New Algorithms for
Generalized Network Flows

Edith Cohen* Nimrod Megiddo!

Revised; March 1993

Abstract

This paper! is concerned with generalized network flow problems. In a generalized
network, each edge e = (u,v) has a positive “flow multiplier” a. associated with it.
The interpretation is that if a flow of x. enters the edge at node u, then a flow of a .
exits the edge at v.

The uncapacitated generalized transshipment problem (UGT) is defined on a gen-
eralized network where demands and supplies (real numbers) are associated with the
vertices and costs (real numbers) are associated with the edges. The goal is to find
a flow such that the excess or deficit at each vertex equals the desired value of the
supply or demand, and the sum over the edges of the product of the cost and the flow
is minimized. Adler and Cosares [1] reduced the restricted uncapacitated generalized
transshipment problem, where only demand nodes are present, to a system of linear
inequalities with two variables per inequality. The algorithms presented in [5] result in
a faster algorithm for restricted UGT.

Generalized circulation is defined on a generalized network with demands at the
nodes and capacity constraints on the edges (i.e., upper bounds on the amount of
flow). The goal is to find a flow such that the excesses at the nodes are proportional to
the demands and maximized. We present a new algorithm that solves the capacitated
generalized flow problem by iteratively solving instances of UGT. The algorithm can be
used to find an optimal flow or an approximation thereof When used to find a constant
factor approximation, the algorithm is not only more efficient than previous algorithms
but also strongly polynomial. It is believed to be the first strongly polynomial approx-
imation algorithm for generalized circulation. The existence of such an approximation
algorithm is interesting since it is not known whether the exact problem has a strongly
polynomial algorithm.

*AT&T Bell Laboratories, Murray Hill, NJ. Research was done while the first author was attending
Stanford University and IBM Almaden Research Center. Research partially supported by ONR-N00014-91-
(C-0026 and by NSF PYI Grant CCR-8858097, matching funds from AT&T and DEC.

TIBM Research, Almaden Research Center, San Jose, CA 95120-6099, and School of Mathematical Sci-
ences, Tel Aviv University, Tel Aviv, Israel. Research partially supported by ONR-N00014-91-C-0026.

LA preliminary version appeared in ISTCS’92 [4]

1. Introduction

A generalized network is a digraph G' = (V, E) given together with positive flow multipliers
a. (e € F) associated with the edges. The multiplier a. (¢ € F) is interpreted as a gain
factor (when a. > 1) or a loss factor (when a. < 1) of flow along the edge e; if x. units
of flow enter the edge e, then a.z. units exit. Generalized network flows are also known in
the literature as flows with gains. They can be used to model many situations that arise in
financial analysis [8, 9, 12].

The uncapacitated generalized transshipment problem (UGT) is defined on a generalized
network, where costs are given for the edges and supplies or demands are given for the
nodes. The goal is to find a flow of minimum cost, which satisfies the supply and demand
requirements. Adler and Cosares [1] gave an algorithm for solving restricted instances of
UGT where there are many sources and no sinks. Their algorithm is based on solving the
dual linear programming problem. In this case the dual problem has two variables per
inequality (a TVPI system) and also has a special property, which we call monotonicity,
namely, in each inequality there is at most one positive and at most one negative coefficient.
Hence, the results of [5] imply better time bounds for restricted UGT.

In the generalized circulation problem (GC) we consider a generalized network where
(nonnegative) demands are associated with the nodes and capacities are associated with the
edges. The goal is to find a feasible flow which maximizes the fraction of the satisfied demand.
Goldberg, Plotkin, and Tardos [9] presented an algorithm for the more general capacitated
generalized transshipment problem without costs. Their algorithm is based on solving an
instance of GC with a single supply node, the source, and performs additional computation of
O(mn) time. We present a scheme for solving generalized circulation problems by iteratively
relaxing the capacity constraints. An iteration features (i) solving an instance of UGT on
the same network with costs chosen with respect to the capacities, (ii) scaling the flow to a
feasible one, and (iii) replacing the capacities by the residual capacities calculated relative
to the latter flow.

Our scheme introduces a general method of approximating a solution to linear program-
ming problems of the following form:
Maximize 1
subject to Ax = tb
Uzx <d
x>0,

(P)

where A € R™™, O <U € R*™, b€ R, and 0 < d € R'. The system Uz < d may
be viewed as a set of generalized capacity constraints. Denote by t* the maximum of (P).
Suppose that for ¢ > 0 the following problem is relatively easy:

Minimize ¢!

() subject to Ax =b
x>0.

We will show that by solving a single instance of (E) (with a suitable ¢) a feasible solution
(x',t") € R"*' x R of (P) can be found such that ¢ > ¢*/(.

Consider the generalized circulation problem with the relaxed goal of computing a flow
which satisfies a fraction of the demand which approximates within a constant factor the best
attainable fraction. For the relaxed problem, the scheme described above yields a strongly
polynomial time algorithm, which we also believe is the fastest known algorithm in a certain
range of the input parameters. This scheme also yields an algorithm for obtaining an optimal
solution, which is the fastest known for a certain range of the input parameters.

In Section 2 we define the UGT problem and review the algorithm of Adler and Cosares [1].
In Section 3 we introduce the approximation algorithm and apply it to the generalized cir-
culation problem. In Section 4 we introduce bidirected generalized networks and discuss the
UGT and generalized circulation problems on these networks. Section 5 contains concluding
remarks.

Note that for instances of the problems mentioned above we need to consider cases where
m = Q(n?). The algorithms presented here handle multiple edges within the stated time
bounds.

2. The generalized transshipment problem

Given a graph GG = (V,), for every i € V we denote by in(7) and out(z) the sets of edges
that go into and out of ¢, respectively.

Problem 2.1 [Uncapacitated Generalized Transshipment (UGT)]

Given is a generalized network, consisting of a graph G = (V, E) with flow multipliers a.
and edge-costs ¢, (e € F), and supplies (or demands) b; (: € V). Find a flow function
x = (x)ecr to solve the following:

Minimize g Cee

e€ll

subject to Y acx.— > wx.=b (1€V)
e€in(7) e€out(s)
e >0 (e€ k).

When b; < 0 (resp., b; > 0), we call ¢ a sink (resp., source). The dual linear programming
problem can be stated as follows. Find 7y, ..., 7, to solve the following:

Maximize me’i
=1
subject to m —acw; <c¢. (e=(i,j) € F).
Note that the set of constraints of the dual problem is monotone in the sense defined above.

In this section we consider restricted instances of UGT where either there are only
sinks (b > 0) or there are only sources (b < 0). Adler and Cosares [1] proposed a

3

scheme for solving a subclass of linear programming problems in standard form? where
each variable appears in at most two equations. In particular, that scheme is applica-
ble to restricted UGT instances. They showed that these instances can be solved by us-
ing one application of Megiddo’s algorithm for TVPI systems [13]. An application of the
faster algorithms for TVPI systems presented in [5] can be used instead. Hence, restricted

UGT instances can be solved in O (mnz(log m + log? n)) time, deterministically, and in
@) (n3 log n + mn(log mlog®n + log” n)) expected time when using randomization.

We now characterize the problems to which the scheme of [1] applies. Consider a linear
programming problem in standard form

Minimize ¢’ @
(SF) subject to Ax =b
x>0

where each column of A € R"*™ contains at most two non-zeros. Denote by * € R™ an
optimal solution of (SF'). Note that the dual of (SF') amounts to maximizing an arbitrary
objective function subject to a TVPI system. Consider the problems

Minimize ¢ @
(SF;) subject to Az = b;e’
x>0
(i = 1,...,n) and® suppose &) is an optimal solution of (SF;), i = 1,...,n. The scheme

of [1] applies to (SF) if ®* = 3,4, 20),

We now sketch the ideas used in the scheme of [1]. Let 7™ (resp., 7™*) denote the
minimum (resp., maximum) value of 7; subject to the TVPI system of constraints ATr <e.
If 78X = oo (resp., 7™ = —o0), then (SF) is feasible only if b; < 0 (resp., b; > 0). If
b; # 0, a vector) as defined above can be constructed from a minimal subset of the dual
constraints which implies (i) m; < #12% if b; > 0, or (ii) 7; > 7™ if b; < 0. The edges which
correspond to such a minimal system comprise a generalized augmenting path [10] of flow
into node ¢ (i.e., a flow generating cycle and a path from a node on the cycle to node 7). The
vector &) is obtained by adjusting the flow values on the edges while pushing flow along
this augmenting path.

It is easy to see that the scheme of [1] applies to restricted UGT instances. Consider a
UGT instance where b > 0 (the arguments are similar for the case of b < 0). The system of
dual constraints is monotone, so by a single application of the algorithm of [5] we determine
Tl for ¢ = 1,..
algorithm also computes a minimal subset of dual constraints which implies that =; < =

.,n (see the sections on monotone systems in [5]). If 7"** < oo, the
The vector (9 can be constructed using this information. If 7% = oo and b; > 0, the UGT
system is not feasible. Otherwise, " = 7..;.50 2 is a solution. It is also apparent why

’In the standard form the constraints are in the form Az = b, & > 0.
3e’ is such that ¢} = 0,1 # j and ¢} = 1.

Vaidya, 89 [17] O(n*m!*log(ny))
Kapoor and Vaidya, 88 [11] O(n* m* 510g(n7))
O(n
O(n

Goldberg, Plotkin and Tardos, 88 [9] 2m?lognlog”¥)

*m(m + nlogn)lognlog)

Table 1: Some previous results on generalized circulation

the scheme of [1] is not applicable to unrestricted UGT instances, that is, when the vector b
is general. For unrestricted instances, the problem is not “separable” in the sense that the
optimal solution for the right hand-side vector b is not necessarily a sum of the solutions of
the simpler systems (SF;) (¢ = 1,...,n).

3. Generalized circulation

Definition 3.1 Consider a generalized network ¢ = (V, E), where demands b; > 0 (¢ =
1,...,n) are associated with the nodes and capacities ¢;; > 0 (possibly ¢;; = c0) are associ-
ated with the edges.

i. A generalized flow is a nonnegative flow function @ = (.).cp for which there exists a
scalar ¢ = #(2) such that

Z AeTpe — Z x. = 1b; (t=1,...,n)

e€in(7) e€out(7)
i.e., the flow @ satisfies a fraction { of the demand.
ii. A generalized flow is said to be feasible if

. <c (e€F).

Problem 3.2 [Generalized Circulation]
Given is a generalized network with demands and capacities as above. Find a feasible
generalized flow &* that maximizes /(2*). Denote t* = #(2*).

We refer to t* as the optimal value. A feasible generalized flow @ is said to be optimal if
() = t*, and (1 — ¢)-optimal if {(2) > (1 — e)t™.

Vaidya [17] gave an O(n*m"®log(n~)) time algorithm for the problem, where + is an up-
per bound on all the numerators and denominators of the capacities, multipliers, and costs.
Vaidya’s bound is based on a specialization of his currently fastest known general purpose
linear programming algorithm and relies on the theoretically fast matrix multiplication al-
gorithms. The previously fastest known algorithm, due to Kapoor and Vaidya [11], does not
rely on fast matrix multiplication, and has a bound worse by a factor of /n. A recent result

5

by Murray [14] is based on a different specialization of Vaidya’s linear programmingalgorithm
to generalized flow. Murray’s generalized circulation algorithm matches the bound of [17]
and does not rely on fast matrix multiplication. The algorithms of [11, 14, 17] are applicable
to the more general min-cost generalized flow problem. Different algorithms, of a somewhat
more combinatorial nature, were given by Goldberg, Plotkin and Tardos [9]. These results
are summarized in Table 1.

3.1. A generalized circulation algorithm

The algorithms discussed above are designed to find an optimal flow. We present an algo-
rithm for Problem 3.2 which is based on iteratively obtaining closer and closer approximations
of the optimal solution. In each iteration, the algorithm computes a (1/m)-optimal flow and
then computes the residual network. The subsequent iteration is applied to the residual
network. The residual network is constructed by updating the capacities in a similar way as
for regular network flows: Consider a network with capacities ¢, (¢ € E) and denote by f.
(e € E) the value of the current flow on an edge e. Consider a pair of edges e = (u,v) and
¢’ = (v,u) where a.a.r = 1. Note that we can always assume that either f. = 0 or f. = 0.
Suppose that fo = 0. The residual capacity of e is ¢, — f. and the residual capacity of €’ is
cer + ac fe. A solution of Problem 3.2 on the original network can be obtained by adding the
current flow values f, (e € E) to the flow values on the corresponding edges of a solution
of Problem 3.2 for the residual network. Thus, after k iterations, the algorithm produces a
flow which is (1 — (1 — 1/m)*)-optimal. Hence, a (1 — ¢)-optimal flow can be computed in
O(mlog e™!) iterations. Note that O(m) iterations suffice for any constant e. The optimal
value can be found within O(m|t*|) iterations, where [t*| < mlog(ny) is a bound on the
number of bits in the optimal solution and ~ is the maximum value of any numerator or
denominator of a capacity or a multiplier in the network.

What remains is to show how we perform each iteration. In Subsection 3.2 we introduce
an approximation method that allows us to find a (1/m)-optimal feasible generalized flow
by solving a single UGT instance on the same generalized network, where the capacity
constraints are relaxed and costs are introduced. We will see that each iteration of our
algorithm amounts to solving an instance of the restricted UGT problem.

The resulting deterministic and randomized bounds for computing a (1 — €)-optimal
generalized circulation are summarized in Table 2. We believe our algorithm is more practical
than that of [17]. When the algorithm is used to find an approximate solution, we achieve
strongly polynomial time bounds which are also strictly better than those of [9, 11], and
better than those of [17] in a certain range of the parameters (e.g., when the size of the
binary encoding of capacities and multipliers is large).

Note that when ¢ = 1/¢(m,n), for some polynomial ¢, a (1 — €)-optimal flow can be
found in strongly polynomial time. It is still not known whether a strongly polynomial time
algorithm exists for finding an optimal solution. This question is of a particular interest
because generalized circulation is one of the simplest classes of linear programming problems
for which no strongly polynomial algorithm is yet known [9, 16].

Computing a (1 — €)-optimal flow:

expected time || O (m loge™! (n3 log n + mn(log mlog® n + log” n)))

deterministic || O (m2n2 log e (logm + log” n))

Computing the optimal solution:
expected time || O (|t*|(mn® + m?n))

deterministic || O(|t*|m*n?)

Table 2: Bounds for generalized circulation

We note that there does not seem to be an obvious way of obtaining a strongly polyno-
mial bound to the approximate problem by adding appropriate stopping rules to previous
algorithms. Primal-dual interior point algorithms work in iterations where each (strongly-
polynomial) iteration reduces by a constant factor the duality gap. This implies that the gap
between the value of the current solution and the optimal value tends to zero geomterically.
The initial gap may, however, be very large with respect to the optimal value and there is
no known way to obtain a sufficiently small initial gap. One of the combinatorial algorithms
presented by Goldberg, Plotkin, and Tardos [9], the fat-path algorithm, is an iterative ap-
proximation scheme such that each iteration reduces by a factor of 1/n the gap between
the excess at the source of the current pseudo-flow and the optimal value. Each iteration,
however, is not strongly polynomial (more specifically, the cancellation of flow-generating
cycles is not performed in strongly-polynomial time). Moreover, the initialization is such
that the value of the gap is 4%, and hence, a strongly polynomial number of iterations may
not be sufficient to obtain a solution within a constant factor of the optimal value.

3.2. Obtaining an approximation

Consider linear programming problems of the following form:

Maximize ¢

subject to Ax = tb
Uzx <d
x>0

where A € R, O < U € R, b € R", and 0 < d € R*. We refer to the constraints
Uz < d as generalized capacity constraints. A vector & > 0, such that Az < b (Ax is
proportional to b) and Ue < d is called feasible. For a feasible vector @, denote by f(a:) the
scalar such that A = #b. Denote by (2*,1*) an optimal solution (so that t* = f(2*)). A
feasible vector @ is (1 — €)-optimal if {(2) > (1 — €)t*.

Suppose that for 0 < ¢ € R™ it is relatively easy to compute a vector & > 0 which

minimizes ¢’ subject to Az = b. We refer to problems of this form as uncapacitated

instances, whereas an instance of the original problem is referred to as a capacitated one.

Note that when the capacitated problem is an instance of generalized circulation, U is a
diagonal matrix with at most m = |F| rows. The corresponding uncapacitated problem is
an instance of UGT on the same network, where only demand nodes are present.

We present an algorithm for constructing a (1/{)-optimal vector y. The algorithm
amounts to solving a single instance of the uncapacitated problem. Let D = diag(d), i.e.,
D is a diagonal matrix with the coordinates of d in its diagonal. Let p” = e’ D™'U, where
e is a vector of 1’s, and consider the linear cost function p’a. Note that p” = >¢_, U;,/d..
It is easy to verify that the following properties hold:

i. If @ is feasible then pTa < (.
ii. If Az b, & >0, and p’x < 1, then x is feasible.

iii. If pT&* > 0, then pTa* > 1 (since for some 1, U,yx* = d;).

Consider a vector y > 0 such that Ay o« b and p’y = 1 which maximizes f(y) Note that
the vector {y maximizes f(a:) among all vectors & > 0 such that Az o b and pTa < (.
In particular, {(fy) > t*, and hence, #(y) > t*/{. Such a vector y can be obtained by
normalizing a vector £ > 0 which minimizes p” & subject to Az = b. Also, y is feasible and
therefore provides the desired approximation. A formal description of the algorithm follows.

Algorithm 3.3 [Compute a (1/{)-optimal vector]

i. Solve the following instance of the uncapacitated problem:
Minimize p’x
subject to Ax =b
x>0.

If it is infeasible, then conclude that @ = 0 is the only feasible vector of the capacitated
instance. Otherwise, let & be the solution.

ii. If pTa = 0 then for every r > 0, the vector ra is feasible, and hence the capacitated
problem is unbounded.

iii. Otherwise, when pT® # 0, compute the largest number r (which must exist in this
case) such that rUx < d. Conclude that ra is (1/{)-optimal.

Correctness. Consider the vector & computed in step i of the algorithm. Note that
i(x) = 1. Hence, {(ra) = ri(x) = r.

Proposition 3.4 pTx = 0 if and only if the capacitated problem is unbounded.

Proof: Suppose first that pTx = 0. Note that for all » > 0, rpT® = 0, and hence, rz is
feasible. Also, for all » > 0, f(ra:) = r. Hence, the problem is unbounded. Second, suppose
the problem is unbounded. There exists a vector @ such that ra is feasible for all » > 0.
It follows that pT(ra) = rpTe < { for all r > 0. Hence, pT& = 0.

The following proposition concludes the correctness proof.
Proposition 3.5 [ft* is finite, then r > t* /(.
Proof: For k > 0, denote

R(k) = max{i(y) | p"y <k Ay b,y >0} ,and
R(k) = max{i(y) | pTy <k, y is feasible} .

Obviously, (i) R and R* are increasing functions, (ii) R > R*, (iii) for every a > 0,
R(ak) = aR(k), and (iv) t* < R*({).

For the vector & (computed in step i), R(pT®) = 1 , and hence R(rp’®) = r. Since
plx > 0, it follows that U ;sx = d; for some 1 < ¢ < (. Hence, rpT2x > 1. It follows that

t* < R*(() < R({) < R(trpT) = (rR(pT) = (r .

4. Bidirected generalized networks

In the previous sections we discussed generalized networks where the flow multipliers are
positive numbers. We refer to the edges in these networks as head-tail edges. A head-tail
edge produces a nonnegative amount of flow at the tail end of the edge and a proportional
nonpositive amount at the head end. In bidirected generalized networks we allow two ad-
ditional types of edges: head-head and tail-tail. The properties of edges of these types are
shown in Figure 1. Note that a tail-tail edge can be viewed as a head-tail edge with a neg-
ative multiplier. Bidirected generalized networks are more general than bidirected networks
(see [12]). In bidirected networks the multipliers associated with the edges are always unity.
Bidirected networks were first considered by Edmonds [7] who related them to non-bipartite
matching theory. In this section we apply the methods discussed in previous sections to flow
problems on bidirected generalized networks.

4.1. UGT on bidirected networks

We discuss the application of the scheme of Adler and Cosares for solving the UGT problem
on bidirected networks. A bidirected UGT problem has the form:

Minimize ¢!

subject to Ax =b
x>0,

Flow value: x Multiplier: a

° ~ ai. head-tail edge

.i ax.. head-head edge
-X -ax —

e > o tail-tail edge

Figure 1: Edge types of a bidirected generalized network

where b € R", ¢ € R™, and the matrix A € R™™ has at most two non-zero entries in
each column. Note that head-tail edges correspond to columns where the two entries have
opposite signs, head-head edges correspond to columns with two positive entries, and tail-tail
edges correspond to columns with two negative entries. The dual of this problem is:

Maximize by

subject to ATy < ¢

Y

where the constraints have the TVPI property. Recall that when only head-tail edges are
present, the dual has monotone constraints. When both head-tail and tail-tail edges are
allowed, AT is called a pre-Leontief matrix (see [6]), and it is known that in this case
there exists a vector which maximizes all variables simultaneously. The scheme of Adler and
Cosares applies when b > 0. Similarly, when both head-tail and head-head edges are present,
— AT is a pre-Leontief matrix, and hence, there exists a vector which minimizes all variables
simultaneously. The scheme of Adler and Cosares applies here when b < 0. When all three
types of edges are present, the dual constitutes a general TVPI system. The algorithm of [5]
can be used to find a vector which maximizes or minimizes a single variable. The scheme of
Adler and Cosares applies here to cases where b = +e'. The UGT instances for which the
scheme of Adler and Cosares applies are listed in Table 3. These instances can be solved by
a single application of the algorithms of [5].

4.2. Generalized circulation on bidirected networks

We consider applying the approximation algorithm of Section 3 to generalized circulation
problem where the underlying network is bidirected. Recall that the approximation algo-
rithm iteratively computes a feasible flow and in the following iteration considers the residual
graph. Since tail-tail edges give rise to head-head edges in the residual graph (and vice versa),
we only consider networks where all three edge types are present. Note that when all three

10

Allowed edge types structure of the dual | — supply/demand vectors
ATy <e — TVPI needed

head-tail monotone TVPI b<0Oorb>0

monotone (maximize +e’y)
head-tail, tail-tail AT is pre-Leontief b>0

monotone (maximize ely)
head-tail, head-head | — AT is pre-Leontief | b < 0

monotone (minimize el'y)
all types general TVPI bj==41,b,=0 (i #j)

general (maximize/minimize y;)

Table 3: Solving UGT on bidirected generalized networks

edge types are present the Adler-Cosares scheme applies to UGT instances where there is a
single source or a single sink (that is, b = e; or b = —e,; for some ¢ (1 <@ < n).

It follows that the approximation scheme presented in Section 3 can be used to solve
bidirected generalized circulation instances where b = +e; for some ¢ (1 <¢ < n).

5. Concluding remarks

In this paper we presented algorithms for the uncapacitated generalized transshipment
(UGT) problem and the generalized circulation (GC) problem. We also considered the
UGT and GC problems on bidirected generalized networks. To solve UGT, we combined a
scheme by Adler and Cosares [1], which reduces the restricted UGT problem where either
only demand nodes or only supply nodes are present to solving the dual linear programming
problem, with the algorithms given in [5]. The combination yielded better time bounds for
restricted UGT instances.

In order to utilize the UGT algorithms for solving the capacitated GC problem, we
introduced an iterative approximation algorithm. In each iteration, we consider a UGT
instance, with costs which “capture” the relaxed capacities. The solution of this UGT
instance yields an approximate solution for the GC instance. The next iteration considers
the residual graph.

We now comment on the parallel running times of the algorithms mentioned above. We
denote f(n) = O(g(n)) if there is a k such that f(n) = O(g(n)(logn)*). The parallel
complexity of the algorithms of [5] is O(n) where the deterministic algorithm uses O(mn)
processors and the randomized one uses O(m + n?) processors. The algorithms for the
restricted UGT instances have the same complexity. The approximation algorithms for GC
run in O(mnlog ') time with processor bounds of O(mn) for the deterministic algorithm
and O(m + n?) for the randomized one.

11

The existence of a strongly polynomial algorithm for the unrestricted UGT problem
(where many sources and sinks are allowed) remains an open question. The LP dual of the
UGT problem has the form of optimizing a general objective function subject to a mono-
tone system (the feasibility version of the latter problem does have a strongly polynomial
algorithm but the question is obviously open for the optimization version). The following
demonstrates the difficulty of the problem by showing it is as hard as finding a strongly poly-
nomial algorithm for the capacitated generalized transshipment problem (similar to [15]). An
instance of capacitated generalized transshipment can be reduced in linear time to an in-
stance of UGT with 3m edges and n + 2m nodes. The reduction is as follows. Consider
an instance of generalized circulation on a network G = (V,) where d, € R is the supply
or demand at v (v € V), and a., u., and ¢. are the multiplier, capacity, and cost, respec-
tively, associated with the edge e (e € E). The corresponding instance of the UGT problem
G'= (VUW UW' E') preserves the supplies and demands at the nodes in V. Each edge
e € F has two corresponding nodes w. € W and w. € W’ and three edges in £’ which
form an undirected path. The node w, has a demand u. and the node w! has a supply
—u.. Suppose e = (vy,vy) is an edge in GG. The corresponding edges in G’ are (i) (vy,w)
with multiplier 1 and cost ¢., (ii) (w’, w) with multiplier 1 and cost 0, and (iii) (w’, vy) with
multiplier a, and cost 0.

References.

[1] 1. Adler and S. Cosares. A strongly polynomial algorithm for a special class of linear

programs. Oper. Res., 39:955-960, 1991.

[2] E. Cohen. Combinatorial Algorithms for Optimization Problems. PhD thesis, Depart-
ment of Computer Science, Stanford University, Stanford, Ca., 1991.

[3] E. Cohen and N. Megiddo. Improved algorithms for linear inequalities with two variables
per inequality. In Proc. 23rd Annual ACM Symposium on Theory of Computing, pages
145-155. ACM, 1991.

[4] E. Cohen and N. Megiddo. New algorithms for generalized network flows. In D. Dolev,
Z. Galil, and M. Rodeh, editors, Proc. of the 1st Israeli Symposium on the Theory of
Computing and Systems, pages 103-114. Springer-Verlag, Lecture Notes in Computer

Science Vol. 601, 1992.

[5] E. Cohen and N. Megiddo. Improved algorithms for linear inequalities with two variables
per inequality. SIAM J. Comput., 1993. To appear.

[6] R. W. Cottle and A. F. Veinott Jr. Polyhedral sets having a least element. Math. Prog.,
3:238-249, 1972.

[7] J. Edmonds. An introduction to matchings. In Engineering Summer Conference. The

Univ. of Michigan, Ann Arbor, 1967. Mimeographed notes.

12

[8] F. Glover, J. Hultz, D. Klingman, and J. Stunz. Generalized networks: a fundamental
computer-based planning tool. Management Science, 24(12), August 1978.

9] A. V. Goldberg, S. K. Plotkin, and I. Tardos. Combinatorial algorithms for the gener-
alized circulation problem. In Proc. 29th IEEE Annual Symposium on Foundations of
Computer Science, pages 432—443. IEEE, 1988.

[10] M. Gondran and M. Minoux. Graphs and Algorithms. John Wiley & Sons, New York,
1984.

[11] K. Kapoor and P. M. Vaidya. Speeding up Karmarkar’s algorithm for multicommodity
flows. Math. Prog., 1992. To appear.

[12] E. L. Lawler. Combinatorial optimization: networks and matroids. Holt, Reinhart, and

Winston, New York, 1976.

[13] N. Megiddo. Towards a genuinely polynomial algorithm for linear programming. STAM
J. Comput., 12:347-353, 1983.

[14] S. Murray. An interior point conjugate gradient approach to the generalized flow prob-
lem with costs and the multicommodity flow problem dual. Manuscript, 1991.

[15] J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. In Proc. 20th
Annual ACM Symposium on Theory of Computing, pages 377-387. ACM, 1988.

[16] E. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs.

Oper. Res., 34:250-256, 1986.

[17] P. M. Vaidya. Speeding-up linear programming using fast matrix multiplication. In
Proc. 30th IEEE Annual Symposium on Foundations of Computer Science, pages 332—
337. IEEE, 1989.

13

