd-1n loglogn) time, (iii) We
provide sequential algorithms for the following problem: Given n objects,
flying at various speeds on straight line trajectories in R3,Afind the smallest
size of a bomb required to destroy all of them at once, thereby determining
the optimal time and place for the explosion. Relying on parallel algorithms
for LP-type problems, we solve the optimal explosion problem with (sequential)
complexity as low as O(n logan loglogn) deterministically, and
0(n logzn (loglcgn)z) probabilistically.

*Supported in part by the National Science Foundation under grant no.
ECS-8121741.



1. Introduction

The general LP problem is log-space hard for P [DLR]. So, we do not
expect to solve LP in parallel in poly-log time. It is interesting to ask
whether LP with a fixed number d of variables is solvable in poly-log
time. The answer is not trivial since (i) both the simplex algorithm [Da]
and the Khachiyan-type algorithms [K, YL] are inherently sequential, and (ii)
even the special case of the max-flow problem is log-space hard for P [GSS].
Nevertheless, we provide an affirmative answer in the present paper. This stems
from our previous (sequential) algorithms for LP [M3]. The obvious parallel
versions of those algorithms are improved, and we also incorporate randomization
for even further improvements. For d=2 we obtain an interesting probabilistic
algorithm which runs almost surely (a.s.) in O(logn) time. This then generalizes
to 0(1ogn(loglogn)d-2) algorithms for any fixed d., The deterministic algorithms
run in O(logd-ln loglogn) time,

An interesting feature of this paper is the exploitation of a parallel
constant-time probabilistic algorithm for the maximum [M4], in a probabilistic
sequential algorithm for a problem of optimal explosion. The latter is defined
as follows. Given n objects, moving on straight line trajectories in 3-space,
find the smallest radius of a ball which contains allithe objects at any one
time. This ball determines the smallest size of a bomb that is required to
destroy all the objects in one shot, thereby indicating the optimal time and
place for the explosion. This problem provides motivation for studying the
parallel complexity of the static problem of the smallest ball enclosing n
given points in 3-space. The latter is closely related to 4-variable LP (see
M2, M3]). Actually, the algorithms for the two problems are very similar.

The relationship between the dynamic and the static problems is along the lines



developed in [M1l]. We remar# that the dynamic problem in 3-space is not equiva-

lent to the static problem in 4-space. The static problem is solvable in any
fixed dimension in linear-time [M3]. Problems of computational geometry in R3
are obviously much harder than in Rz. Even a seemingly simple problem, namely,
recognizing whether any two of n given lines in R3 intersect, is not known
to be solvable (sequentially) in o(nz) time [Do]. It is therefore interesting
that our dynamic smallest ball problem can be solved (sequentially) in

0(n logan loglogn) time and|, probabilistically, in O0(n logzn (loglogn)z) time,

These algorithms rely on our parallel algorithms for LP and static smallest

ball problem.

2. Existence of poly-log algorithms for d-variable LP

The existence of poly-log algorithms for d-variable LP follows from our
(sequential) linear-time algorithms [M3]. A parallel implementation runs in
0(logdn) for any d. However, we improve this bound substantially in the present
paper. Our paper on the sequential case [M3] is currently not in the form of
a8 publication (see [M2] for d < 3). The result is certainly a non-trivial
extension of [M2] and necessitates at least a brief outline here.

The algorithm recurses on the dimension. It works as follows, First,

the constraints are classified into three types and within each type we arrange

the constraints in disjoint pairs. For each pair we compute an equation of a

critical hyperplane. All this work requires constant-time on n processors.

The next step requires partitioning the hyperplanes into two sets according to

the slope of their intersection with the (xl,xz)-subSpace. This involves

finding the median slope. We can do it deterministically in 0(logn loglogn)

time [BH, V]. Probabilistically, the slope of a random hyperplane turns out

to be asymptotically as good as the median., Given the partition of the

hyperplanes, we match those with "high'" slope with those with "low' slope



(the matching is not perfect in the probabilistic case). For each pair of
matched hyperplanes, we produce two other hyperplanes: one by eliminating

X

1 from the equations and another one by eliminating x This also takes

9
constant-time. Let x* denote the solution point. The basic idea is that
we obtain information about the position of x* relative to B.n hyperplanes
(B = B(d) > 0), thereby discarding B-n constraints. Repeating this procedure
0(logn) times reduces the number of constraints in such a way that we can then
solve the problem in one step.

The information about B*'n hyperplanes is acquired recursively (relative
to d). We first obtain information about B(d-1)'n of the hyperplanes from
which X, was eliminated and then about (B(d-l))zn of their counterparts,

1

i.e., those with x, eliminated. This step requires, by induction, 0(logd- n)

time, so that we can solve the d-dimensional problem in O(logdn) time,

Improvements will be discussed below.

3. Improvement of the two-variable algorithm

We now describe a parallel algorithm for 2-variable LP which runs in
0(logn loglogn) time, and hence improves upon the 0(log2n) bound which follows
from the general caée. By induction, this also improves the bound for general
dimension. Assume, for simplicity, our problem is to minimize y subject to
y 2 aix+-bi (i=1,...,n). This problem encompasses thelfypical operations

required for solving any 2-variable LP. Let f(x) = Max{aix+b i =1,...,n},

%
so we are seeking an x* where f 1is minimized.

Our algorithm is based on Valiant's parallel maximum-finding [V],
utilizing a technique we have developed in [M1]. The algorithm consists of

O(loglogn) phases. Phase k starts with a subset NkCZ{l,...,n} for which

it is known that f(x*) = Max{aix*+bi: ieNk} (even though x* itself is



not known). Moreover, an interval [ak,ﬁk] is known such that o <x* g Bk

and £(x) = Max{aix+bi: ieNk} for all x ¢ [ak,Bk]. During phase k we form

n pairs of lines from Nk' The pairs are determined by a graph on o = ‘Nk\
nodes and n arcs, which consists of pairwise disjoint cliques whose cardinalities
differ by at most one. At the end of the phase each clique contributes precisely
oné line to the next set Nk+1' For each pair we find the intersection point of
the participating lines; The amount of work so far is constant (see [SV])., A
single evaluation of f at an x ¢ [°k’5k] takes 0O(loglog nk) time on n,
processors. Thus, we can simultaneously evaluate f at n/nk points of
[ak,Bk] in 0(loglog nk) time. This implies that, once the intersection points
who lie in [ak,Bk] are sorted (requires 0(logn) time), we can in
0(10gn/10g(n/nk)) steps (each consisting of n/nk f-evaluations) find a
subinterval [ak+1’ Bk+1]C:[ak,Bk] which contains x* and no intersection

point lies in its interior, Since n = O(n/i2 ), it follows that the entire
effort of phase k 1s O(logn + (loglog(n/z2 ))(1ogn)/2k). Since k < loglogn,

it follows that the total effort is 0(logn loglogn).

4, Probabilistic two-variable algorithm

In this section we indicate a probabilistic 0(logn) algorithm for
2-variable LP which can run on the WRAM model. It ig based on finding the
maximum of n numbers a.s. in O0(l) time on the WRAM model [M4]. Specifically,
we take a random sample of \n 1lines and find all their points of intersection.
This takes constant-time. We now wish to locate x* in an interval [a,B]
that contains no intersection point in its interior, so that the sample-
maximum will be known at x* (and in fact over the entire [q,8]). This
is carried out by a random search over the set of intersection points.

Specifically, pick an intersection point x at random and evaluate £(x)



(a.s. in constant-time) and the one-sided derivatives f_(x), f+(x) (also
a.s. in constant-time). Discard a portion of the set according to the posi--
tion of x relative to x%, as learned from f_ (x) and f+(x) (see [M2]).
It follows that this search will take an expected number of O(logn) evaluations.
Knowing the line 1L which determines the sample-maximum over ([q«,B], we now
find the intersection points of L with all the other lines, and search for

an interval [q&',8'1<{w,B] which contains x* and no such intersection point
in its interior. This is done essentially in the same way we do the first
search, i.e., in 0(logn) time. Now we know which lines 1lie above the sample-
maximum at x*, Their number is expected to be 0(/n) and we repeat the entire
procedure unless there are less than \n lines left. However, with probability
approaching 1 (as n tends to infinity), this will not repeat more than twice.
When we are left with less than \n lines, we find the minimum directly in

one search step (i.e., O0(logn) time). The entire algorithm takes an expected

0(logn) time.

5. Deterministic and probabilistic algorithms for d variables

For improving the 3-variable case we need to conéider the 2-variable
case with any number p(n < p < nz) of processors. Let r = 2p/n. The
maximum can be found in 0(log((logn)/logr)) time [SV, V]. Using this result,
we solve 2-variable LP deterministically in 0(10g(ﬁ/r)loglog(n/r) +
loglog(n/r) logn/logr) time and probabilistically in simply O0(logn/logr)
time. These bounds imply that the 3-~variable case is solvable deterministically
in 0(10g2n loglogn) time and probabilistically in O(logn loglogn) time.
These bounds are then generalized to 0(logd-1n loglogn) deterministically,
and O(logn(loglogn)d-z) probabilistically. The difference, which becomes

more and more dramatic as d increases, is due to the fact that a random



search (which is asymptotically as good as a deterministic one) does not
require median-finding. The latter is a relatively costly operation when we

are dealing with deterministic parallel algorithms.

6. The optimal exglosiqn problem

We consider the following problem: Given are n objects, flying in
3~-space at various speeds with straight line trajectories. Find a time and a
place at which a smallest ball encloses all the objects. This ball determines
the size of the smallest bomb that can destroy all the objects, and the optimal
time and place for the explosion. This problem is not equivalent to that of
finding the smallest ball enclosing n points in 4-space. Also, a related
problem of finding the smallest ball that touches all the n trajectories
(i.e., each object touches the ball at some time) is easier than our present
problem, The "static” problems of smallest balls can be solved in linear-time,
whenever the dimension is fixed, by methods resembling those of [M3]. A
seemingly related problem, namely, recognizing whether any two of n given
lines in R3 intersect, is currently not known to be solvable in o(nz)
time [Do]. It is thus interesting that our optimal explosion problem can be
solved in (sequential) O(n logan loglogn) time deterministically and
0(n logzn(loglogn)z) probabilistically. However, these low-order complexities
follow by combining two powerful results: (i) the genéral scheme of using
parallel algorithms in the design of serial ones, as proposed in [M1],
and (ii) fast parallel algorithms'for the static smallest ball problem in
R3. The bound can be improved i1f randomization is allowed.

Following is a brief sketch of the algorithm., Let F(t) denote the
radius of the smallest ball enclosing the objects at time t. The function

F(t) 1is convex and we know how to evaluate it at any t in O0(n) time [M3].



Moreover, we develop in the present paper a parallel algorithm for evaluating
F(t) in 0(log3n loglogn) time with n processors. Denote the minimum by

t*, Simulating this parallel algorithm, we can run in 0(10g3n loglogn) stages
with ¢t not specified but confined to an interval [ak’Bk] during stage k.
Typically, there will also be a value yk(ak < Yie < Bk) such that F(ak) > F(yk)
and F(Bk) > F(Yk) (and therefore % < t* <L Bk). The task of each processor

is the same for all te[qk,Yk) and for all te[yk,Bk]. However, each processor
may produce a small number (independent of n) of critical values of t which
determine how the algorithm should proceed in the succeeding stage. Denoting
these values by o = tl <...< tm = Bk, (Yk =ty for some 4), we then search

for j such that F(tj-l) > F(tj) and F(tj+1) > F(t,). The next interval

3
| is [ak+1’ Bk+1] = [tj-l’ tj+1]’ Since F is convex, we can perform a "Fibonacci
search'" over the set {tl,...,tm} which amounts to 0(logm) evaluations of F,
However, it follows that m < 18n, since each processor may need to compare
two pairs of polynomials of t of degree 9 (one pair over [ak,yk) and
another over [Yk,sk]), thereby producing at most 18 critical values., The
effort per stage is therefore O(n logn) and the total is O(n logan loglogn).
We should mention that this is in fact the number of times we may need to solve
single-variable polynomial equations of degree not greater than 9. However,
the effort involved in solving a single equation is inéependent of n.

A probabilistic algorithm, based on probabilistically finding a static

smallest ball in 0(logn(loglogn)2) parallel time, is utilized in designing

a probabilistic 0O(n logzn(loglogn)z) sequential algorithm for the explosion

problem,



References

[BH}] A. Borodin and J. E. Hopcroft, "Routing, merging and sorting on
parallel models of computation," STOC 1982, 338-344,

[Da] G. B. Dantzig, Linear programming and extensions, Princeton University
Press, Princeton, NJ, 1963.

[Do] D. Dobkin, private communication, November 1982.

[DLR] D. Dobkin, R, J. Lipton and S, Reiss, "Linear programming is log-space
hard for P,"” Inf. Proc. Lett 8 (1979) 96-97.

[6SS] L. M. Goldschlager, R. A, Shaw and J. Staples, '"The maximum flow
problem is log space complete for P," Theor. Comp. Sci. 21 (1982)
105-111,

(K] L. G. Khachiyan, "A polynomial algorithm in linear programming," Soviet
Math., Dokl. 20 (1979) 191-194,

[M1] N. Megiddo, "Applying parallel computation algorithms in the design of
serial algorithms,'" FOCS 1981, 399-408.

[M2] N. Megiddo, '"Linear-time algorithms for linear programming in R3 and
related problems," FOCS 1982, 329-338.

[M3] N. Megiddo, "Solving linear programming in linear time when the
dimension is fixed," research report, April 1982,

[M4} N. Megiddo, "Parallel algorithms for finding the maximum and the
median almost surely in constant-time' (preliminary report) October 1982,

[SV] Y. Shiloach and U. Vishkin, "Finding the maximum, merging and sorting
in a parallel computation model," J. Algorithms 2 (1981) 88-102.

[v] L. G. Valiant, "Parallelism in comparison problems,'" SIAM J. Comput. &
(1975) 348-355.

(YLl B. Yamnitsky and L, A. Levin, "An old linear prégramming algorithm
works in polynomial time,”" FOCS 1982, 327-328.



