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TOWARDS A GENUINELY POLYNOMIAL ALGORITHM 
FOR LINEAR PROGRAMMING* 

NIMROD MEGIDDOt 

Abstract. A linear programming algorithm is called genuinely polynomial if it requires no more than 
p(m, n )  arithmetic operations to solve problems of order m  x n, where p is a polynomial. It is not known 
whether such an algorithm exists. We present a genuinely polynomial algorithm for the simpler problem 
of solving linear inequalities with at most two variables per inequality. The number of operations required 
is 0 ( m n 3  log m). The technique used was developed in a previous paper where a novel binary search idea 
was introduced. 
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1. 1ntroduction.A major result in computational complexity theory was reported 
by Khachiyan [6] in 1979, namely, that the feasibility of linear inequalities can be 
decided in polynomial time. However, many researchers interested in linear program- 
ming have not been completely satisfied with Khachiyan's result for the following 
reasons. First, the fact that Khachiyan's algorithm is polynomial depends on the 
numbers being given in binary encoding. It is not hard (see [9]) to establish encoding 
schemes with respect to which Khachiyan's algorithm requires an exponential number 
of operations, although the operations themselves require polynomial time. The 
number of operations tends to infinity with the magnitude of the coefficients and thus 
for any given class of problems with fixed numbers of variables and inequalities, the 
number of arithmetic operations required by Khachiyan's algorithm is unbounded. 
Secondly, Khachiyan's algorithm has not yet been proven practical, while the simplex 
algorithm is usually efficient [4]. % 

By solving a set of linear inequalities we mean producing a feasible solution or 
else recognizing that the set is infeasible. An interesting open question is the following; 
Do there exist an algorithm and a polynomial p(m, n)  such that every set of m linear 
inequalities with n variables is solved by the algorithm in less than p (m, n)  arithmetic 
operations? We shall call such an algorithm genuinely polynomial. It is not even known 
whether the transportation problem has a genuinely polynomial algorithm. The scaling 
method of Edmonds and Karp [5] has a polynomial time-bound but, as in Khachiyan's 
algorithm, the number of arithmetic operations depends on the magnitude of the 
coefficients. 

In this paper we shall be discussing a special type of system of linear inequalities, 
namely, sets of m inequalities with n variables but no more than two variables per 
inequality. Previous results were obtained by Chan [3] and Pratt [ll]. They solved 
the special case of inequalities of the form x - y 5 c (i.e., the dual of a shortest-path 
problem) in 0 ( n 3 )  operations. Shostak [12] developed a nice theory, on which we 
base our results in this paper, but his algorithm is exponential in the worst-case. 
Nelson [lo] gave an ~ ( m n  r'0g2n1+4 log n)  algorithm. Polynomial-time algorithms for 
this problem were given by Aspvall and Shiloach [2] and by Aspvall [I]. The former 
requires 0(mn31) arithmetic operations, where I is the size of the binary encoding 
of the input, while the latter requires 0(mn21)  operations. 

We shall present an algorithm which requires 0 ( m n 3  logm) operations, i.e., a 
genuinely polynomial algorithm for solving systems of linear inequalities of order 
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m x n with at most two variables per inequality. Our algorithm is based on that of 
Aspvall and Shiloach [2] and on Shostak's [12] result. A similar construction can be 
based on Aspvall's [I] algorithm but no better complexity is obtained. Thus, although 
this paper is intended to be self-contained, the reader may find it helpful to refer to 
[2] and [12] for further clarifications. 

2. Preliminaries. Given is a set S of m linear inequalities involving n variables 
but no more than two variables per inequality. Suppose S = S1 U S2, where Si is the 
set of inequalities involving exactly i distinct variables (i = 1,2). Without loss of 
generality, assume that S1 is given in the form lo( y) 5 y 5 up( y), where lo(y) and 
up(y) are the lower and upper bounds, respectively, on the variable y ; these bounds 
may be infinite. It will be convenient to maintain for every variable y a list of all the 
inequalities in which.y participates. 

Throughout the computation there will be derived more and more restrictive 
lower and upper bounds, y and 7 respectively, for each variable y. The basic step 
of updating such bounds makes use of a single inequality from Sz. Given the current 
bounds y, f on y and any inequality ay +bz S c  in which y participates (a, b Z O), 
the bouids on z may be updated in an obvious way. We define the routine FORWARD 
( y, ay + bz 5 c)  to be the updating procedure which operates according to the following 
case classification: 

case (i): a, b > 0, 2 t min[f, (c - ay)/b], 
- 

case (ii): a > 0, b < 0, g c  max[g, (c - ay)/b], - 

case (iii): a < 0, b > 0, 2 t min[f, (c - ajj)/b], 

case (iv): a, b < 0, g+ max[g, (c - ay)/b]. 

The routine FORWARD detects infeasibility when f <g. 
The routine FORWARD may repeatedly be applied along "chains" of 

inequalities. Specifically, a sequence of inequalities aiyi + biyi+l 5ci ,  i = 1, . . . , k, may 
be used for updating the bounds on y k + l  by starting from the bounds on y l  and - 
updating yi+l, yi+l according to the updated yi, (i = 1, . . , k). Consider the 
case wherehe  initial bounds are y = lo(y), j j  = for all y f yl and yl = E= g, 
where g is any real number. Obviously, the bounds that will be derived wxh respect 
to y2, - , yk+l will be linear functions of g (not excluding the possibility of infinite 
bounds). 

A special case of chains is that of a "loop", i.e., when yk+l and yl are the same 
variable, which we now denote by x. Consider, for example, a case where applying 
the routine FORWARD around a loop starting and ending at x yields 3 = a g  +j?. 
A necessary condition for feasibility is that x 2 ax +P. This is an inequality which is 
"hidden" in our loop and obviously has the following consequences: 

(i) If a = 1 and p >O then S is infeasible; in this case we say that the loop is 
infeasible. 

(ii) If a < 1 then x 2 P/(1 - a )  is a necessary condition for feasibility. 
(iii) If a > 1 then x d P l ( 1  - a )  is necessary. 

Obviously, the number h = Pl(1 -a) (in case a # 1) is the solution of the equation 
g = ag  +p.  Suppose we apply the routine FORWARD around each simple loop and 
along every simple chain. If either an infeasible loop is discovered or an infeasibility 
is detected by FORWARD (in the form z > f )  then the problem is infeasible; 
otherwise, we may adjoin all the necessary conditions so obtained to our set of 
inequalities and that of course will not restrict the set of solutions. By doing this we 
obtain what Shostak [12] calls a closure Sf of our set of inequalities. Shostak's main 
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theorem states that S is feasible if and only if Sf does not have any infeasible simple 
loop nor a simple chain along which FORWARD detects infeasibility. This is the 
essence of Shostak's algorithm. That algorithm is exponential since it needs to consider 
all simple loops. 

Aspvall and Shiloach obtained a polynomial-time algorithm by considering 
another extension S* of S. Specifically, S* =Sf U S2 where ST is the set of the most 
restrictive inequalities in S' with respect to a single variable and Sz is the original set 
of inequalities involving exactly two variables. Following Aspvall and Shiloach we 
denote those most restrictive bounds for a variable x by xlow and xhigh, i.e., ST 
consists of the inequalities xlow S x S x high. Once x low and x high have been found, 
Aspvall and Shiloach can find a solution, or else recognize infeasibility, in 0 (mn2)  
operations. We shall develop an 0 ( m n 2  log m) algorithm for finding xlow and xhigh 
for a single variable x. 

3. The functions r(g) and rl(g). It has already been noted that the bounds 
obtained at the end of a fixed chain are themselves linear functions of the value g 
which is assigned to the variable at the start of the chain. Let x be an arbitrary variable. 
We define r(g) to be the largest lower-bound on x which may be obtained in one of 
the following ways: (i) Apply FORWARD along any chain of length not greater than 
n, with the initial bounds y = lo(y), = up(y) for all y, (ii) Apply FORWARD 
around any loop of length not greater than n, starting and ending at x (where x is 
the selected variable) with the same initial bounds except for g = f = g. Analogously, 
rl(g) is defined to be the least upper bound on x that may be obtained in such a way. 
It follows that r(g) is convex piecewise-linear function of g while rf(g) is concave and 
piecewise linear. ', 

By definition, if g is a feasible value of x (i.e., there is a solution of S in which 
x = g) then, necessarily, r(g) S g 5 rl(g). The properties of the functions r, r' imply 
that the set of the values of g such that r(g) S g  S r f ( g )  is convex, i.e., there exist 
(possibly infinite) numbers a ,  b such that r(g) 5 g S rf(g) if and only if a S g S b. If 
this set is empty we take a =a, b = -a). On the other hand, if h is either a lower or 
an upper bound which is hidden in a loop then there exist a # 1 and p  such that 
h = a h  + p  and either a g  + p  S r(g) for all g E [a, b] or a g  + p  2 rl(g) for all g E [a, b]. 
Moreover, if h is a bound obtained from a chain then either h 5 r(g) or h Zrf (g)  for 
every g. It thus follows (see Fig. 1) that the endpoints a ,  b are precisely the most 
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restrictive bounds that may be obtained either along chains or around loops (all of 
length no greater than n), i.e., a =xlow and b =xhigh. In other words, xlow= 
min{g:r(g) 5 g 5 rl(g)) and xhigh = max {g :r(g) d g 5 rl(g)}. We shall develop a search 
algorithm for xlow and xhigh. 

4. A useful generalization. As a matter of fact, we can handle a more general 
situation which is more convenient to describe. Consider the function R ( g ) =  
min[rf(g) -g, g -r(g)]. Note that this function is defined with respect to a variable x. 
Obviously, r(g) 5 g S rl(g) if and only if R (g) 2 0, while R is concave and piecewise 
linear. We are interested in finding a = min{g : R (g) 2 0) and b = max{g: R (g) 2 0). 
Let R+(g) and R-(g) denote the slopes of R at g on the right-hand side and on the 
left-hand side, respectively. Thus, R-(g) 2 R + ( g )  and this inequality is strict if and 
only if g is a breakpoint of R. If R(g),  R+(g) and R-(g) are known at a certain g, 
then the location of g relative to a and b can be decided according to the following 
table: 

R(g)ZO a 5 g S b  

R(g)>O, R J g )  t o  &!<a 

R(g)<O, R*(g)dO g>b 

Note that this table exhausts all possible cases since R-(g) 2R+(g) .  Furthermore, if 
R-(g) L 0 2 R+(g) and R (g) < 0, then R takes on only negative values (a = a, b = -a). 

An algorithm for evaluating r(g) and rl(g) (with'respect to a variable x) was 
given by Aspvall and Shiloach [2]. To conform with the notation used in the present 
paper, we state the following algorithm which is essentially the same as Algorithm 1 
in [2]. 

procedure EVAL(g); 
begin 

for each variable y [ j j  t up(y); - y +  lo(y)]; 
P t min(f, g); g+ rnax(3, g); 
for i c 1 until n do 

begin 
for each y and each ay + bz d c  FORWARD (y, ay + bz S c ) ;  

end 
r t x ;  r f + f ;  

end 

Clearly, EVAL(g) requires O(mn)  arithmetic operations. For our purposes we 
need to know not only r(g) and rl(g) but also the one-sided slopes of r and r' at g. 
Thus, we have to modify EVAL a little. Imagine all the quantities g, 9 (including 
g and P) to be themselves functions of g in some neighborhood of a given value. 
There exists a neighborhood over which all these functions consist of at most two 
linear pieces with the given g being the unique breakpoint. It is fairly simple to keep 
track of the slopes of these linear pieces. At the start, every y has both j j  and y 
with slope zero on both sides. The next step is P tmin(P,  g). Here we have one of 
the following cases: (i) If g <up(x) then ff has slope unity on both sides. (ii) If 
g = up(x) then f has slope zero on the right-hand side and slope unity on the left-hand 
side. (iii) If g >up(x) then f has both slopes equal to zero. Later, when functions 
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are multiplied by constants (see the routine FORWARD), the slopes are multiplied 
by the same constants. Adding a constant does not affect the slope. The effect of the 
"min" operation is also straightforward. Without loss of generality assume we perform 
f3 t min(f1, f2), where f l  5 f2. The solution is as follows. If fl(g) < f2(g) then f3 inherits 
its slopes from fl ;  otherwise, if fl(g) = f2(g) then f3 inherits the minimum slope on 
either side of g. Thus, in general, as long as in the evaluation of R(g )  the variable g 
is involved only in comparisons, additions and multiplications by constants, we can 
evaluate the slopes R+(g) and R-(g) with the same computational complexity as that 
of R (g). In our particular case this is O ( m n ) .  

5. Solving R(g)  2 0. We shall now develop an algorithm for finding a and b. 
Assume that we have an algorithm for evaluating R(g )  such that g itself is involved 
only in comparisons, additions and multiplications by constants (and R is a concave 
function of g). In view of the discussion in the preceding section, we assume without 
loss of generality that this algorithm computes not only R (g) but also the slopes R+(g) 
and R-(g). 

We maintain bounds a, ti, b, 6 which are repeatedly updated and always 
satisfy a5 a 5 ti and b 5 b 5 b: The initial values are = b = -a and d = 6 = a. 
The basic idea is to follow the known algorithm for evaluating R with g being 
indeterminate; however, g will always be confined to D =k, d] U [b, 61. 
Whenever the result of the succeeding step depends on the value of g within D,  a 
test which amounts to one R -evaluation (i.e., with a specific argument g) is performed, 
in order to update D appropriately. The fundamental principle used here was first 
introduced in [7] and later applied in [8]. 

The details are as follows. At the start, the available quantities are the indetermin- 
ate g together with several constants, while D = [-a, a]. We distinguish two phases 
in the computation: Phase 1 lasts as long as a= b and d = 6 ;  when this does not 
hold any more then we are in Phase 2. Consider a typical point at Phase 1. Assume, 
by induction on the number of steps since the start, that all the "program variables" 
are linear functions of g over D,  possibly constants. If the next operation is an addition 
or a multiplication by a constant, then it can be carried out with the indeterminate g 
over the entire D. Suppose the next operation is a comparison, f3tmin(f1,  f2), say. 
If the linear functions f l  and f2  do not intersect over D,  or if they coincide over D,  
then the assignment can be carried out symbolically and f3 is a linear function of g 
over D;  otherwise, denote the intersection point by g' and assume, without loss of 
generality, that fl(g) < f ~ ( g )  for g < g' while f2(g) < fl(g) for g > g' (g ED). At this 
point we test the value g', i.e., we evaluate R(gl),  R+(gl) and R-(g') and update D 
as follows: 

R(gl )  2 0  (enter' Phase 2) d + g'; b+ g'; f3 +min(fl, f2) 

If Phase 1 continues then all the available quantities remain linear functions of g 
over the updated D. 

' Phase 2 will work on the two intervals separately; the assignment will be different but constant over 
each interval. 



352 NIMROD MEGIDDO 

When Phase 2 starts we have d = b  and all the quantities consist of at most 
two linear pieces with the breakpoint occurring at d = 4). During Phase 2 we split 
the computation of a from that of b. Consider, for example, the computation of a. 
We continue with the evaluation of R,  where g is indeterminate but confined to 
[a, dl.  The situation is very similar to that of Phase 1. If g' and fl, fi and f 3  are as 
before, then the assignments are according to the following table: 

R(g') < 0 and R+(g)  5 0 d c g ' ; f 3 + f l  

As a result we have R(g )  as a linear function over [a, 61. It is then straightforward 
to decide which of the following is the case: (i) There is a unique solution to R(g) = 0 
over [a, d l ;  this solution is then assigned to a (i.e., = d). (ii) R (g) 2 0 for all 
g E b, dl ;  this is possible only if a = - a ,  in which case a t -a. (iii) R (g) < 0 for 
all g E [a, dl ;  this is possible only if d = a ,  in which case a and R(g)<O for 
every real g (i.e., infeasible system). The computation of b is analogous. 

If the evaluation of R at a single g requires T operations, including C comparisons, 
then the computation of a and b takes O(CT) operations, since it amounts to O(C) 
evaluations of R (see [7] for a more detailed discussion of thk point). 

6. Finding xlow and xhigh.When we solve r(g) 5 g 5 rl(g) (equivalently, R(g)  2 
0) according to the scheme presented in the preceding section, we run the routine 
EVAL with g being indeterminate. However, here we do  not have to test every critical 
value g' right away. Specifically, consider for example the value of g which is obtained 
at the end of the second loop of a single iteration of EVAL (i.e., while i is fixed). As 
a function of g over D , this is the maximum envelope of the linear functions 
corresponding to the different inequalities in which z participates together with the 
previous function corresponding to 2. If there are m, such inequalities, then we can 
can find all the breakpoints of the maximum function in O(m, log m,)time (see the 
Appendix of [7]). Thus, the set of all breakpoints produced during one interation can 
be found and sorted in O(m log m)  time. Assuming that these breakpoints are 
g , ~  . . .  5 g, (q = O(m)), we may perform a binary search over these q values which 
amounts to testing only O(1og q) of them. If this occurs during Phase 1, then by 
testing the number g ~ ~ / 2 1  we either enter Phase 2 or discard approximately a half of 
the set of critical values. During Phase 2 each test cuts the set of critical values (lying 
in [a, dl ,  say) in half. Thus, the computation of xlow and xhigh takes n stages 
during each of which we have to evaluate r(g) and rl(g) at O(1og m) values of g. This 
amounts to O(mnZ log m) arithmetic operations. This procedure needs to be repeated 
for every other variable so that the bounds xlow and xhigh are found for all variables 
x in 0 ( m n 3  log m) time. 

7. Solving S. Let ylow and yhigh denote the bounds obtained in the previous 
section. The following routine (which was essentially given by Aspvall and Shiloach 
[2]) either discovers that S is infeasible or else produces a feasible solution (x, = xT, j = 
1, . . , n):  
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procedure FINAL: 
begin 

for each variable x [,f t xhigh; x t xlow]; 
for j t luntil n do 

begin 
for i t 1 until n do 
begin 

for each y and(ay+bzSc)FORWARD ( y , a y + b z S c ) ;  
end 
if there is a finite 6 such that x i s [  SEj then [ x i + c ;  - 
x f + 6; 61 else return (INFEASIBLE); 

end 
return(xj = xf ,  j = 1, , n); 

end 

The validity of the routine FINAL follows from Shostak's theorem. Since we are 
now working with the set of inequalities extended so as to include the necessary 
conditions xlow 5 x 5 x high, if no infeasible loops or chains of length n are discovered, 
then the problem is feasible. 

The routine FINAL takes only 0 (mn2)  operations, i.e., the whole process is 
dominated by the computation of the bounds xlow and xhigh for all the variables. 
The genuinely polynomial algorithm hence runs in 0 ( m n 3  log m) operations. 
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