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ON FULKERSON'S CONJECTURE ABOUT CONSISTENT 
LABELING PROCESSES* 

NIMROD MEGIDDOt AND ZVI GALILS 

Fulkerson conjectured that any consistent labeling process implies a polynomial time 
bound for the Ford-Fulkerson max-flow algorithm. The conjecture is disproved by means of a 
sequence of networks requiring an exponential number of augmentations, resulting from a 
consistent labeling process. On the other hand, it is shown that any consistent labeling process 
yields an algorithm which runs in time O[Min(V!, 3E)]. This result is stronger than A. 
Tucker's which states that consistency implies a finite number of augmentations. 

Ford and Fulkerson's method of solving the max-flow problem is by repeated 
augmentations of flow, from the source s to the sink t. Augmentation is carried out 
along a path which is found by a labeling process. First, the source is labeled. Second, 
if x is a labeled vertex and y is unlabeled, then y can receive a label from x either if 
the edge ( x ,  y) is not saturated, or if the edge (y, x) carries positive flow. See [3] for 
details. A consistent labeling process is one in which the choice of the labeled node x 
to be scanned next is determined only by the set of nodes that are currently labeled 
and unscanned. Then all unlabeled neighbors of x receive a label from x if possible 
(see t41). 

Following is a summary of known facts. 
1. If the labeling process halts and t is unlabled, then the current flow is maximal. 
2. If the edge capacities are rational numbers, then a max-flow is found in a finite 

number of flow-augmentations; this number is not bounded by any function of the 
size of the network. + 

3. If the capacities are real numbers, then the procedure might never halt, and 
furthermore, it might produce a convergent sequence of flows, whose limit is not a 
max-flow. 

4. If the labeling process is consistent, then a max-flow is found in a finite number 
of flow-augmentations [4]. Tucker has not shown this number to be bounded by any 
function of the size of the network. 

5. If the labeling process is "first-labeled first-scanned" (i.e., breadth-first-search) 
then a max-flow is found in 0(v3) flow-augmentations [I], [2]. Efficient max-flow 
algorithms based on this property have been developed recently. 

Fulkerson conjectured that consistency of the labeling implies that the number of 
augmentations is bounded by a polynomial function of the number of vertices. We 
will disprove Fulkerson's conjecture, but first we modify the definition of consistency 
-just for the ease of presentation. A consistent (in a broad sense) labeling process 
progresses as follows. First, the source is labeled. Next, select a labeled vertex x and 
an unlabeled vertex y, and label y from x if possible. The selection of the pair (x, y) is 
determined by the set of presently labeled vertices and by the set of pairs tested 
(without success) for possible labeling so far. A consistent labeling process in the 
broad sense is equivalent to a consistent labeling process in the narrow sense, but in a 
modified network, obtained by adding a vertex in the middle of each edge. 
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Let G,, be the network shown in figure 1: 

The capacities are c(a,, b,) = 2k-1 ( k  = 1, . . . , n)  and c(e)  = 2" for every other 
edge e. The labeling processes introduced below are not well defined for all possible 
flows in G,,, but are well defined for the particular flows encountered later. The 
definitions are recursive. 

Procedure P ,  
begin label s ,  ; label a ,  from s ,  ; 
if b,  cannot be labeled from a ,  then label t from a ,  else 
[label b,  from a,; label t from b,]; end. 

f 

Procedure Q ,  
begin label s,  ; label b ,  from s ,  ; 
if a ,  cannot be labeled from b ,  then label t from b ,  else 
[label a ,  from b, ;  label t from a,]; end. 

For n > 2 we define 

Procedure P,, 
begin label s,,; label a,, from s,,; 
if b,, cannot be labeled from a,, then [label s,, - , from a,,; Q, - ,I  
else [label b,, from a,,; label s,,-, from b,,; P,,-,I; 
end. 

Procedure Q,, 
begin label s,,; label b,, from s,; 
if a,, cannot be labeled from b,, then [label s,,-, from b,,; P,,- ,I 
else [label a,, from b,, ; label s,, - , from a, ; Q, - , ] ;  end. 

Obviously, P,, and Q,, are consistent in the broad sense. The following proposition can 
be easily proved by induction on n. 

PROPOSITION. (i) Starting with flow zero, procedure P,, generates in 2" augmentations 
the following flow: f(s,,, a,,) = 2", f(s,,, b,,) = 0, f(a,, 6,) = 0 for k = 1 ,  2, . . . , n - 1, and 
f ( e )  = 2"-' for every other edge e. (ii) Starting from the flow f, procedure Q,, generates 
in 2" augmentations the following flow: f*(ak, 6,) = 0 for k = 1 ,  . . . , n,  and f*(e) = 2" 
for every other edge e. 

Thus, consistent labeling may result in an exponential number of flow augmenta- 
tions, even if capacities are integers. However, we will show that the number of flow 



augmentations, subject to consistent labeling, is bounded for networks with a fixed 
number of vertices. 

Given a flow f in a network G = ( V, E), let S, = {e E E : f(e) = 0), S, = { e E 
E : 0 < f(e) < c(e)], and S, = {e E E : f(e) = c(e)). The ordered triple (S,, S,, 
S,) is called the state of the flow f. Obviously, there can be at most 3E distinct states 
of flow in G. A consistent labeling process generates a sequence of flows with distinct 
states (see a proof below) and hence cannot generate more than 3E flows. 

LEMMA. ~f f I ,  f2 ,  . . . is a sequence of flows in G, produced b y  a consistent labeling 
process, then the states of these flows are painvise distinct. 

PROOF. Suppose, on the contrary, that there are two flows f', fJ (i < j) having the 
same state. A consistent labeling process will progress identically with respect to both 
of them. Obviously, f' and f'+' have distinct states. It follows that there is a pair (x, y) 
such that y receives a label from x while f' and P are augmented, but y does not 
receive a label from x while some f k  (i  < k < JJ is augmented. Without loss of 
generality, assume that y is the first (in the order of the labeling w.r.t. f' and fJ) with 
the property that y participates in such a pair (x, y). Thus, for every I ( i  < I < j) the 
labeling process progresses identically up to the point where y is considered for 
receiving a label from x. Since y cannot be labeled from x w.r.t. f k ,  it follows that 
fk(x, y) = C(X, y) and fk(y,  X) = 0. Since x is always labeled before y,  x will never 
receive a label from y. Thus, the flow in (x, y) and (y, x) will never change beyond 
this point. In particular, fJ(x, y) = c(x, y) and fJ(y, x) = 0, so that y cannot receive a 
label from x w.r.t. fJ. Hence, a contradiction. 

Another upper bound on the number of flow-augmentations subject to consistent 
labeling, namely V!, could be derived by induction on as follows. 

Let x be the first vertex that receives a label from J (starting from flow zero). As 
long as the edge (s, x) is not saturated, x will be the first to receive a label from s. All 
augmentations made before (s, x) is saturated can be interpreted as being made insthe 
network obtained by contracting the edge (s, x). Hence, there can be at most (V - l)! 
of them. If (s, x) never becomes saturated, then the proof is complete. If (s, x) does 
become saturated, then it will remain saturated forever, and x will never again receive 
a label from s. Let y be the first vertex that receives a label from s, immediately after 
(s, x) becomes saturated. A similar argument implies that there can be at most 
( V  - I)! augmentations since (s, x) has become saturated and before (s, y) becomes 
saturated. Proceeding in this line, we deduce that there can be at most V phases with 
at most ( V  - l)! augmentations in each one of them. Hence, an upper bound of V! 
follows. 
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