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HOMOTOPY CONTINUATION METHODS FOR 
NONLINEAR COMPLEMENTARITY PROBLEMS*' 

MASAKAZU KOJIMA, NIMROD MEGIDDO A N D  TOSHIHITO NOMA 

A complementarity problem with a continuous mapping f from R n  into itself can be 
written as the system of equations F(x,  y )  = 0 and ( x ,  y )  > 0. Here F is the mapping from R ~ "  
into itself defined by F(x,  y) = ( x l  y ,, x 2 y Z , .  . . , x , ~  y e ,  y - f f x ) ) .  Under the assumption that 
the mapping f is a P,,-function, we study various aspects of homotopy continuation methods 
that trace a trajectory consisting of solutions of the family of systems of equations F(x ,  y )  = 

t(a, b )  and ( x ,  y )  8 0 until the parameter t > 0 attains 0. Here (a ,  b )  denotes a 2n-dimen- 
sional constant positive vector. We establish the existence of a trajectory which leads to a 
solution of the problem, and then present a numerical method for tracing the trajectory. We 
also discuss the global and local convergence of the method. 

1. Introduction. Let Rn denote the n-dimensional Euclidean space. We use the 
notation R: for the nonnegative orthant {x E Rn: x 0) and R;+ for the positive 
orthant {x E Rn: x > 0) of Rn. The complementarity problem CP[f] with respect to a 
continuous mapping f: Rn + Rn (see, for example, Cottle [I], Karamardian [61, 
Kojima [7], Lemke and Howson [15], etc.) is defined to be the problem of finding a 
z E R2" such that z = (x, y) 2 0, y = ffx), and xiyi = 0 (i = 1,2,.  . . , n). Under the 
nonnegativity condition z = (x, y) 0, the complementarity condition x, y, = 0 ( i  = 

1,2, .  . . , n) can be rewritten as the condition that the inner product x . y = xTy is 
equal to zero. We say that the CP[f] is linear if the mapping f is a linear mapping of 
the form Rx) = Mx + q for some n x n matrix M and q E Rn, and nonlinear 
otherwise. A feasible solution is a z = (x, y) E R2" satisfying the nonnegativity condi- 
tion z = (x, y) 2 0 and the equality y = ffx). To distinguish a solution of the CP[f] 
from a feasible solution, we often call a solution of the CP[f] a complementaly 
solution. We use the symbols S+[f] for the set of all the feasible solutions, and S++[f] 
for the set of all the strictly positive feasible solutions: 

This paper studies homotopy continuation methods for nonlinear complementarity 
problems, which were originally developed for linear programs (Gonzaga [31, Kojima, 
Mizuno, and Yoshise [12], Monteiro and Adler [20], Renegar [23], Vaidya [281, etc.), 
and then extended to linear complementarity problems (Kojima, Mizuno, and Yoshise 
[13], Megiddo [17]) and nonlinear complementarity problems (Kojima, Mizuno, and 
Noma [lo], [Ill). See also Jarre [5], Mehrotra and Sun [IS], Monteiro and Adler [21], 
Tanabe [26],[27], and Ye [29]. A common basic idea of the algorithms in this class is 

*Received May 2, 1990. 
AMS I980 subject classification. Primary: 90C33. 
IAOR 1973 subject classijicntion. Main: Optimization. 
OR/MS Index 1978 subject classification. Primary: 622 Programming/Complementarity. 
Key words. Complementarity problem, continuation method, path-following method, P,,-function. 

'parts of this research were done while the first author was visiting the IBM Almaden Research Center. 
Partial support from the Office of Naval Research under Contract N00014-870C-0820 is acknowledged. 

0364-765X/91/1604/0754/$01.25 
Copyright G 1991, The I n ~ t m m  of Management Sc~rnces/Opcrations Research Society of Arnerlcd 



HOMOlTOPY COTINUATION METHODS 755 

tracing the path of centers (or analytic centers) of polytopes which leads to solutions. 
This idea was proposed by Sonnevend [25], and the first polynomial-time algorithm in 
this class was given by Renegar [23]. We also refer to Megiddo [I71 who generalized 
the idea to linear complementarity problems and, in particular, to linear programs in 
the primal-dual setting. 

We describe an outline of the homotopy continuation method for the CP[f]. Let 
X = diagx denote the n x n diagonal matrix with the coordinates of a vector x E Rn. 
Define the mapping F from RT into R:X Rn by 

to rewrite the CP[f] into the system of equations: 

(2) F(z) = 0 and z = (x, y) 2 0. 

Let c = (a, b) E R:+x Rn. Consider the family of systems of equations with a 
nonnegative real parameter t: 

(3) F(z) = t c  and z = (x, y) 2 0. 

Obviously, the system (3) with the parameter t = 0 coincides with the system (2) or 
the CP[f]. Let 

C = {tc: t > 0) .  

Under certain assumptions, the system (3) has a unique solution z(t) for each positive 
t such that z(t) is continuous in the parameter t; hence the set 

FP1(C)  = {z E R?: F(z) = tc for some t > 0) = {z ( t ) :  t > 0) 

forms a trajectory, a one-dimensional curve. Furthermore, z(t) leads to a solution of 
the system (2) as t tends to 0. Suppose that we know a point z(tl)  E F-'(C) in 
advance. Thus, if we start from the known point z(tl) and trace the trajectory F-'(C) 
until the parameter t attains zero, we get a solution of the system (2) or a 
complementary solution of the CP[f]. 

There are several questions arising from the continuation method described above. 
Theoretically, we have to establish the existence of a trajectory consisting of solutions 
of the system (3). We have to study the limiting behavior of the trajectory as the 
parameter t approaches zero. In addition, we need to show how to prepare an initial 
point z(tl)  E F-'(C) as well as how to trace the trajectory F-'(C) numerically. 
Global and local convergence of the method should be discussed too. These questions 
have been answered partially for some special cases. 

We first consider the case where f is a linear mapping, Rx) = Mx + q, with a 
positive semidefinite matrix M, i.e., x . (Mx) 2 0 for every x E Rn. As a special 
case of (3), consider the family of systems of equations with a nonnegative real 
parameter t: 

(4) F(z) = t(e,O) and z = (x, y) 2 0. 

Here e = (1,. . . ,1) E Rn. Suppose that the set S++[f] of all the strictly positive 
feasible solutions of the CP[f] is nonempty. Then the set of the solutions z of the 
system (4) with the positive t's forms a trajectory {z(t): t > 0) which converges to a 
complementary solution of the CP[f] as t tends to zero (Megiddo [17]). In this case 
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the trajectory can be regarded as a generalization of the path of centers of a system of 
linear inequalities. The algorithm given by Kojima, Mizuno, and Yoshise [13] com- 
putes a complementary solution of the CP[f] by tracing the path of centers numeri- 
cally. 

The system (4) can be rewritten as 

y = Mx + q,  Xy = te, and z = (x,y) 2 0.  

Hence the solution z ( t )  of the system (4) is restricted to running in the relative 
interior S++[f] of the fixed feasible region S+[f]. This lacks the flexibility in choosing 
an initial point. Theoretically, we can construct an artificial problem which has an 
initial point zO E S++[f] sufficiently close to the path of centers (see 56 of [13]). 
However, the magnitude of such a theoretical initial point is too large for implemen- 
tation on computers (Lustig [16], Mizuno, Yoshise, and Kikuchi [191). The family of 
systems of equations (3) gives us more freedom in choosing initial points than the 
family (4). 

We consider now more general nonlinear cases. If the system (3) has a solution for 
ever t > 0, we must have 

t b  E B++[f] = ( u  E R n : u  = y - f(x) forsome (x,y) > 0) 

for every t > 0. Hence it is necessary to take a vector b E Rn  such that t b  E B++[f] 
for every t > 0. When we describe a numerical method in $5, we will assume b > 0 to 
meet this necessary condition. In fact, by the definition of the sets S++[f] and B++[fl, 
we see that if the CP[f] has a strictly positive feasible solution, i.e., S++[f] # 0, then 
there exists an (2, f)  > 0 such that 0 = 9 - 6%); hence 

R ; C { U E R : : U = ~  - f (%)  forsome Y ~ ~ : + } c B + + [ f l  

This ensures that tb  E B++[f] for every t > 0. It should be noted that even in this 
case, we can start from any x '  E R:+ in the x-space by taking appropriate y1 E R:+ 
and c = (a,b) E R:+ such that a = (xiy:, xiy:, . . . , xAyA) and b = y1 - Rx') > 0. 
This flexibility in choosing initial points is very important, especially when we apply 
the continuation method with the use of the family (3) to nonlinear problems where 
finding a feasible solution is generally as difficult as solving them. 

Kojima, Mizuno, and Noma [lo], [ I l l  presented two conditions to ensure the 
existence of a trajectory consisting of solutions of the family of systems of equations 
(3): 

CONDITION 1.1 (Kojima, Mizuno, and Noma [lo]). The mapping f is a uniform 
P-function, i.e., there exists a positive number y such that 

CONDITION 1.2 (Kojima, Mizuno, and Noma [Ill). (i) The mapping f is a mono- 
tone function, i.e., 

(X - y) . (f(x) - f(y)) 2 0 for every x, y E Rn .  
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(ii) The set S++[f] of all the strictly positive feasible solutions of the CP[f] is 
nonempty. 

REMARK 1.3. When f is a linear mapping from Rn  into itself with an n X n matrix 
M, it is monotone if and only if M is a positive semidefinite matrix, and a uniform 
P-function if and only if M is a P-matrix, i.e., all the principal minors of M are 
positive (Fiedler and Pt6k [I!]). It is well known that the Karush-Kuhn-Tucker 
optimality conditions for linear and convex quadratic programs can be formulated as 
a positive semidefinite linear complementarity problem. 

Conditions 1.1 and 1.2 above can be unified as follows: 

LEMMA 1.4. If Condition 1.1 or 1.2 holds, then Condition 1.5 does. 

CONDITION 1.5. (i) f is a P,,-function, i.e., for every x, y E Rn with x # y, there is 
an index i such that 

(ii) The set S++[f] of all the strictly positive feasible solutions is nonempty. 
(iii) The set 

is bounded for every compact (i.e., bounded and closed as a subset of R ~ " )  subset D 
of R;x B++[f]. 

REMARK 1.6. As we have already seen, R T c  B++[fl follows from (ii) of Condition 
1.5. Hence, Condition 1.5 implies that the set 

is bounded for every bounded subset D of R?. We will often use this fact later. 
After listing in $2 some symbols and notation, which will be used throughout this 

paper, we give a proof of Lemma 1.4 in 93. In 94 we show some basic properties of 
the mapping F: R? + R:x Rn  defined by (1). Specifically, we establish under 
Condition 1.5 the existence of the unique trajectory F ' ( c )  leading to solutions of 
the CP[f]. This result is an extension of the results given by Kojima, Mizuno, and 
Noma [lo], [Ill .  In $5 we present an algorithm for tracing the trajectory. The 
algorithm is a modification and extension of the primal-dual interior point algorithm 
given by Kojima, Mizuno, and Yoshise [I21 for linear programs. It may also be 
regarded as a guiding cone method proposed by Tanabe [26], [27]. In particular, we 
introduce a "cone neighborhood" of the trajectory as an admissible region in which 
we generate a bounded sequence ( z k )  such that lim,,, F ( z ~ )  = 0; hence any accu- 
mulation point of the sequence is a solution of the CP[f]. See also the papers [13], 
[20], [21]. Although we can apply the algorithm to linear complementarity problems, 
the main emphasis will be placed on nonlinear cases. In 96 we show the global 
convergence property of the algorithm. In 97 we discuss the local convergence 
property of the algorithm under a nondegeneracy condition, and present a modified 
algorithm which has a locally quadratic convergence property. 

2. Symbols and notation. Rn: the n-dimensional Euclidean space. 
R:= {x E Rn: x 2 01: the nonnegative orthant of Rn. 
R;+= (x E Rn: x > 0): the positive orthant of Rn. 
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e = (1,. . . , 1) E Rn. 
f: a continuous mapping from Rn  into itself. 
X = diagx: the n x n diagonal matrix with the coordinates of a vector x E Rn. 
F(z) = (Xy, y - f(x)) for every z = (x, y) E R?. 
CP[f] (the complementarity problem): 

Find a z = (x, y) E R2" such that F(z) = 0, z 2 0. 

S+[f] = {z = (x, y) E R?: y = fix)]: the feasible region of the CP[f]. 
S++[f] = {z = (x, Y) E RE: y = f(x)}. 
B++[f] = {u E Rn: u = y - Ax)for some z = (x,y) > 0). 
c = (a, b) E R:+x B++[fl. It will be assumed that c E RE and llcll = 1. 
C = (tc: t > 0). 
U c R:",u{O}: a closed convex cone whose interior contains the half-line C. 
U, = {u E U: C.  U = 1). 
U(t) - = {U E U: C.  U < t )  ( t  2 0). 
P E (0, I), 4 E (0,m): constant scalars such that (1 + 4 ) p  < 1. 

3. Proof of Lemma 1.4. First we deal with the case where the mapping f satisfies 
Condition 1.1. Statement (i) of Condition 1.5 directly follows from the definition of a 
uniform P-function. It has been shown in [lo] that F maps R? onto R;X Rn 
homeomorphically. In particular there exists an (Z, y) E R? such that F(Z, 7) = (e, 0). 
Recall that e = (1,. . . ,1) E Rn. Since iiYi = 1 ( i  = 1,2, .  . . , n), we have ( 2 , j )  E R E ;  
hence 6, y) E S++[f]. Thus we have shown (ii) of Condition 1.5, i.e., S++[fl + 0, or 
equivalently, 0 E B++[f]. By a similar argument, we can easily show that B++[f] = Rn. 
If D is a compact subset of R;x Rn, then F-'(D) is also compact since F is a 
homeomorphism. Thus, (iii) of Condition 1.5 is satisfied. 

Now we consider the case where the mapping f satisfies Condition 1.2. Statements 
(i) and (ii) of Condition 1.5 follow immediately. To show (iii) of Condition 1.5, 
assume, on the contrary, that the set 

is unbounded for some compact subset D of R:x B++[f]. Then we can take a 
sequence of points {(xk, k, E E: k = 1,2, .  . . 1 such that 

and 

lim ( y k  - f(xk)) = ii for some ii E B++[f].  
k - m  

Since B++[f] is an open subset of Rn, we can find a 6 E B++[f] such that 

for every sufficiently large k. By the definition of the set B++[f], there is an 
(%,?I E R?+ satisfying f - f(2) = 6.  Furthermore, (xkyk ,  yk - f(xk)) lies in the 
bounded set D for every k, where xk = diagxk. So we can find positive numbers 77 
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and l such that 

x k . y k < ~  and 5 .  ( y k - f ( x k )  -ii + f )  ,< J ( k  = 1,2, ...). 

Hence, for every sufficiently large k, we have 

0 G ( x k  - 2) . ( f ( x k )  - f ( 2 ) )  (by (i) of Condition 1.2) 

= ( x k  - 5 ) .  ( y k  - ( y k  - f ( x k )  - ii +?)) ( b y f -  i i =  f ( 5 ) )  

= x k .  yk - 5 .  yk - xk  . ( y k  - f ( x k )  - u + f )  + 5 .  ( y k  - f ( x k )  - G + f )  

- i i + f )  

(sincexk > 0 and yk - f ( x k )  - u > 0) 

Thus we have obtained 

for every sufficiently large k .  Since ( x k ,  y k )  E R y  ( k  = 1,2,. . . ), the inequality above 
ensures that the bounded set ((x,  y) E R?: fi . y  + x  . f 6 7 + J }  contains ( x k ,  y k )  for 
every sufficiently large k. But this contradicts the fact that lim,,, Il(xk, yk)ll = a. 

This completes the proof of Lemma 1.4. 

4. The existence o f  the trajectory F-'(C). In the remainder of the paper we 
assume Condition 1.5. The main assertion of this section is Theorem 4.4, which 
establishes that the set F-'(c) consisting of the solutions of the system (3) for all 
positive t forms a trajectory leading to solutions of the CP[f] .  This result will give a 
theoretical basis to the homotopy continuation method described in 95. To prove the 
theorem, we need three lemmas. The first two lemmas ensure the existence and 
uniqueness of a solution of the system of equations 

( 5 )  F(z)  = ( a ,  b )  and z  = ( x ,  Y )  E R:" 

for every (a, b )  E R:+x B++[fl,  where 

B + + [ f ]  = (u  E Rn: u = y  - f ( x )  for some ( x ,  y) E R:",). 

LEMMA 4.1. The mapping F is one-to-one on R?+. 

PROOF. Assume on the contrary that F(xl,  y  ') = F(x2, y  2 ,  for some distinct ( x l ,  y ') ,  
( x2 ,  y2 )  E R?+. Then 

f ( x l ) ,  - f ( x 2 )  = y' - y and xfy! = x?y12 > 0 ( i  = 1 , 2 , .  . . , n ) .  

Since the marsping f is a Po-function, we can find an index k such that 

x i  # x i  and 0 G (x; - x i ) ( f k ( x l )  - f k ( x 2 ) )  = ( x i  - - y;). 
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We may assume without loss of generality that x; > x i .  Then the inequality above 
implies that y: 2 yi. This contradicts the equality x;yt = xiy; > 0. w 

LEMMA 4.2. The system (5) has a solution for every (a, b) E R: x B ++[f]. 

PROOF. Let (a, b) E R;x B++[f]. It follows from b E B++[f] that 9 - f(f) = b for 
some (P,?) E R L .  Let 8 = ( i , ? , ,  i ,?, , .  . . , in?,) E R!+'+. Now we consider the 
family of systems of equations with the parameter t E [O, I]: 

(6)  F(X, y) = ((1 - t ) 8  + t a ,  b) and (x,  Y) E R? 

Let I < 1 be the supremum of the i's such that the system (6) has a solution for every 
t E [O, f]. Then there exists a sequence {(xk, yk,  tk)} of solutions of the system (6) 
such that lim, ,, t k  = i. Since the right-hand side ((1 - t ) P  + ta, b) of the system (6) 
lies in the compact convex subset D = (((1 - t)B + ta,  b): t E [O, 11) of R: X B ++ [fl 
for all t E [O, I], (iii) of Condition 1.5 ensures that the sequence {(xk, y k ) }  is bounded. 
Hence we may assume that it converges to some (E,j). By the continuity of the 
mapping F, the point (E, j, i )  satisfies the system (6). Hence if t = 1 then the desired 
result follows. Assume on the contrary that i < 1. Then we have TIT, = (1 - i)k, + 
ta, > 0 for every i = 1,2, . . . , n. Hence (E, y) E R?+. It follows from Lemma 4.1 that 
the mapping F is a local homeomorphism at (E,?). (See the domain invariance 
theorem in Schwartz [24].) Hence the system (6) has a solution for every t sufficiently 
close to i. This contradicts the definition of i. 

LEMMA 4.3. (i) R T c  B++[f]. 
(ii) F maps R:", onto R;+ X B ++[f] homeomorphically . 
PROOF. As we have already seen in $1, assertion (i) follows from (ii) of Condition 

1.5. We will show assertion (ii). By the definition, we immediately see F(R:",) c R:, 
X B++[f], and R'+'+X B++[f] c F(R:",) by Lemma 4.2. Hence F maps R:", onto 
R:+x B+,[f]. By Lemma 4.1, the continuous mapping F is one-to-one on the open 
subset R:", of R2". Thus (ii) follows from the domain invariance theorem (see 
Schwartz [24]). 

We remark here that if a continuous mapping f satisfies Condition 1.1 then F maps 
R? onto R:x Rn  homeomorphically (Kojima, Mizuno, and Noma [lo]). Now we are 
ready to establish the existence of the trajectory F-'(c) consisting of solutions of the 
system (3) for all positive t. 

THEOREM 4.4. Let c = (a,b) E R : , ~  R;, and C = {tc: t > 0). 
(i) For eoery t > 0, the system (3) has a unique solution z(t), which is continuous in t; 

hence the set FP1(C)  = { ~ ( t ) :  t > 0} forms a trajectory. 
(ii) For every to  > 0, the subtrajectory {z(t): 0 < t < to} is bounded; hence there is at 

least one limiting point of z(t) as t + 0. 
(iii) Er>ery limiting point of z(t) as t + 0 is a complementary solution of the CP{f}. 
(iv) If f is a linear mapping of the form f(x) = Mx + q, then z(t) converges to a 

solution of the CP[f] as t -t 0. 

PROOF. By (i) of Lemma 4.3, we first observe that 

for every t > 0. Hence assertion (i) follows from (ii) of Lemma 4.3. If we take 
D = {tc: 0 < t < to), we see by Remark 1.6 that the set 
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is bounded. Thus we obtain (ii). By the continuity of the mapping F, if z is a limiting 
point of z(t) as t + 0, we have F(z) = 0 and z > 0; hence z is a complementary 
solution of the CP[f]. Thus we have shown (iii). Finally, to see assertion (iv), we will 
utilize some result on real algebraic varieties. We call a subset V of Rm a real 
algebraic variety if there exist a finite number of polynomials gi (i  = 1,2,. . . , k )  such 
that 

We know that a real algebraic variety has a triangulation (see, for example, Hironaka 
[4]). That is, it is homeomorphic to a locally finite simplicia1 complex. Let 

V =  { (x ,y , t )  E R ~ ~ + ~ : ~  = M x + q + t b , x i y , = t a i ( i =  1 , 2  , . . . ,  n ) ) .  

Obviously, the set V is a real algebraic variety, so it has a triangulation. Let Z = (E, 7) 
be a limiting point of z(t) as t + 0. Then the point v = (E, j ,  0 )  lies in V. Since the 
triangulation of V is locally finite, we can find a sequence {tP > 0) and a subset u of 
V which is homeomorphic to a one-dimensional simplex such that 

But we know that V n R',":' coincides with the one-dimensional curve ((z(t), t): 
t > 0). Thus, the subset ((z(t), t): t P + '  G t G tP} of the curve must be contained in 
the set u for every p, since otherwise u is not arcwise connected. This ensures that 
z(t) converges to I as t + 0. w 

REMARK 4.5. One of the referees suggested another proof of assertion (iv) of the 
theorem using the well-known result that every real algebraic variety contains only 
finitely many connected components. Indeed, for every E > 0, the algebraic variety 
V n ((x, y, t )  E R ~ ~ + ' :  Kx, y, t )  - vl12 G c2 )  has finitely many connected components. 
It follows that z(t) must be within distance E of v for all sufficiently small t > 0. 

5. A numerical method for tracing the trajectory F-'(C). In the previous sec- 
tion, we have shown the existence of the trajectory F-'(c) leading to solutions of the 
CP[f] for every c G R++X R+ and C = {tc: t > 0). In general, the trajectory FP1(C)  
is nonlinear, so that exact tracing is difficult even if we know an initial point on the 
trajectory. Of course, exact tracing is not necessary since our aim is only to get an 
approximate solution of the CP[f]. We will control the distance from the trajectory in 
such a way that l(F(z) - tell tends to zero as the right-hand side of the system (3) 
tends to zero along the half-line C = {tc E Rn: t > 0). For this purpose, we will 
introduce a "cone-neighborhood" U of the half-line C, which induces an admissible 
region F-'(u) where we will generate a bounded sequence {zk} such that 
lim, ,, I?(zk) = 0. To develop a numerical method that traces the trajectory FP'(C), 
we further assume in the remainder of the paper: 

CONDITION 5.1. (i) The mapping f associated with the CP[f] is continuously 
differentiable. 

(ii) c = (a, b) E R2,", and llc 1 1  = 1; hence the half-line C = {tc: t > 0)  lies in R ?+. 
(iii) U c R',"+u{o} is a closed convex cone whose interior int U contains the 

half-line C. 
(iv) We know a point z '  = (XI, y ' )  such that ~ ( z ' )  E U in advance. 
It is always possible to choose c = (a, b), U ,  and (x', y '1 satisfying (ii), (iii), and (iv) 

of Condition 5.1. For example, choose x1 > 0, y '  > 0, and b' > 0 such that b' = y ' - 
f(xl). Let a' = (x l  y:, x i  y;, . . . , x: y i ) .  Let c = (a', bf)/JJ(a', b1)II, and p be a positive 
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number such that c,  > p ( i  = 1,2, .  . . ,2n).  Define U = {u: Ilu - tcll G t p  for some 
t > 0). Then the set of c = (a, b), U ,  and (xl, y')  satisfies Condition 5.1. 

The lemma below shows some properties of the neighborhood U of the half-line C, 
which will be utilized in the succeeding discussion. 

LEMMA 5.2. (i) The set U, = {u E U: c . u = 1) is bounded. 
(ii) There exists a positive number T such that Ilu - (c . u)cll G (c . U)T for each 

u E U. 
(iii) There is a positive number a such that if Ilu - tcll < t a  for some t > 0 then 

u E int U.  

PROOF. (i) One can easily see that the set {u E R?: c . u = I}, which contains the 
set U,, is bounded because c E R E .  

(ii) Since the set U, = {u E U: c . u = 1) is bounded, there is a positive number T 

such that the ball B = {u E R2": llu - ell G T} contains the set U,. Let u E U. 
Obviously c . u 3 0 because c, u E R?. If c . u > 0 then the point u/(c . u) belongs 
to the set U ,  c B; hence the inequality 

follows. Now suppose that u E U and c . u = 0. Then u = 0 because c E R: and 
u E R?. Hence the inequality above holds trivially. 

(iii) By Condition 5.1, the point c lies in the interior int U of the cone U. Hence, we 
can find a positive number a such that int U contains the ball B' = {u E R2": 
Ilu - ell < a ) .  Suppose that Ilu - tell < t a  for some t > 0. Then u/t belongs to the 
ball B'. Since U is a cone, we have u E int U. 

The set F-'(u) will serve as an admissible region in which we will generate a 
sequence {zk E Ry+}, to approximate the trajectory F-'(C), such that lim,,, c . 
F(zk) = 0. Such a sequence {zk} leads to complementary solutions of the CP[fl as we 
will see in the theorem below. 

THEOREM 5.3. Suppose {zk E F p  '(u )} is a sequence such that lim, ,, c . ~ ( z  '1 = 

0. Then the sequence {zk) is bounded and any limiting point of the sequence is a 
complementary solution of the CP[f]. 

PROOF. Since F(zk) E U (k = 1,2, . . . ) holds from the assumption, we see by 
Lemma 5.2 that 

Hence lim, ,, Hzk)  = 0. Furthermore, the sequence {F(zk)} is bounded. By Remark 
1.6, so is the sequence (zk). Therefore we see from the continuity of the mapping F 
that F(Z) = 0 for any limiting point Z of the sequence {zk}. 

Assuming that we are at some point Z E F-'(u) n R E ,  i.e., Z E F-'(u - {O}), we 
show how to generate a new point z E F-'(U) such that c . F(z) < c . F(Z). This 
process corresponds to one iteration of the algorithm described below. Let p E (0, l )  
and 4 > 0 be fixed such that 

Let p E (0, PI, and i = c . F(Z) > 0. We apply a Newton iteration with a step length 
B E (0,lI to the system of equations: F(z) = Pic, at the point Z. That is, we solve the 
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Newton equation, the system of linear equations in the variable vector Az 

Here DF(Z) denotes the Jacobian matrix of the mapping F at Z. We call Az the 
Newton direction. The step length 9 will be determined later by an inexact line search 
such that 

Thus we define a new point z E R2" by z = Z - %Az. The lemma below ensures that 
the 2n x 2n coefficient matrix on the left-hand side of the system (8) is nonsingular 
whenever (x, y) E R E .  Hence the system (8) consistently and uniquely determines 
the Newton direction Az = DF(Z)-'(F(%) - Pic). 

LEMMA 5.4. (i) The Jacobian matrix DRx) is a Po-matrix at ecery x E Rn, i.e., for 
every nonzero u E Rn, there is an index i such that 

u, # 0 and u , [ ~ f ( x ) u ] ~  > 0 .  

(ii) The Jacobian matrix DF(z) is nonsingular at every z = (x, y) E RE. 
PROOF. (i) Let x E Rn and O # u E Rn. We consider a sequence (x + (l/k)u: 

k = 1,2, .  . .). For every k = 1,2, .  . . , there is an index i such that 

and 

Since the index set ( l , 2 , .  . . , n )  is finite, we can find an index i such that the relation 
above holds for this i and infinitely many k's. For such i and k ,  we have 

u, # 0 and u , [ ~ f ( x ) u ] ,  + o - / z  > 0. (:I 
Here o(h)/h -, 0 as h -t 0. Taking the limit as k - m, we obtain 

u, # 0 and u , [ ~ f ( x ) u ]  ; 0. 

(ii) Let z = (x, y) E R?+. The Jacobian matrix DF(z) is written as 

where X = diagx, Y = diagy, and I stands for the n x n identity matrix. To see that 
the matrix DF(z) is nonsingular, assume on the contrary that 

Yu + Xv = 0 and -Df(x)u + v = 0 
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for some nonzero (u, v) E R ~ " .  It follows that 

u f 0 and Df(x)u = -x-'YU. 

Hence 

~ i u f  u # 0 and u , [ ~ f ( x ) u ] ~ =  -- ( 1  = 1 ,2 , .  . . , n ) .  
x ,  

This contradicts (i). 
REMARK 5.5. From (ii) of Lemma 4.3 and (ii) of Lemma 5.4, we see that F maps 

R:", onto R:+? B++[f] diffeomorphically. 
Recall that P E (0,1) and 4 > O are constants satisfying (71, and that Az is a 

unique solution of the Newton equation (8) at Z E F-'(u) with the parameter 
p E (0, PI. Assume for the time being that z = Z - 8Az E F-'(U) for !very suffi- 
ciently small nonnegative 8. Ideally, we want to choose the step length 8 such that 

c . F(i )  = min{c . F(Z - 8Az): 8 E [0, 11, F(Z - 8Az) E U) 

However, the computation of the exact value of the ideal step length 6 is generally 
impossible in a finite number of steps. In the algorithm presented below, we will use 
an inexact line search: Find the smallest nonnegative integer i such that 

Here x E (0, l )  denotes a constant and xi stands for the ith power of X .  
Now we are ready to describe the algorithm. 
ALGI[U, P ,  X ,  41. 
Step 0. Let t '  = c . F(z') and k = 1. 
Step 1. Let B = zk  and i = tk .  
Step 2. Compute the direction Az by solving the Newton equation (8) 
Step 3. Let i be the smallest nonnegative integer satisfying (9) and (10). Define 

Step 4. Replace k by k + 1. Go to Step 1. 
If it happens that t k  = O for some k in the algorithm above, then c . F ( z ~ )  = 0; 

hence F ( z ~ )  = 0. In this case we may stop the algorithm because we have obtained zk 
as a complementary solution of the CP[f]. So it is implicitly assumed in the algorithm 
above that t k  > 0 for every k. 

6. Global and monotone convergence. Let ((zk, tk)} be a sequence generated by 
ALGl[U, P ,  X ,  41. We will show in Theorem 6.2 that lim, ,, t k  = 0; hence, by 
Theorem 5.3, the sequence {zk) is bounded and any limiting point of the sequence is 
a complementary solution of the CP[f]. For this purpose we prove the lemma below: 
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LEMMA 6.1. Suppose that Z E F-'(U) and t = c . F(Z) > 0. Let p E (0, l )  and 
4 > 0 be constants satisfying (7), and let Az be the solution of the Newton equation (8) 
at Z with the parameter p E (0, p]. 

(i) Define 

(11) O* = max{0 E [0, 11: Z - OAz E R:), 

(12) e(0) = F(Z - OAz) - F( i )  + ODF(Z)Az for every 0 E [O, O*]. 

Then 

(15) c . F(Z - OAz) G (1  - 0)1 + O(pi + Ile(O)ll/O) forevery 0 E (0, O*]. 

8 = sup{8' E (0, e*]: I(e(e)ll/e < [min{a, 4 } ] p i  for every 8 E (0, el]}. 

Then 

Ile(O)ll/O < [min{a, 411 p i ,  

F ( i  - OAz) E int U, 

for every 0 E (0,8). 

PROOF. (i) It should be noticed that O* E (0,1]. The relation (13) follows directly 
from the continuous differentiability of the mapping F. By the definition, 

F(Z - 8Az) = F( i )  - ODF(Z) Az + e(0) for every 8 E [O, O* ] 

Since Az is the solution of the Newton equation (8), we also have 

F ( i )  - ODF(Z)Az = (1 - 8)F(Z) + Opic for every 0 E [O, o*]. 

Hence the equality (14) follows from these two equalities. Taking the inner product of 
each side of (14) and the vector c, we have that 

for every 0 E (0, O*]. Thus we have shown the inequality (15). 
(ii) The inequality (17) follows from the definitions (10,  (16) of O*, 8 and the 

relation (13). The inequality (18) is obvious by the definition (16) of 8, too. Let 
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8 E (0, a. By Lemma 5.2, the point ( p i c  + e(8)/8) lies in int U. Since the point 
F(Z - 8Az) is a convex combination of the point F(Z) in the convex set U and the 
point (p ic  + e(8)/0) in int U, it Iies in int U. Thus we have shown (19). The 
inequality (20) follows from (15) and (18). w 

Lemma 6.1 guarantees that we can consistently find the smallest nonnegative 
integer i satisfying (9) and (10) at Step 3 of ALGl[U, p, X, $1. We are now ready to 
prove the global and monotone convergence property of ALGl[U, P, X, $1. 

THEOREM 6.2. Let p E (0 , l )  and 4 > 0 be constants satisfying (7). Suppose that 
p E (0, p] and ,y E (0, 1). Let {(zk, tk)} be a sequence generated by the 
ALGl[U, P ,  X, 41. 

(i) The sequence {tk) is monotone decreasing and converges to zero as k - w. 

(ii) The sequence (zk) is bounded and its limiting points are complementary solutions 
of the CP[fl. 

PROOF. In view of Theorem 5.3, it suffices to prove assertion (i). By applying 
Lemma 6.1 at each Z = zk, we see that t k  > t k + '  ( k  = 1,2, .  . .). Hence the sequence 
I tk)  is monotone decreasing. Since each t k  is nonnegative, there exists a nonnegative 
number f to which the sequence converges. If i = 0, we obtain the desired result. 
Assume on the contrary that i > 0. Define the compact subset 

of R:", (see Lemma 5.2). Then we see by (ii) of Lemma 4.3 that the set F-'(V) which 
contains the sequence {zk) is a compact subset of RZ since V c R:",c R:+x B++[fl. 
Taking a subsequence if necessary, we may assume that the sequence {zk) converges 
to some i E F-'(v). Then it is easily seen that i = c . FG). Now, applying Lemma 
6.1 to the point 2, we can find a positive number 8 such that for every 8 E (0,6), 

F ( i  - &) E int U ,  

Here denotes the Newton direction determined by the equation (8) with Z = 2 and 
i = f. On the other hand, the Jacobian matrix DF(z) is nonsingular and continuous at 
z = i (see (ii) of Lemma 5.4). This implies that the Newton direction generated at the 
kth iteration, Azk, converges to z. Therefore, for a nonnegative integer 1 such that 

E (O,& we have 

F(zk - xlAzk) E int U, 

for every sufficiently large k. Let ik be the nonnegative integer determined at Step 3 
of the kth iteration in ALGl[U, P ,  X, 41. Then, for ever1 sufficiently large k, we see 
that ik G 1; hence 

This contradicts the fact that the sequence Itk} converges to i. 
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7. Local convergence. We will assume the condition below in addition to Condi- 
tions 1.5 and 5.1 throughout this section, which is divided into two subsections, 7.1 
and 7.2. Subsection 7.1 is devoted to a locally linear convergence property of 
ALGl[U, P ,  X, 41. In subsection 7.2 we will modify ALGl[U, P ,  X, $1 to get a locally 
quadratic convergence. 

CONDITION 7.1. (i) At each complementary solution z = (x, y) of the CP[fl, the set 
of the columns Ii (i E I+(y)) and [Df(x)lj ( j  E I+(x)) forms a basis of Rn. Here Ii 
denotes the ith column of the n x n identity matrix I, [Dffx)], the jth column of the 
n X n Jacobian matrix Dffx) of the mapping f, I+(y) = {i: yi > 01, and I+(x) = {j: 
x j  > 01. 

(ii) The Jacobian matrix DRx) of the mapping f is Lipschitz continuous on each 
bounded subset E c R", i.e., there is a positive constant A such that 

l I ~ f ( x ~ )  - Df(xl)ll G h11x2 - x211 for every xl ,  x2 E E, 

where llAll denotes the matrix norm max{llAwll: w E Rn, llwll = 1) for every n x n 
matrix A. 

We note that (i) of Condition 7.1 implies the strict complementarity, i.e., x ,  = 0 if 
and only if yi > 0 (i = 1,2, .  . . , n). By using the well-known implicit function theo- 
rem, we can also derive the local uniqueness of each solution of the CP[f] from (i) of 
Condition 7.1. Furthermore we will see in Lemma 7.3 below that the CP[f] has a 
unique solution. 

7.1. Locally linear convergence. Now we state the locally linear convergence of 
ALGl[U, P ,  X ,  $1. 

THEOREM 7.2. Let p E (0,l) and $ > 0 be constants satisfying (7). Suppose that 
p E (0, PI and x E (0, 1). Let { ( zk ,  tk)} be a sequence generated by the 
ALGl[ U, P ,  X ,  $1. Then there is a positive number K such that 

We will prove a series of lemmas which leads us to Theorem 7.2. 

LEMMA 7.3. (i) The Jacobian matrix: DF(z) of the mapping F is nonsingular at  every 
z = (x, y) E R?+U F-'(0). 

(ii) The CP[f] has a unique solution. 
(iii) There are positive constants 5 and 7 such that 

for every z E F-'(u(~')) and 

for every z', z2 E ~-l (U(t l ) ) .  
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(iv) There is a positive constant K such that 

for every zl, z2 E F-'(u(~')). 
Here U ( t l )  = {u E U: C .  u G tl}. 

PROOF. (i) Recall definition (1) of the mapping F: R? --, R:x Rn. If z E R?+U 
~ ~ ' ( 0 )  then we either 

z = (x,  y) E R?+ 

Note that z is a complementary solution of the CP[f] in the latter case. We have 
shown in Lemma 5.4 that the Jacobian matrix DF(z) is nonsingular at every z E R Z .  
Now suppose that F(z) = 0 and z E R?. By (i) of Condition 7.1, we can easily verify 
that if DF(zXV = 0 for some w E R'" then w = 0; hence DF(z) is nonsingular. 

(ii) By Theorem 4.4, we know that the CP[f] has a complementary solution. On the 
other hand, by applying the implicit function theorem (see, for example, Ortega and 
Rheinboldt [22]) to the system (3) at each complementary solution Z of the CP[f] and 
i = 0, we see that the unique trajectory FP1(C), whose existence is ensured by 
Theorem 4.4, converges to Z as t + 0. Hence the solution of the CP[f] must be 
unique. 

(iii) Let z* be the unique solution of the CP[f]. Since 

u ( t l )  c U c R ~ + u { o }  c (R:+x B++[f]) u {0}, 

we know F-'(U(tl)) c R:u{z*). Noting (ii) of Lemma 4.3 and extending slightly the 
argument in (ii) above, we can show that F is a homeomorphism between F-'(U(~*)) 
and U(tl). On the other hand, the set ~ ( t ' )  is compact by Lemma 5.2. Therefore the 
set F-'(U(tl)) is compact, too. Let W be the convex hull of the compact set 
F-'(U(tl)). Then W is also compact and W c R~=,u{z*}. We have seen by (i) above 
that the Jacobian matrix DF(z) is nonsingular at every z in the set R:U{Z*). Thus, 
by the continuity of the Jacobian matrix DF(z), there exist positive numbers 5 and 77 
such that (21) holds for every z E W and that (22) holds for every z E F - l ( ~ ( t ' ) ) .  
Since the sets W and U(tl) are convex, the inequalities (23) and (24) follow from (21), 
(22) and Theorem 3.2.3 of [22]. 

(iv) It follows from (ii) of Condition 7.1 that the Jacobian matrix DF(z) is Lipschitz 
continuous on the bounded convex set W, i.e., there is a positive number K such that 

IIDF(z~) - DF(Z')(~ G 2~11~ '  - zllI for every z l ,  z2 E W .  

Assertion (iv) follows from Theorem 3.2.12 of [22]. 

LEMMA 7.4. Let Z E F-'(U(tl)), 7 = c F(Z) > 0, and let Az be the solution of the 
Newton equation (8) a t  Z with the parameter p E (0, PI. Define e(B) and by (12) and 
(16), respectively. Then 

I l e ( f 3 ) l I < ~ ( ~ ( ~ +  1 - p ) i ~ ) ~  forevery O E  [0,8].  
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PROOF. Let 0 E [O, 8). Since Az is the solution of the Newton equation (81, we 
have 

G IIDF(Z)- ' II ( IIF(Z)  - icll + (1  - p)Sllcll) 

f T,((IF(Z) - icll + ( 1  - P)  t )  (by Lemma 7.3 and llcll = 1) 

Thus we have seen that 

On the other hand, by relations (19), (20) in Lemma 6.1 and the continuity, we see for 
every 8 E [O, 31 that 

F(Z - OAz) E U, 

c . F(Z - OAZ) G ( ( I  - 0 )  + @(I + 4 ) p ) i  G 5 G t ' ;  

hence 

Z - 8Az E F - ' ( ~ ( t ' ) ) .  

Therefore, by the definition (12) of e(0) and (iv) of Lemma 7.3, we have 

The desired inequality follows from (26) and the inequality above. 
For each t > 0 and p E (0, p], define 

where 

T and a are the positive constants that were introduced in Lemma 5.2. For every 
P E (07p1, let 

(27) s ( p )  = max{tt 2 0: 6( t ,  p )  = I for every t E (0, t']) = up .  

LEMMA 7.5. Let Z E F-'(U(tl)), i = c . F(Z) > 0, and let Az be the solution of the 
Newton equation (8) at Z with the parameter /i? E (O,p]. Then 

(28) F(Z - 8Az) E U, 

(29) c . F(Z - BAZ) G ( (1  - 0)  + o(1 + + ) P ) i  

for euery 0 E [O, 6(5, PI]. 
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PROOF. Define 4 0 )  and 8 by (12) and (16), respectively. If $i, p )  < 8 then the 
relations (28) and (29) follow from (19), (20) in Lemma 6.1 and the continuity. Thus it 
suffices to show that $1, p )  < 8. We may assume 8 < 1. Suppose that 

Then from the definition (16) of 8 and the continuity of e(0)  it follows that 8 = 0". 
Just as we derived (19) from (18) in the proof of Lemma 6.1, we see from (30) that 

F(Z - 6"Az)  E int U .  

This contradicts the definition (11) of 0" since 0" = 8 < 1. Thus we have shown that 

By the inequality (25) in Lemma 7.4 and the inequality above, we have 

LEMMA 7.6. Let Z E F-'(U(t I ) ) ,  i = c . F(Z) > 0,  and let A z  be the solution of the 
Newton equation (8 )  at Z with the parameter p E (0 ,  p]. If i G s ( p )  then 

F(Z - Az) E U ,  

c . F(Z - A z )  < ( 1  + 4)Pt. 

PROOF. By the definition (27) of s ( p )  and Lemma 7.5, the relations (28) and (29) 
hold for every 0 E [0, 11. . 

We are now ready to prove Theorem 7.2. We have already shown in Theorem 6.2 
that the sequence { t k )  converges to zero as k + m. Let K be a positive integer such 
that t k  < s ( p )  for every k a K. Then, by Lemma 7.6, the inequality in the theorem 
holds for every k 2 K. This completes the proof of Theorem 7.2. 

7.2. A rnodijication of A L G l [ U ,  P ,  X ,  41 and its locally quadratic concergence. 
The integer K in Theorem 7.2 depends on the positive number p ,  but we can take 
any positive value of p E (0 ,  p] although K may diverge as p tends to zero. This 
suggests that the sequence { t k }  converges to zero at least super-linearly if we suitably 
decrease the value of the parameter p as the iteration proceeds. In fact, we can 
modify the algorithm so that the sequence converges to zero quadratically. 

Let Z E F- ' (U( t l ) )  and 7 = c . F(Z) > 0. In the remainder of the section we denote 
the solution of the Newton equation (8) at Z with the parameter p E (0 ,  p] by Az(P) .  
By Lemma 7.6, if 7 < s ( p )  = w p  and p = ? / w  then 

Thus these inequalities would show how to update the parameter P to get a locally 
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quadratic convergence if the constant 

were known in advance. 
Generally, however, the constant w is unknown. Let E  be an estimate of o, which 

theoretically can be any positive number. Take a constant p  > 1. If i is small enough 
to satisfy 

there exists a nonnegative integer Ei such that 

Taking P = p E i / E  with such a nonnegative integer E, we obtain by Lemma 7.6 that 

Hence, whenever i satisfies (30, we can compute the smallest nonnegative integer Zi 
satisfying (331, (34), and the right inequality of (32), i.e., 

Since all the (33), (34), and (35) are satisfied if the inequality (32) holds, we see that 
the smallest nonnegative integer Z cannot exceed the nonnegative integer 

( 36 )  f i  = max(0, [log, D - log, o] } 

whenever i is small enough to satisfy the inequality (31). Here denotes the 
smallest integer not less than 5.  

Now we are ready to state a modification of ALGl[U,d, X ,  41. Let p > 1 be a 
constant and D > 0 an estimate of o. 

ALG2[U, 6, x, 4, P ,  $1.1 
Step 0. Let t '  = c . Hz1) and k = 1. 
Step 1. Let I = zk and i = t k .  
Step 2. Let A Z ( ~ )  be the direction determined by the Newton equation (8) with the 

parameter p = p. Let i be the smallest nonnegative integer satisfying 

Here denotes the ith power of ,y E (0,l). If i > 0 then let /3 = p and go to Step 4. 
Otherwise go to Step 3. 

Step 3. Compute the smallest nonnegative integer Ei satisfying (331, (34), and (35). 
If such a nonnegative integer Ei does not exist, let p = p and go to Step 4. 
Otherwise, let /3 = P E i / ; .  
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Step 4. Define 

Step 5. Replace k by k + 1. Go to Step 1. 
If the estimated value G is not thought to be good, we may change it during the 

execution of the algorithm. As far as the changes occur at most finite times, they will 
not affect the global and locally quadratic convergence results shown below. 

Let {(zk, tk)) be a sequence generated by ALG2[U, p, X ,  4, p, GI. Then, in a way 
similar to the proof of Theorem 6.2, we can show that the sequence {(zk, tk)) 
converges to (z*, 0). Here z* is the unique solution of the CP[f] (see (ii) of Lemma 
7.3). Furthermore, we obtain: 

THEOREM 7.7. Let {(zk, tk)) be a sequence generated by the ALG2[U, p, X ,  4, p,  61. 
Then the convergence of the sequence {(zk, tk)) to (z*, 0) is locally quadratic. More 
precisely, 

for every suficiently large k .  Here z* is the unique solution of the CP[f] and m is gicen 
by (36). 

PROOF. From the discussion preceding ALG2[U, p, X ,  4, p, GI, we know that the 
inequality (37) holds if k is not less than a sufficiently large K'. Hence it suffices to 
show that the inequality (38) holds for every k 2 K'. Suppose that k 2 K t .  Then we 
have 

Ilzkf' - z*ll < ~llF(zk+')ll  (by (24) and F(z*) = 0) 

< q ( r t k + '  + t k + ' )  (by Lemma 5 . 2  and llcll = 1) 

Z* 1 1 2  (by F(z*) = 0 and (23)).  

Thus we have shown that the inequality (38) holds for every k > K'. 

8. Concluding remarks. We have formulated the complementarity problem CP[f] 
as a system of equations with a nonnegativity condition on a variable vector z E Rm: 

(39) F(z) = 0 and z 2 0, 
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and proposed a homotopy continuation method, ALGl[U, P ,  X, 41, which is founded 
on a one-parameter family of systems of equations: 

F(z) = tc and z 3 0. 

Here m = 2n. Supposing that the CP[f] satisfies Condition 1.5 and (i) of Condition 
5.1, we have seen that the system above enjoys the following properties: 

(a) We can choose a c > 0, a closed convex cone U c R';+u{O), and a point 
z1 E F-'(u) such that (ii), (iii), and (iv) of Condition 5.1 hold. 

(b) R y + c  F(RT+). 
(c) F maps Ry+ onto F(Ry+) diffeomorphically. 
(dl The set F-'(D) is bounded for every bounded subset D of RT. 
Generally, ALGl[U, P ,  X ,  41 computes an approximate solution of the system (39) 

if all the conditions above are satisfied. This may remind the readers of applications 
of ALGl[U, P ,  X, 41 to some other problems which are converted into systems of the 
form (39). 

The algorithms ALGl[U, P ,  X, $1 and ALG2[U, 6, X, 4, p, GI as well as their global 
and local convergence results in this paper can apply to linear complementarity 
problems satisfying Condition 1.5. We could modify the ALGl[U, P,  X ,  41 to derive 
the path-following algorithm ([13], [21]) which solves linear complementarity problems 
with positive semidefinite matrices in o(&L) iterations. Furthermore we could prove 
the globally linear convergence of the modified algorithm when it is applied to linear 
complementarity problems with P-matrices. These results on the positive semidefinite 
and P-matrix cases, which were presented in the original version [81 of this paper but 
cut in the revised version, will be further extended to a wider subclass of linear 
complementarity problems with Po-matrices in the paper [91 where we explore a 
unified approach [14] to both the path-following algorithm ([131, [21]) and the 
potential reduction algorithm [14] for linear complementarity problems. 

Acknowledgement. The authors are grateful to Professor Takuo Fukuda who 
suggested using the powerful result on real algebraic varieties given in the paper 
Hironaka [4] for the proof of (iv) of Theorem 4.4. 
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