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Abstract

This paper� is concerned with generalized network �ow problems� In a generalized
network� each edge e � �u� v� has a positive ��ow multiplier� ae associated with it�
The interpretation is that if a �ow of xe enters the edge at node u� then a �ow of aexe
exits the edge at v�

The uncapacitated generalized transshipment problem �UGT� is de�ned on a gen	
eralized network where demands and supplies �real numbers� are associated with the
vertices and costs �real numbers� are associated with the edges� The goal is to �nd
a �ow such that the excess or de�cit at each vertex equals the desired value of the
supply or demand� and the sum over the edges of the product of the cost and the �ow
is minimized� Adler and Cosares 
�� reduced the restricted uncapacitated generalized
transshipment problem� where only demand nodes are present� to a system of linear
inequalities with two variables per inequality� The algorithms presented in 

� result in
a faster algorithm for restricted UGT�

Generalized circulation is de�ned on a generalized network with demands at the
nodes and capacity constraints on the edges �i�e�� upper bounds on the amount of
�ow�� The goal is to �nd a �ow such that the excesses at the nodes are proportional to
the demands and maximized� We present a new algorithm that solves the capacitated
generalized �ow problem by iteratively solving instances of UGT� The algorithm can be
used to �nd an optimal �ow or an approximation thereof When used to �nd a constant
factor approximation� the algorithm is not only more e�cient than previous algorithms
but also strongly polynomial� It is believed to be the �rst strongly polynomial approx	
imation algorithm for generalized circulation� The existence of such an approximation
algorithm is interesting since it is not known whether the exact problem has a strongly
polynomial algorithm�
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�� Introduction

A generalized network is a digraph G � �V�E� given together with positive �ow multipliers

ae �e � E� associated with the edges� The multiplier ae �e � E� is interpreted as a gain
factor �when ae � �� or a loss factor �when ae � �� of �ow along the edge e� if xe units
of �ow enter the edge e� then aexe units exit� Generalized network �ows are also known in
the literature as �ows with gains� They can be used to model many situations that arise in

�nancial analysis 	
� �� ��
�

The uncapacitated generalized transshipment problem �UGT� is de�ned on a generalized
network� where costs are given for the edges and supplies or demands are given for the
nodes� The goal is to �nd a �ow of minimum cost� which satis�es the supply and demand
requirements� Adler and Cosares 	�
 gave an algorithm for solving restricted instances of

UGT where there are many sources and no sinks� Their algorithm is based on solving the
dual linear programming problem� In this case the dual problem has two variables per
inequality �a TVPI system� and also has a special property� which we call monotonicity�
namely� in each inequality there is at most one positive and at most one negative coe�cient�

Hence� the results of 	�
 imply better time bounds for restricted UGT�

In the generalized circulation problem �GC� we consider a generalized network where
�nonnegative� demands are associated with the nodes and capacities are associated with the
edges� The goal is to �nd a feasible �ow which maximizes the fraction of the satis�ed demand�
Goldberg� Plotkin� and Tardos 	�
 presented an algorithm for the more general capacitated

generalized transshipment problem without costs� Their algorithm is based on solving an
instance of GC with a single supply node� the source� and performs additional computation of
O�mn� time� We present a scheme for solving generalized circulation problems by iteratively
relaxing the capacity constraints� An iteration features �i� solving an instance of UGT on

the same network with costs chosen with respect to the capacities� �ii� scaling the �ow to a
feasible one� and �iii� replacing the capacities by the residual capacities calculated relative
to the latter �ow�

Our scheme introduces a general method of approximating a solution to linear program�
ming problems of the following form�

�P �

Maximize t

subject to Ax � tb

Ux � d

x � � �

where A � Rn�m� O � U � R��m� b � Rn� and � � d � R�� The system Ux � d may

be viewed as a set of generalized capacity constraints� Denote by t� the maximum of �P ��
Suppose that for c � � the following problem is relatively easy�

�E�

Minimize cTx

subject to Ax � b

x � � �

�



We will show that by solving a single instance of �E� �with a suitable c� a feasible solution
�x�� t�� � Rn�� �R of �P � can be found such that t� � t����

Consider the generalized circulation problem with the relaxed goal of computing a �ow
which satis�es a fraction of the demand which approximates within a constant factor the best

attainable fraction� For the relaxed problem� the scheme described above yields a strongly
polynomial time algorithm� which we also believe is the fastest known algorithm in a certain
range of the input parameters� This scheme also yields an algorithm for obtaining an optimal
solution� which is the fastest known for a certain range of the input parameters�

In Section � we de�ne the UGT problem and review the algorithm of Adler and Cosares 	�
�

In Section � we introduce the approximation algorithm and apply it to the generalized cir�
culation problem� In Section � we introduce bidirected generalized networks and discuss the
UGT and generalized circulation problems on these networks� Section � contains concluding
remarks�

Note that for instances of the problems mentioned above we need to consider cases where
m � ��n��� The algorithms presented here handle multiple edges within the stated time

bounds�

�� The generalized transshipment problem

Given a graph G � �V�E�� for every i � V we denote by in�i� and out�i� the sets of edges
that go into and out of i� respectively�

Problem ��� 	Uncapacitated Generalized Transshipment �UGT�

Given is a generalized network� consisting of a graph G � �V�E� with �ow multipliers ae
and edge�costs ce �e � E�� and supplies �or demands� bi �i � V �� Find a �ow function
x � �xe�e�E to solve the following�

Minimize
X
e�E

cexe

subject to
X

e�in�i�

aexe �
X

e�out�i�

xe � bi �i � V �

xe � � �e � E� �

When bi � � �resp�� bi � ��� we call i a sink �resp�� source�� The dual linear programming
problem can be stated as follows� Find ��� � � � � �n to solve the following�

Maximize
nX
i��

bi�i

subject to �i � ae�j � ce �e � �i� j� � E� �

Note that the set of constraints of the dual problem is monotone in the sense de�ned above�

In this section we consider restricted instances of UGT where either there are only

sinks �b � �� or there are only sources �b � ��� Adler and Cosares 	�
 proposed a
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scheme for solving a subclass of linear programming problems in standard form� where
each variable appears in at most two equations� In particular� that scheme is applica�

ble to restricted UGT instances� They showed that these instances can be solved by us�
ing one application of Megiddo�s algorithm for TVPI systems 	��
� An application of the
faster algorithms for TVPI systems presented in 	�
 can be used instead� Hence� restricted

UGT instances can be solved in O
�
mn��logm� log� n�

�
time� deterministically� and in

O
�
n� log n�mn�logm log� n � log� n�

�
expected time when using randomization�

We now characterize the problems to which the scheme of 	�
 applies� Consider a linear

programming problem in standard form

�SF �

Minimize cTx

subject to Ax � b

x � �

where each column of A � Rn�m contains at most two non�zeros� Denote by x� � Rm an

optimal solution of �SF �� Note that the dual of �SF � amounts to maximizing an arbitrary
objective function subject to a TVPI system� Consider the problems

�SFi�

Minimize cTx

subject to Ax � bie
i

x � �

�i � �� � � � � n� and� suppose x�i� is an optimal solution of �SFi�� i � �� � � � � n� The scheme

of 	�
 applies to �SF � if x� �
P

i�bi ��	 x
�i��

We now sketch the ideas used in the scheme of 	�
� Let �min
i �resp�� �max

i � denote the
minimum �resp�� maximum� value of �i subject to the TVPI system of constraints AT� � c�
If �max

i � � �resp�� �min
i � ���� then �SF � is feasible only if bi � � �resp�� bi � ��� If

bi �� �� a vector x�i� as de�ned above can be constructed from a minimal subset of the dual

constraints which implies �i� �i � �max
i if bi � �� or �ii� �i � �min

i if bi � �� The edges which
correspond to such a minimal system comprise a generalized augmenting path 	��
 of �ow
into node i �i�e�� a �ow generating cycle and a path from a node on the cycle to node i�� The
vector x�i� is obtained by adjusting the �ow values on the edges while pushing �ow along

this augmenting path�

It is easy to see that the scheme of 	�
 applies to restricted UGT instances� Consider a

UGT instance where b � � �the arguments are similar for the case of b � ��� The system of
dual constraints is monotone� so by a single application of the algorithm of 	�
 we determine
�max
i for i � �� � � � � n �see the sections on monotone systems in 	�
�� If �max

i � �� the
algorithm also computes a minimal subset of dual constraints which implies that �i � �max

i �

The vector x�i� can be constructed using this information� If �max
i �� and bi � �� the UGT

system is not feasible� Otherwise� x� �
P

i�bi�	 x
�i� is a solution� It is also apparent why

�In the standard form the constraints are in the form Ax � b� x � ��
�
e
i is such that eij � �� i �� j and eii � ��
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Vaidya� 
� 	��
 O�n�m��� log�n���

Kapoor and Vaidya� 

 	��
 O�n���m��� log�n���

Goldberg� Plotkin and Tardos� 

 	�
 O�n�m� log n log� ��
O�n�m�m� n log n� log n log ��

Table �� Some previous results on generalized circulation

the scheme of 	�
 is not applicable to unrestricted UGT instances� that is� when the vector b

is general� For unrestricted instances� the problem is not �separable� in the sense that the
optimal solution for the right hand�side vector b is not necessarily a sum of the solutions of
the simpler systems �SFi� �i � �� � � � � n��

�� Generalized circulation

De�nition ��� Consider a generalized network G � �V�E�� where demands bi � � �i �

�� � � � � n� are associated with the nodes and capacities cij � � �possibly cij ��� are associ�
ated with the edges�

i� A generalized �ow is a nonnegative �ow function x � �xe�e�E for which there exists a
scalar �t � �t�x� such that

X

e�in�i�

aexe �
X

e�out�i�

xe � �tbi �i � �� � � � � n�

i�e�� the �ow x satis�es a fraction �t of the demand�

ii� A generalized �ow is said to be feasible if

xe � ce �e � E� �

Problem ��� 	Generalized Circulation

Given is a generalized network with demands and capacities as above� Find a feasible

generalized �ow x� that maximizes �t�x��� Denote t� � �t�x���

We refer to t� as the optimal value� A feasible generalized �ow x is said to be optimal if
�t�x� � t�� and ��� ���optimal if �t�x� � �� � ��t��

Vaidya 	��
 gave an O�n�m��� log�n��� time algorithm for the problem� where � is an up�

per bound on all the numerators and denominators of the capacities� multipliers� and costs�
Vaidya�s bound is based on a specialization of his currently fastest known general purpose
linear programming algorithm and relies on the theoretically fast matrix multiplication al�
gorithms� The previously fastest known algorithm� due to Kapoor and Vaidya 	��
� does not

rely on fast matrix multiplication� and has a bound worse by a factor of
p
n� A recent result
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by Murray 	��
 is based on a di�erent specialization of Vaidya�s linear programmingalgorithm
to generalized �ow� Murray�s generalized circulation algorithm matches the bound of 	��


and does not rely on fast matrix multiplication� The algorithms of 	��� ��� ��
 are applicable
to the more general min�cost generalized �ow problem� Di�erent algorithms� of a somewhat
more combinatorial nature� were given by Goldberg� Plotkin and Tardos 	�
� These results
are summarized in Table ��

���� A generalized circulation algorithm

The algorithms discussed above are designed to �nd an optimal �ow� We present an algo�
rithm for Problem ��� which is based on iteratively obtaining closer and closer approximations
of the optimal solution� In each iteration� the algorithm computes a ���m��optimal �ow and
then computes the residual network� The subsequent iteration is applied to the residual

network� The residual network is constructed by updating the capacities in a similar way as
for regular network �ows� Consider a network with capacities ce �e � E� and denote by fe
�e � E� the value of the current �ow on an edge e� Consider a pair of edges e � �u� v� and

e� � �v� u� where aeae� � �� Note that we can always assume that either fe � � or fe� � ��
Suppose that fe� � �� The residual capacity of e is ce � fe and the residual capacity of e� is
ce� � aefe� A solution of Problem ��� on the original network can be obtained by adding the
current �ow values fe �e � E� to the �ow values on the corresponding edges of a solution

of Problem ��� for the residual network� Thus� after k iterations� the algorithm produces a
�ow which is �� � �� � ��m�k��optimal� Hence� a �� � ���optimal �ow can be computed in
O�m log ���� iterations� Note that O�m� iterations su�ce for any constant �� The optimal
value can be found within O�mjt�j� iterations� where jt�j � m log�n�� is a bound on the

number of bits in the optimal solution and � is the maximum value of any numerator or
denominator of a capacity or a multiplier in the network�

What remains is to show how we perform each iteration� In Subsection ��� we introduce
an approximation method that allows us to �nd a ���m��optimal feasible generalized �ow

by solving a single UGT instance on the same generalized network� where the capacity
constraints are relaxed and costs are introduced� We will see that each iteration of our
algorithm amounts to solving an instance of the restricted UGT problem�

The resulting deterministic and randomized bounds for computing a �� � ���optimal

generalized circulation are summarized in Table �� We believe our algorithm is more practical
than that of 	��
� When the algorithm is used to �nd an approximate solution� we achieve
strongly polynomial time bounds which are also strictly better than those of 	�� ��
� and
better than those of 	��
 in a certain range of the parameters �e�g�� when the size of the

binary encoding of capacities and multipliers is large��

Note that when � � ��q�m�n�� for some polynomial q� a �� � ���optimal �ow can be
found in strongly polynomial time� It is still not known whether a strongly polynomial time
algorithm exists for �nding an optimal solution� This question is of a particular interest

because generalized circulation is one of the simplest classes of linear programming problems
for which no strongly polynomial algorithm is yet known 	�� ��
�

�



Computing a �� � ���optimal �ow�

expected time O
�
m log ���

�
n� log n�mn�logm log� n� log� n�

��

deterministic O
�
m�n� log ����logm� log� n�

�

Computing the optimal solution�

expected time �O �jt�j�mn� �m�n��

deterministic �O�jt�jm�n��

Table �� Bounds for generalized circulation

We note that there does not seem to be an obvious way of obtaining a strongly polyno�

mial bound to the approximate problem by adding appropriate stopping rules to previous
algorithms� Primal�dual interior point algorithms work in iterations where each �strongly�
polynomial� iteration reduces by a constant factor the duality gap� This implies that the gap
between the value of the current solution and the optimal value tends to zero geomterically�

The initial gap may� however� be very large with respect to the optimal value and there is
no known way to obtain a su�ciently small initial gap� One of the combinatorial algorithms
presented by Goldberg� Plotkin� and Tardos 	�
� the fat�path algorithm� is an iterative ap�
proximation scheme such that each iteration reduces by a factor of ��n the gap between

the excess at the source of the current pseudo��ow and the optimal value� Each iteration�
however� is not strongly polynomial �more speci�cally� the cancellation of �ow�generating
cycles is not performed in strongly�polynomial time�� Moreover� the initialization is such

that the value of the gap is ��� and hence� a strongly polynomial number of iterations may
not be su�cient to obtain a solution within a constant factor of the optimal value�

���� Obtaining an approximation

Consider linear programming problems of the following form�

Maximize t

subject to Ax � tb

Ux � d

x � �

where A � Rn�m� O � U � R��m� b � Rn� and � � d � R�� We refer to the constraints
Ux � d as generalized capacity constraints� A vector x � �� such that Ax � b �Ax is
proportional to b� and Ux � d is called feasible� For a feasible vector x� denote by �t�x� the

scalar �t such that Ax � �tb� Denote by �x�� t�� an optimal solution �so that t� � �t�x���� A
feasible vector x is ��� ���optimal if �t�x� � �� � ��t��

Suppose that for � � c � Rm it is relatively easy to compute a vector x � � which
minimizes cTx subject to Ax � b� We refer to problems of this form as uncapacitated

instances� whereas an instance of the original problem is referred to as a capacitated one�

�



Note that when the capacitated problem is an instance of generalized circulation� U is a
diagonal matrix with at most m � jEj rows� The corresponding uncapacitated problem is

an instance of UGT on the same network� where only demand nodes are present�

We present an algorithm for constructing a ������optimal vector y� The algorithm
amounts to solving a single instance of the uncapacitated problem� Let D � diag�d�� i�e��
D is a diagonal matrix with the coordinates of d in its diagonal� Let pT � eTD��U � where
e is a vector of ��s� and consider the linear cost function pTx� Note that pT �

P�
i��U i��di�

It is easy to verify that the following properties hold�

i� If x is feasible then pTx � ��

ii� If Ax � b� x � �� and pTx � �� then x is feasible�

iii� If pTx� � �� then pTx� � � �since for some i� U i�x
� � di��

Consider a vector y � � such that Ay � b and pTy � � which maximizes �t�y�� Note that
the vector �y maximizes �t�x� among all vectors x � � such that Ax � b and pTx � ��
In particular� �t��y� � t�� and hence� �t�y� � t���� Such a vector y can be obtained by
normalizing a vector x � � which minimizes pTx subject to Ax � b� Also� y is feasible and

therefore provides the desired approximation� A formal description of the algorithm follows�

Algorithm ��� 	Compute a ������optimal vector


i� Solve the following instance of the uncapacitated problem�

Minimize pTx

subject to Ax � b

x � � �

If it is infeasible� then conclude that x � � is the only feasible vector of the capacitated
instance� Otherwise� let x be the solution�

ii� If pTx � � then for every r � �� the vector rx is feasible� and hence the capacitated
problem is unbounded�

iii� Otherwise� when pTx �� �� compute the largest number r �which must exist in this
case� such that rUx � d� Conclude that rx is ������optimal�

Correctness� Consider the vector x computed in step i of the algorithm� Note that
�t�x� � �� Hence� �t�rx� � r�t�x� � r�

Proposition ��� pTx � � if and only if the capacitated problem is unbounded�






Proof� Suppose �rst that pTx � �� Note that for all r � �� rpTx � �� and hence� rx is
feasible� Also� for all r � �� �t�rx� � r� Hence� the problem is unbounded� Second� suppose

the problem is unbounded� There exists a vector x such that rx is feasible for all r � ��
It follows that pT �rx� � rpTx � � for all r � �� Hence� pTx � ��

The following proposition concludes the correctness proof�

Proposition ��� If t� is �nite� then r � t����

Proof� For k � �� denote

R�k� � maxf�t�y� j pTy � k�Ay � b�y � �g � and
R��k� � maxf�t�y� j pTy � k�y is feasibleg �

Obviously� �i� R and R� are increasing functions� �ii� R � R�� �iii� for every a � ��
R�ak� � aR�k�� and �iv� t� � R�����

For the vector x �computed in step i�� R�pTx� � � � and hence R�rpTx� � r� Since
pTx � �� it follows that rU i�x � di for some � � i � �� Hence� rpTx � �� It follows that

t� � R���� � R��� � R��rpTx� � �rR�pTx� � �r �

�� Bidirected generalized networks

In the previous sections we discussed generalized networks where the �ow multipliers are
positive numbers� We refer to the edges in these networks as head�tail edges� A head�tail
edge produces a nonnegative amount of �ow at the tail end of the edge and a proportional

nonpositive amount at the head end� In bidirected generalized networks we allow two ad�
ditional types of edges� head�head and tail�tail� The properties of edges of these types are
shown in Figure �� Note that a tail�tail edge can be viewed as a head�tail edge with a neg�
ative multiplier� Bidirected generalized networks are more general than bidirected networks

�see 	��
�� In bidirected networks the multipliers associated with the edges are always unity�
Bidirected networks were �rst considered by Edmonds 	�
 who related them to non�bipartite
matching theory� In this section we apply the methods discussed in previous sections to �ow
problems on bidirected generalized networks�

���� UGT on bidirected networks

We discuss the application of the scheme of Adler and Cosares for solving the UGT problem
on bidirected networks� A bidirected UGT problem has the form�

Minimize cTx

subject to Ax � b

x � � �

�
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Figure �� Edge types of a bidirected generalized network

where b � Rn� c � Rm� and the matrix A � Rn�m has at most two non�zero entries in
each column� Note that head�tail edges correspond to columns where the two entries have
opposite signs� head�head edges correspond to columns with two positive entries� and tail�tail
edges correspond to columns with two negative entries� The dual of this problem is�

Maximize bTy

subject to ATy � c �

where the constraints have the TVPI property� Recall that when only head�tail edges are

present� the dual has monotone constraints� When both head�tail and tail�tail edges are
allowed� AT is called a pre�Leontief matrix �see 	�
�� and it is known that in this case
there exists a vector which maximizes all variables simultaneously� The scheme of Adler and
Cosares applies when b � �� Similarly� when both head�tail and head�head edges are present�

�AT is a pre�Leontief matrix� and hence� there exists a vector which minimizes all variables
simultaneously� The scheme of Adler and Cosares applies here when b � �� When all three
types of edges are present� the dual constitutes a general TVPI system� The algorithm of 	�


can be used to �nd a vector which maximizes or minimizes a single variable� The scheme of
Adler and Cosares applies here to cases where b � 	ei� The UGT instances for which the
scheme of Adler and Cosares applies are listed in Table �� These instances can be solved by
a single application of the algorithms of 	�
�

���� Generalized circulation on bidirected networks

We consider applying the approximation algorithm of Section � to generalized circulation
problem where the underlying network is bidirected� Recall that the approximation algo�
rithm iteratively computes a feasible �ow and in the following iteration considers the residual
graph� Since tail�tail edges give rise to head�head edges in the residual graph �and vice versa��

we only consider networks where all three edge types are present� Note that when all three

��



Allowed edge types structure of the dual � supply�demand vectors

ATy � c � TVPI needed

head�tail monotone TVPI b � � or b � �

monotone �maximize 	eTy�
head�tail� tail�tail AT is pre�Leontief b � �

monotone �maximize eTy�

head�tail� head�head �AT is pre�Leontief b � �

monotone �minimize eTy�

all types general TVPI bj � 	�� bi � � �i �� j�
general �maximize minimize yj�

Table �� Solving UGT on bidirected generalized networks

edge types are present the Adler�Cosares scheme applies to UGT instances where there is a
single source or a single sink �that is� b � ei or b � �ei for some i �� � i � n��

It follows that the approximation scheme presented in Section � can be used to solve

bidirected generalized circulation instances where b � 	ei for some i �� � i � n��

�� Concluding remarks

In this paper we presented algorithms for the uncapacitated generalized transshipment

�UGT� problem and the generalized circulation �GC� problem� We also considered the
UGT and GC problems on bidirected generalized networks� To solve UGT� we combined a
scheme by Adler and Cosares 	�
� which reduces the restricted UGT problem where either

only demand nodes or only supply nodes are present to solving the dual linear programming
problem� with the algorithms given in 	�
� The combination yielded better time bounds for
restricted UGT instances�

In order to utilize the UGT algorithms for solving the capacitated GC problem� we
introduced an iterative approximation algorithm� In each iteration� we consider a UGT

instance� with costs which �capture� the relaxed capacities� The solution of this UGT
instance yields an approximate solution for the GC instance� The next iteration considers
the residual graph�

We now comment on the parallel running times of the algorithms mentioned above� We

denote f�n� � �O�g�n�� if there is a k such that f�n� � O�g�n��log n�k�� The parallel
complexity of the algorithms of 	�
 is �O�n� where the deterministic algorithm uses O�mn�
processors and the randomized one uses O�m � n�� processors� The algorithms for the

restricted UGT instances have the same complexity� The approximation algorithms for GC
run in �O�mn log ���� time with processor bounds of O�mn� for the deterministic algorithm
and O�m� n�� for the randomized one�

��



The existence of a strongly polynomial algorithm for the unrestricted UGT problem
�where many sources and sinks are allowed� remains an open question� The LP dual of the

UGT problem has the form of optimizing a general objective function subject to a mono�
tone system �the feasibility version of the latter problem does have a strongly polynomial
algorithm but the question is obviously open for the optimization version�� The following
demonstrates the di�culty of the problem by showing it is as hard as �nding a strongly poly�

nomial algorithm for the capacitated generalized transshipment problem �similar to 	��
�� An
instance of capacitated generalized transshipment can be reduced in linear time to an in�
stance of UGT with �m edges and n � �m nodes� The reduction is as follows� Consider

an instance of generalized circulation on a network G � �V�E� where dv � R is the supply
or demand at v �v � V �� and ae� ue� and ce are the multiplier� capacity� and cost� respec�
tively� associated with the edge e �e � E�� The corresponding instance of the UGT problem
G� � �V 
W 
W �� E�� preserves the supplies and demands at the nodes in V � Each edge

e � E has two corresponding nodes we � W and w�
e � W �� and three edges in E� which

form an undirected path� The node we has a demand ue and the node w�
e has a supply

�ue� Suppose e � �v�� v�� is an edge in G� The corresponding edges in G� are �i� �v�� w�
with multiplier � and cost ce� �ii� �w�� w� with multiplier � and cost �� and �iii� �w�� v�� with

multiplier ae and cost ��
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