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Hassin, R. and N. Megiddo, Approximation algorithms for hitting objects with straight lines, 
Discrete Applied Mathematics 30 (1991) 29-42. 

In the hitting set problem one is given m subsets of a finite set N a n d  one has to find an X C N  
of minimum cardinality that "hits" (intersects) all of them. The problem is NP-hard. It is not 
known whether there exists a polynomial-time approximation algorithm for the hitting set prob- 
lem with a finite performance ratio. Special cases of the hitting set problem are described for 
which finite performance ratios are guaranteed. These problems arise in a geometric setting. We 
consider special cases of the following problem: Given n compact subsets of R ~ ,  find a set of 
straight lines of minimum cardinality so that each of the given subsets is hit by at least one line. 
The algorithms are based on several techniques of representing objects by points, not necessarily 
points on the objects, and solving (in some cases, only approximately) the problem of hitting the 
representative points. Finite performance ratios are obtained when the dimension, the number of 
types of sets to be hit and the number of directions of the hitting lines are bounded. 

1. Introduction 

In the hitting set problem [4] one is given m subsets Ri C N= (1, . . . , n} (i = 1,  . . . , m), 
and one has to find an X C  N of minimum cardinality so that X fl Ri + 0 (i = 1, . . . , m). 
The hitting set problem is "isomorphic" to the set covering problem where, given 
subsets Cj c M = (1, . . . , m) ( j  = 1, . . . , n), one is asked to find a set of indices X C  N 
of minimum cardinality such that Uj,, C, =M. The sense of the isomorphism is 
that the formulations of these problems as integer linear programming problems are 
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identical. The problems are famous as being NP-complete and thus substantial ef- 
fort has been made in the direction of solving them approximately (see for example 
[2,5,6,71). 

An approximation algorithm in the context of the hitting set problem is one that 
delivers a set X C  N not necessarily of minimum cardinality. The performance of an 
approximation algorithm for a minimization problem is sometimes evaluated by the 
supremum (over problem instances) of the ratio of the solution value delivered by 
the algorithm to the optimal solution value (the performance ratio). It is not known 
whether there exists a polynomial-time approximation algorithm for the hitting set 
problem with a finite upper bound on its performance ratio. Such finite perform- 
ance ratios are known only for special cases. For example, if the cardinalities of the 
sets Ri are bounded by d, then a performance ratio of at most d is guaranteed 
[5,1]. If the cardinalities of the sets C, (in the set covering interpretation) are 
bounded by k, a performance ratio of at most H(k)  = c:=, l / i  is guaranteed by the 
greedy heuristic [7] (see also [2,8]). 

In this paper we describe special cases of the hitting set problem for which finite 
performance ratios are guaranteed. These problems arise in a geometric setting. The 
problems we consider are special cases of the following: Given n compact subsets 
of R ~ ,  find a set of straight lines of minimum cardinality so that each of the given 
subsets is hit by at least one line. In a crude form this problem is a hitting set prob- 
lem with an infinite matrix but can easily be reduced to one with a finite matrix of 
dimensions polynomial in the length of a certain description of the subsets. We 
restrict attention to hitting lines with their slopes restricted to a finite set, mostly 
lines parallel to the coordinate axes. We obtain finite performance ratios if we 
bound the dimension of the space and the types of sets. 

Remark 1.1. It is worth mentioning that the greedy algorithm does not provide a 
finite approximation ratio even in the problem of minimum cover of points in the 
plane by lines parallel to the coordinate axes. The following example is a realization 
of an example given in [7]. Let k be an integer. We construct k disjoint sets S, 
( j =  1, ..., k) consisting of k! points each (see Fig. 1). The set S, is a union of k! / j  
disjoint sets s:) (i= 1, ... , k!/j) consisting of j points each. Let H ( j )  denote c;=, l/q. 
The optimal solution of this problem consists of the k! horizontal lines L, = { y = r} 
(r= 1, ... , k!) (see Fig. l(a)). The greedy heuristic may pick the k!H(k) vertical lines 
M , = { x = r }  (r=1, ..., k!H(k)) (see Fig. I(b)). 

Fig. 1. 
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The problem of hitting objects in the plane with a minimum number of straight 
lines has a military application. In many cases when a bomber attempts to destroy 
targets on the ground, protected by anti-aircraft missiles, it has to spend as little 
time as possible close to the targets. Thus, careful planning of an air raid on a multi- 
target site (for example, a cluster of fuel tanks) calls for a minimum number of times 
a bomber has to fly across the site. Moreover, each pass has to be carried out as 
fast as possible, hence for each dive into the site there exists a straight line (a 
"stick") along which targets are destroyed. Another application (in three dimen- 
sions) is in medicine where radiotherapy is administered by inserting a minimum 
number of radioactive needles into a certain area of the body so as to achieve a re- 
quired level of radiation (see [ll]) .  

To conclude this introduction we mention another application of a special case 
of our problem. Consider a system consisting of m components c,, . . . , c, and a 
schedule which tells for each component cj the (finite) set of time intervals during 
which cj is busy. We need to inspect each component at least once during each time 
interval of its operation. An inspection may be carried out in either of the following 
ways. First, we may place a permanent monitor on a component at a total cost of 
a for all the checks on that component. Second, we may perform a check of the 
entire system at a time point and then we incur a total cost of p for checking all the 
components active at that time. The problem can be modeled as follows. For each 
component cj place the time intervals of cj on the line Lj = { (x ,  y): y = j }  in the 
plane. We now have a collection of horizontal line segments in the plane. The prob- 
lem is to find a collection of horizontal and vertical lines, so that each segment is 
hit by at least one of the lines, minimizing a times the number of horizontal lines 
plus P times the number of vertical ones. We later show that this problem is NP-hard 
even when all the intervals have unit length and endpoints of integral coordinates. 
Among other results, we provide a polynomial-time approximation algorithm for 
the latter with a performance ratio of at most 2. 

In Section 2 we discuss various problems of hitting line segments by vertical and 
horizontal lines in the plane. In Section 3 we consider lines of restricted slopes. In 
Section 4 we discuss hitting general compact sets in the plane. In Section 5 we discuss 
extensions to higher dimensions. In Section 6 we prove NP-hardness of special cases 
of the problems considered here. 

2. Hitting line segments in the plane 

In this section we discuss approximation algorithms for the following problem: 

Problem 2.1 (Hitting segments in the plane). Given a set Z= lol,  ... , on} of vertical 
and horizontal line segments in the plane, find the smallest number k and a set 
{I,, ..., Ik} of straight lines parallel to the axes, so that each ~ E Z  is hit (intersected) 
by at least one of the lines I,. 
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Problem 2.1 is NP-hard even when all the line segments are horizontal with length 1 
and their endpoints have integral coordinates (see Proposition 6.2 below). Thus, we 
are interested here in approximation algorithms. The following proposition follows 
immediately from the famous Konig-Egervary theorem [3] and the fact that the 
max-flow problem can be solved in polynomial time: 

Proposition 2.2. The problem of hitting points in the plane with a minimum num- 
ber of lines parallel to the axes can be solved in polynomial time. 

Proof. Consider a graph G whose vertices correspond to all the straight lines pass- 
ing through the given points and parallel to the axes. Let the edges of G correspond 
to the input points, so that a horizontal line and a vertical line that intersect at an 
input point correspond to adjacent vertices in G. Obviously, G is bipartite. It is easy 
to see that Problem 2.1 is equivalent to finding a minimum vertex cover in G. It is 
well known (see [3]) that the latter can be solved in polynomial time as a maximum 
flow problem. 0 

It is interesting to note that the same problem in R~ is NP-hard (see Proposi- 
tion 6.4 below). 

We start with the case of line segments of equal lengths. For several of the propo- 
sitions below we omit the proofs. As a representative case we choose the following: 

Proposition 2.3. There is a polynomial-time approximation algorithm with a per- 
formance ratio of at most 2 - 1/(K+ 1) for the case where .Z is a set of horizontal 
line segments of length K whose endpoints have integral x-coordinates. 

Proof. Consider a line segment [(a, b), (a + K, b)] where a is an integer. Obviously, 
the numbers a, a + 1, . . . , a + K have all the possible residues modulo K + 1. For every 
j ( O s j s K )  consider the representation of segments a by points pj =pj(a) (pj(a) E a )  
where the x-coordinate of pj is congruent to j(mod K + 1). Let q'= {pj(a): a E Z) 
( j  = 0, .. . , K). The approximation algorithm solves the point cover problem with re- 
spect to each of the sets 4' and picks the one with the smallest number of lines. We 
will prove that this number is at most 2 - 1/(K+ 1) times the number of lines in an 
optimal solution of the segment hitting problem. Consider an optimal solution L = 

{I,, . . . , lk) for 2. Without loss of generality assume that for each vertical line 1; = 

{x= t i ) ,  ti is an integer. Denote by kj the number of vertical lines in L such that 
ti = j(mod K + 1) ( j  = 0, .. . , K).  Consider the point cover problem with the set 4'. 
We claim that the number of lines in an optimal solution of the latter is at most 
2k-  kj-E, where E is the number of horizontal lines in L .  To prove this claim, 
consider first a vertical line I, such that &=j(mod K +  1). Obviously, if a segment 
a is hit by li, then pi(o) lies on I,. If t i+j(mod K +  I), then the x-coordinates of 
point pj(a)  for segments a which are hit by 1, have at most two distinct values. 
Thus, we can replace 1, by two vertical lines 1; and 1; which cover all these points 
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pj(a) .  Also, a horizontal 
(horizontal) segment hit by 
l ( K + ) .  0 

line obviously covers the representative point of each 
it. Finally, since C, kj = k -  E, we have ( F +  maxj k,)/k? 

Remark 2.4. If under the conditions of Proposition 2.3 we allow both horizontal 
and vertical segments, then a performance ratio of at most 3 - 1/(K+ 1) can be 
guaranteed by the same algorithm. 

Problem 2.5. Find a minimum hitting set as in Problem 2.1, given that all the 
horizontal segments have the same length and all the vertical ones have the same 
length. 

As already mentioned, Problem 2.5 is NP-hard. However, we have 

Proposition 2.6. Problem 2.5 has a polynomial-time approximation algorithm 
whose performance ratio is at most 3 .  

Remark 2.7. If, in Proposition 2.6, Zcontains only horizontal segments, then a per- 
formance ratio of 2 can be guaranteed since in that case a vertical line from the op- 
timal solution can be replaced by two lines, whereas no horizontal lines have to be 
added. By symmetry, the same argument holds if all the segments are vertical. 

Remark 2.8. We note that our approximation algorithms have the same guarantees 
of performance ratios in a more general case where hitting lines in different direc- 
tions have different costs and one is asked to minimize the total cost of hitting lines. 
The validity of this claim follows from the fact that in the proof we replace a line 
of the optimal solution by parallel lines for the solution of the approximating 
problems. 

Our next development is an algorithm for segments of various lengths. For this 
case the finite guaranteed performance ratio depends on an upper bound on the 
length of segments. 

Proposition 2.9. If Z is a set of integral points and vertical and horizontal line seg- 
ments of lengths between 1 and K, then an approximate solution for Problem 2.1 
with a performance ratio of at most 2rlog, ~1 + 3  can be found in polynomial 
time. 

Proof. Without loss of generality assume K = 2 m  for some integer m. Again the 
idea of the algorithm is to represent each line segment o E Z by a point p =p(a )  and 
solve the problem of minimum cover of the set of points Z'= { p ( o ) :  o € 2 ) .  Here 
we choose the representative as follows. Let o = [(a, b), (a  + 6, b)] (1 1 6 1  K )  be a 
horizontal segment. The representation of vertical segments is analogous. We repre- 
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sent a by a point p ( a )  = (q, 6) where a s q s a + 6 and q = O(mod 2') with the largest 
possible integer vs m. Note that we may have both a= O(mod K) and a +  6= 
O(mod K)  in which case we fix q = a. Otherwise the number q is uniquely defined 
by the above condition. In particular, if a has length 1 and has endpoints with in- 
tegral x-coordinates, then we choose the one with the even value; if the line segment 
contains a unique point with an integral x-coordinate, then this point is chosen as 
q, and finally if the segment consists of a unique point, then this point is chosen 
as q .  Consider an optimal solution L = {I,, .. . , Ik} for 2 .  Suppose I, = {(x, y): x =  c,} 
is a vertical line and consider any horizontal segment o hit by it. It is easy to see 
that if p(o)  = (q, 6) and q= O(mod 2'), then there is no qf= O(mod 2') between 5, 
and q (including q l=&) .  This implies that the number of distinct values of q for 
such segments is at most m + 1 on either side of I,. The choice q = ti may also be 
necessary. This implies that the number of lines in an optimal solution of the point 
cover problem with the set Z' is at most 2(m + 1) + 1 times the optimum of the seg- 
ment hitting problem. 

3. Hitting with lines of a finite number of slopes 

One possible extension of the results of Section 2 in the plane is to consider hitting 
problems where the hitting lines are not restricted to be parallel to the axes. For ex- 
ample, we may consider the case where these lines must have their slopes taken from 
a given finite set of rational numbers S = {r,, . . . , r,}. However, let us first comment 
on the case with no restrictions at all: 

Problem 3.1. Given a collection Z =  {a,, . . . , a,,} of horizontal unit segments in R2, 
find the smallest number k and a set {I,, ... , lk} of straight lines so that each aj is 
hit by at least one of the lines I,. 

Remark 3.2. The NP-hardness of Problem 3.1 can be proven with the techniques 
of [lo, 91. For an approximate solution, we might represent each segment ~ E Z  by 
a point p (o )  whose x-coordinate is an integer, and solve the point cover problem 
on the set Z ' =  {p(a):  ~ E Z } .  Unfortunately, the latter is also NP-hard [lo]. Fur- 
thermore, we do not know whether the point cover problem with no restrictions on 
the slopes of the hitting lines has a polynomial-time approximation algorithm with 
a finite performance ratio. 

In view of Remark 3.2, we now consider the case where the slopes of the hitting 
lines are restricted to a given finite set of integer numbers. We note that a problem 
with rational slopes can be reduced to one with integral slopes. 

Problem 3.3. Given a collection Z = {a,, . . . , a,,} of horizontal unit segments in R2 
with integral endpoints and a finite set of integers S= { K , ,  ... , K,} (including the 
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possibility of K, = m), find the smallest number k and a set {I,, ... , lk} of straight 
lines whose slopes are in S, so that each aj is hit by at least one of the lines li. 

Remark 3.4. Under the conditions of Problem 3.3, the corresponding point cover 
problem is NP-hard for s r  3 .  The proof of this fact is similar to the one we give 
in Proposition 6.4 for hitting in R3. Alternatively, the problem of hitting points in 
R3 can be reduced by a careful projection to the point cover in R~ with lines of 
three slopes. Fortunately, the point cover problem has a polynomial-time approx- 
imation algorithm with performance ratio s. To see this, we recall a result from [S] 
and [I]. As an integer linear programming problem, the set covering problem is the 
following: 

Minimize eTx, 

subject to A x l e ,  

x20, 

where A is a zero-one matrix and e = (1, .. . , I ) ~ .  Although the problem is NP- 
complete, is is possible to find in linear time [l]  a feasible solution z with eTz not 
greater than s times the optimum, where s is the largest number of 1's in any row 
of A (in [ 5 ]  the same level of approximation is obtained by rounding up an optimal 
solution of the linear programming relaxation of the problem). The proof is quite 
simple and we indicate it here for the sake of completeness. The algorithm selects 
a maximal set (with respect to inclusion) of mutually orthogonal rows of ai,, .. . , ai,,, 
of A .  In the terminology of the set hitting problem (see Section 1) this corresponds 
to  a maximal collection of disjoint subsets Ri. Obviously, for any feasible solution 
x ,  e T x l m  since we have to hit m disjoint sets. If we use all the members of the 
union of these sets Ri,  then we get a hitting set since the collection is maximal. 
Specifically, if we set xj = 1 for every j such that aivj = 1 for some 1 5 v 5 m and 
xj =O otherwise, then x is a feasible solution and eTxssm.  

Proposition 3.5. There exists a polynomial-time approximation algorithm for Prob- 
lem 3.3 with a performance ratio of at most (2 C [log2 IK, 11 + 3)s where the sum is 
taken over the finite nonzero members of S .  

Proof. If a line I of finite slope Ki hits a certain set of horizontal unit segments, 
then there exists such a line which hits the same set of segments where at least one 
of the segments is hit at an endpoint. It follows that each segment is hit at a point 
where the x-coordinate is of the form 9 /14  I for some integer q. By this argument, 
there exists an optimal solution to the Problem 3.3 where each segment is hit at an 
x-coordinate of the form q/K where K is the lcm (least common multiple) of the 
finite nonzero members of S. We now apply the idea of the proof of Proposition 2.9. 
Each segment will be represented by a point of the form q/K where q is chosen to 
be congruent to  O(mod 2") with the largest possible v. The problem of covering the 
representative points can be solved approximately in polynomial time, with a per- 



36 R. Hassin, N. Megiddo 

formance ratio of s (see Remark 3.4). The result then follows by the arguments in 
the proof of Proposition 2.9. U 

4. Hitting general sets in the plane 

We now consider the problem of hitting general sets in the plane. However, we 
make certain simplifying assumptions about the sets. 

Problem 4.1. Given a collection r of compact and connected sets C,, ... , C, ,cR2 
and a finite set of integers S = {r,, . . . , r,} C (- ~ 4 ,  a], find the smallest number k and 
a set {I,, ... , l k}  of straight lines whose slopes are in S ,  so that each C, is hit by at 
least one of the lines 1;. 

Remark 4.2. The complexity of Problem 4.1 depends of course on the description 
of the sets Cj. We are interested in special cases where the sets C, are copies (more 
accurately, translates) of a fixed number of types. For example, consider a special 
case where each Cj is either a disk of radius 1 or a square of area 1 whose edges 
are parallel to the coordinate axes. In principle, for every fixed finite set of types 
an approximation algorithm with a guaranteed finite performance ratio can be 
designed along the lines presented above. We first construct a grid G of points 
in the plane so that each C, contains at least one point of G. We then represent 
each C, by a grid point p(Cj) and solve the point cover problem with the set T'= 
{p(Cj): j=  1, ... ,n}. The grid has to be chosen so as to satisfy the following condi- 
tions. There should exist a finite number K so that for every line I (whose slope is 
in S )  there is a set of lines I,', ... ,1; parallel to I ,  so that p(Cj) E Ui /,'for every C, 
such that C, n I #PI. 

A more careful consideration reveals a simplification of the solution. Given the 
set of slopes S (see Problem 4.1), let us define for any set C C R ~  a "closure" 
with respect to S as follows. For every v ,  1 I V I S ,  let vV  E R ~  denote a vector in 
the direction corresponding to the slope rv. Denote a, = inf{xTvv: X E  C} and bv = 

sup{xTvV: X E  C}. Now, 

- 
A C 

Fig. 2. 
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Note that C i s  a convex polygon with at most 2s edges. Fig. 2 depicts a set S of direc- 
tions, a set C and the closure C relative to S. 

Proposition 4.3. Problem 4.1 with sets C,, . . . , C, is equivalent to Problem 4.1 with 
sets C,, .. . , Co. 

We omit the easy proof. As an example of an application of Proposition 4.3, con- 
sider the problem of hitting n given unit disks in the plane with a minimum number 
of lines parallel to the axes. It follows that this problem is equivalent to hitting unit 
squares whose edges are parallel to the axes. It can be easily seen, using the tech- 
niques presented so far, that the latter has a polynomial-time approximation algo- 
rithm with a performance ratio of at most 2. In fact, hitting n identical rectangles 
(whose edges are parallel to the axes) by lines parallel to the axes has a performance 
ratio of 2. In view of Proposition 4.3, we have the following: 

Proposition 4.4. The problem of hitting n copies (translates) of a compact con- 
nected set BC R~ with a minimum number of lines parallel to the axes has a poly- 
nomial-time approximation algorithm with a performance ratio of at most 2. 

A generalization of the latter to  the case of more than one type is obvious: 

Proposition 4.5. The problem of hitting n sets, each of which is a copy (translate) 
of one of p compact connected sets B,, .. . , B,c R~ with a minimum number of lines 
parallel to the axes has a polynomial-time approximation algorithm with a perform- 
ance ratio of at most 2p. 

Proof. First, we can replace each of the given sets by a rectangle and these rectan- 
gles will be of at most p distinct types. For each type we construct a grid of points 
from which representatives of rectangles of the type are chosen. A line I in an op- 
timal solution of the problem can be replaced by at most two lines per type so that 
the resulting 2p lines cover all the representatives of rectangles covered by I .  

Remark 4.6. In Proposition 4.5 we can allow the hitting lines to have any two 
distinct slopes and not necessarily the ones parallel to the axes. If the number of per- 
missible slopes is greater than 2, then we still get a finite performance ratio in poly- 
nomial time for any fixed set of rational slopes. However, the ratio itself depends 
on the set of slopes and there does not seem to exist a uniform bound independent 
of the slopes themselves. 

Yet another generalization is to disconnected sets. A finite performance ratio can 
be achieved in polynomial time for any fixed set of rational slopes and a fixed set 
of types. A more explicit result can be proven in terms of the number of connected 
components in the case of two slopes. 
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Proposition 4.7. Let B C R ~  be any compact set consisting of q connected com- 
ponents. The problem of hitting n copies (translates) of B with a minimum number 
of lines parallel to the axes has a polynomial-time approximation algorithm with a 
performance ratio of at most 24.  

Proof. In view of Proposition 4.5, we can assume without loss of generality that 
each connected component of B is a rectangle whose edges are parallel to the axes. 
Our approximation algorithm considers only two of the rectangles, namely, BX 
whose x-dimension is maximal and BY whose y-dimension is maximal. For simplici- 
ty, suppose the units on the axes are equal to these maxima, respectively. Now, for 
each copy Cj of B, consider the corresponding copies of the rectangles BX and BY 
and denote them by C '  and q, respectively. It is easy to see that for every C, there 
exists at least one grid point p =p(Cj)  = (r,, q j )  such that the line {x= r j )  intersects 
C' and the line { y = q j )  intersects C' .  (If there is more than one such point choose 
the point with smaller coordinates.) Figure 3 depicts a set C consisting of three dis- 
joint rectangles and its representative point. Note that there is another case where 
the representative points do not necessarily belong to the sets they represent. We 
now solve the point cover problem on the set of points p(Cj). We claim that this 
algorithm has a performance ratio of at most 29. The proof is as follows. Consider 
a line 1 from an optimal solution. Suppose 1 is vertical (the case of a horizontal line 
is analogous). For each set Cj which is hit by 1, there is a certain connected compo- 
nent Cj of Cj hit by 1. We classify these sets C, according to  the connected compo- 
nent hit by 1. For all the sets in the same class there exist at most two lines parallel 
to 1 which cover all the representative points of members of the class. The number 
of classes is at most q.  

5. Hitting in higher dimensions 

Our approximation algorithms for hitting certain objects in the plane are based 
on the fact that minimum cover of points in the plane (by lines parallel to  the axes) 

I I I I I I 
I 2 €;3 4 5 * X  

Fig. 3.  
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can be found in polynomial time. It is possible to extend the arguments relating the 
problems of hitting representative points and hitting objects to higher dimensions. 
However, unfortunately, the problem of hitting points in R 3  by lines parallel to the 
axes is NP-complete. We prove this fact in Section 6. On the other hand, the point 
cover problem can be formulated as a set covering problem (see Remark 3.4) and 
for every fixed dimension the number of 1's per row is fixed. This implies the ex- 
istence of a polynomial-time approximation algorithm with finite performance 
ratios for the point cover problem, on which we can base such algorithms for hitting 
more general sets. The first claim is: 

Proposition 5.1. There is a linear-time approximation algorithm for the problem of 
minimum cover of points in Rd  by lines parallel to the axes with a performance 
ratio o f  at most d .  

Proof. See Remark 3.4 for the argument of the proof. 

Proposition 5.1 suggests the development of approximation algorithms for more 
general sets based on choosing representative points for the sets. In view of the 
observations in Section 4, rectangular boxes play the key role. Thus, we consider 
the following problem: 

Problem 5.2 (Hitting boxes). Given a set Z7= {n,,  ... , n,) of identical rectangular 
boxes in Rd  with edges parallel to the axes, find the smallest number k and a set 
{ I l ,  ... , I k )  of straight lines parallel to the axes, so that each n ~ 1 7  is hit by at least 
one of the lines 1,. 

Proposition 5.3. There is a polynomial-time algorithm for Problem 5.2 with a per- 
formance ratio of at most d2d-1. 

Proof. Without loss of generality, assume the boxes are unit cubes and consider the 
grid of integral points in R ~ .  For every cube n E Z ~ ,  let p ( n )  E n denote a grid point. 
If there is more than one grid point in n, then choose the one which is smallest in 
the partial order on Rd  (there is a unique minimum since the cubes are parallel to 
the axes). Now, obtain an approximate solution for the point cover problem on the 
set I7'= {p(n): n EU) by solving it as a set covering problem with d 1's per row. 
The set of lines obtained in this way is a feasible solution for Problem 5.2. We claim 
that this solution has a performance ratio of at most d2d-' .  This follows from the 
fact that every line 1 in a feasible solution of Problem 5.2 can be replaced by 2dp' 

*d- 1 
l i e  1 , .  1 parallel to 1 so that p(n)  is on one of these lines provided n f l  1 #0. 
Specifically, if the line I has the form I= {XE R d :  x, =ti, i =  1, ... , d ,  i # j ) ,  the 2d-' 
lines we refer to have the form It= { X E R ~ :  i=  1, ..., d ,  i f  j ) ,  where 

c r r i l , r r i i - l > .  
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As in Sections 3 and 4, it is possible to extend this result to more general, not 
necessarily connected, compact sets and to directions other than parallel to the axes. 

6. NP-completeness results 

In this section we prove NP-hardness of two of the problems discussed in the 
paper. 

Problem 6.1 (Minimum hitting of horizontal unit segments). Given are n pairs 
(a;, b;) (i = I , .  . . , n) of integers and an integer k. Recognize whether there exist in the 
plane k straight lines I,, ... , Ik parallel to the axes with the property that each line 
segment [(a;, b,), (a, + 1, bi)] is hit by at least one of the lines. 

Proposition 6.2. The problem of minimum hitting of horizontal unit segments is 
NP-complete. 

Proof. We prove the proposition by reduction from 3-satisfiability where each clause 
contains precisely three distinct variables. Given a set of clauses Ej=x,vyjvzj 
( j  = 1, ... , m) where {x,, y,, zj} c {u,, a,, . . . , u,, a,}, we represent each variable ui by 
six segments as follows. For simplicity, let a line segment [(a, b), ( a+  1, b)] be de- 
noted [a, b]. The collection of six segments representing a single variable looks like 
the set 

s = {[1,21, [2,4l, [3,3l, [5,2l, [6,ll, [7,3l). 

It is easy to check that three lines are both necessary and sufficient to intersect all 
the members of S.  Moreover, any set of three such lines contains exactly one of the 
lines { y = 2 }  and { y  = 3) .  The assignment of a truth-value to the variable corre- 
sponds the choice of one of these lines. The actual set Si representing u, is a trans- 
late of the set S ,  namely, Si = S + (8i, 4i). Note that there is no vertical or horizontal 

Fig. 4. 
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line that intersects members of more than one of the sets Si. Thus, the presence of 
the line ( y  = 4i + 2 )  corresponds to ui being true whereas the presence of { y = 4i + 3) 
means ui is false. A clause E, is represented by a set of five segments consisting of a 
pair T, = ([8n + 6 j +  2, - 2 j -  I], [8n + 6 j +  4, - 2 j -  21) and a triple Rj which depends 
on the structure of Ej as we specify below. Note that there is no vertical or horizontal 
line that intersects members of more than one of the pairs T,. The triple Rj is defined 
as follows. Each literal of E, contributes one segment. The x-coordinates of the 
left-hand endpoints of the segments corresponding to x,, yj and zj are 8n + 6 j +  1, 
8n + 6 j  + 3 and 8n + 6 j  + 5, respectively. If a literal equals ui, then the y-coordinate 
of the corresponding segment is equal to 4 i  + 2. If it equals a;, then this coordinate 
is equal to 4 i+  3. Figure 4  depicts a clause E, = u, v u2v 22,. It is easy to check that 
three lines are both necessary and sufficient for hitting the five segments in T, U Rj. 
Moreover, for any proper subset Rj'cR,, two lines are both necessary and suffi- 
cient for hitting the segments in T, U Ri. We leave it to the reader to verify that the 
set of clauses El,  ..., Em is satisfiable if and only if the set of segments we have con- 
structed can be covered in the sense discussed above by 3n + 2m vertical or horizon- 
tal lines. 

Problem 6.3 (Point cover in R ~ ) .  Given a set S of n points (xj,y,,zi) (i= 1, ..., n) 
and an integer k, recognize whether there exist k lines parallel to the axes whose 
union contains S. 

Proposition 6.4. The problem of point cover in R~ is NP-complete. 

Proof. A line parallel to  an axis in R~ can be represented by a triple of one of the 
following forms: (a, b, *), (a, *, b) and (*, a, b), so that a point (x, y, z) can be covered 
only by one of the lines (x, y, *), (x, *, z) and (*, y, z). The problem is obviously in 
NP. We prove the proposition by reduction from 3-satisfiability. Given a set of 
clauses E, =$ Vyj V z j  ( j =  1, . .. , m) where (3, yj, z j )  c {ul, Dl, ... , u,,, a,}, we repre- 
sent each variable u, by a set Si of an even number of points. All the sets Si have 
a cyclic structure like the following set: 

where l r  4m is even and the cardinality of S is 31. The set S can be covered by 1.51 
lines. There are exactly two sets of 1.51 lines that cover the members of S: 
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The two covers of the set S, correspond to  the assignment of truth-values to the 
variable u,. Thus, there are two sets, T ,  F , ,  each consisting of 1.51 lines, that cover 
the members of Si and we will refer to them as the "true" and the "false" lines of 
u,. We choose the numerical values defining the points in the sets Si, a!'), by), c:') 
( r  = 1,  . . . , I ,  i = 1,  . . . , n)  to be pairwise distinct with the following exceptions. We start 
the construction by representing each clause Ej by a single point pj = (aj,PJ, y j ) .  The 
coordinates of all these points will be pairwise distinct. We then choose some of the 
coordinates of points in the sets Si subject to the following requirement. The pair 
( q , P j )  will be associated with the literal xj, (aj ,  y,) with yj, and (P,, y j )  with 2,. If 

(0 ui = xj, then we set aY)-, = a, and bdjP3 = Pj;  if ii, = x,, then we set a::), = orj and 
(0 b::L,=P,. Similarly, if u, =yj ,  then a:-, =aj  and cY)-, = y j ;  if ai =yj ,  then ay-3 =aj  

and c!)-, = y,. Finally, if u, = z,, then bjy-, = Pj and c$), = y j ;  if ii; = z j ,  then b& = 

Pj and c$), = y,. It can be verified that no line parallel to one of the axes can cover 
more than one point in more than one of the sets S;, but there exist such lines that 
cover two points in one of the Sf's. Thus, any cover of the set {p , ,  ... ,p,} U Ui S; 
requires 1.51n lines. This number suffices if and only if there exists a satisfying 
assignment for E,A.. .AE, since this is precisely the case where the points 
p,, ...,p, can be covered by true or false lines of the variables. 
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