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A TWO-RESOURCE ALLOCATION PROBLEM SOLVABLE 
IN LINEAR TIME* 

NIMROD MEGIDDOt$ AND TETSUO ICHIMORI$ 

The allocation problem discussed here is as follows. The processing time of a task is a linear 
function c-ax-by of amounts x ,  y of resources allocated to it. where t . a ,  h are positive 
constants. Given the amounts X and Y of available resources, we wish to allocate them among 
n independent tasks so as to minimize the maximal completion time. We solve this problem in 
llnear time. 

Introduction. The complexity of the linear programming problem is a central 
question in the interface between operations research and computer science. It is still 
an open question whether an m x n problem can be solved within a polynomial 
number p(m, n) of arithmetic operations. Another direction of research is that of 
exploring the complexities of structured linear programming problems (see [M 1, M2, 
M31). It turns out that for many subproblems there exist algorithms which are more 
efficient than the simplex algorithm and investigating such algorithms may eventually 
lead to an alternative for the simplex algorithm in the general case. 

In this paper we present a linear-time algorithm for a class of linear programming 
problems which may be described as follows. 

Suppose we have n independent "tasks" denoted 1,2, . . . , n, whose processing times 
depend on the amounts of two resources allocated to them. More specifically, assume 
we have X units of the first resource and Y units of the second resource. Given the 
initial time t,, if we allocate x, units of the first resource and y,  units of the second 
resource to task i, then task i will process in T, = max{ t, - a,x, - b,y,, d l )  time units 
( t , ,  a,, b,, dl > 0). Suppose we wish to minimize makespan [B], given all tasks start at 
time zero. Then our problem is to minimize Max{ T , )  subject to E x ,  = X ,  Cy,  = Y 
and x,, y, > 0. It is easy to see that it is sufficient to minimize Max{ t, - a,x, - b,y,). 
For some references on resource allocation consult [El, [GM] and [KIMI], [KIM2]. 

Recent results of Megiddo [Ml],[M2] establish that whenever the number of 
variables (or, equivalently, the number of constraints) is fixed, a linear programming 
problem is solvable in linear time. However, the problem we discuss in this paper does 
not fall in this category. The methods we use are related to those used in [Ml,  M2]. 
Our problem is also related but not equivalent to the multiple-choice linear knapsack 
problem [IHTI], [Zl] recently revisited by Dyer [D3] and Zemel [Z2], the latter two 
stemming from the results independently obtained by Megiddo [MI], [M2] and Dyer 
[Dl],[D2]. Thus, it turns out. that these new methods lead to better algorithms than 
previous ones. Apparently, the "sorting" step can be avoided in these special linear 
programming problems and successive reductions in the size of the problem yield 
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better performance. In a certain sense these methods are "greedy." The methods may 
also apply to linear programs arising in preemptive scheduling problems where linear 
programming is a fundamental tool. 

Finally, we note that even though our linear-time argument follows from finding 
medians in linear time (which may not be practical), the method is very practical if 
instead of the exact median we pick a random element (or the median of a random 
sample of three). 

Some formulation considerations. We solve the following problem 

minimizemaximum {c , -a ,x , -b ,y , )  s.t. x x , = X ,  x y , = Y ,  (PI )  
X.  Y I S r S n  r = l  , = I  

x , , y , 2 0  ( i = l ,  . . . ,  n), 

where X, Y, a,, b,, c, > 0, i = 1, . . . , n. The problem can be formulated as a linear 
programming problem: 

minimize t s.t t + aix, + b,yi 2 ci ( i  = I, . . . , n), 
x, y. 1 

(P2) 

x i , y , Z O  ( i = l ,  . . . ,  n). 

We will concentrate on the dual problem: 
n 

maximize cizi+ Xu + Yv 
2 ,  U, D i =  l 

u + a i z i I O  ( i = l ,  . . . ,  n), 

v + b i z i S O  ( i =  1, . . . ,  n), 
n 

C z i = l ,  z i 2 0  ( i = l ,  . . . ,  n). 
i =  l 

Let us consider the latter as the problem of maximizing a function f(u,v) of two 
variables, namely 

(assuming Max 0 = - a). It is easy (and well known) to evaluate f(u, v) in O(n) time. 
This can be accomplished by searching (employing repeated median-finding) for the 
optimal value of the dual variable associated with the equality constraint. However, we 
will maximize f(u, v )  in O(n) time. The procedure is based on repeated reduction in the 
size of the problem. 

An overview of the algorithm. The function f(u, v) is piecewise linear and concave. 
In order to understand the algorithm for maximizing f, we first discuss the piecewise 
linear structure of this function. The problem 

maximize 2 C,Z, s.t. 2 z, = 1, 
i =  l i =  l 
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is easy and  its optimal solution can be described as follows. Assume, without loss of 
generality, that c ,  2 c, 2 . - 2 c, and  C:=,Z, 2 1. Then there is a unique k,  
0 k k k n such that ~ f =  ,Zi 5 1 < ~ f t i ~ ,  (assuming, for convenience, Z,,+ , = 2). The 
solution is then z = Z,, i = 1, . . . , k, Zk+I  = 1 - C f = , Z ,  and  zi = 0, i = k + 2, . . . , n. 
It follows that f(u, v) has the following description: 

for u and  t. such that 

The domains of linearity of f(u,v) are as shown in Figure 1. The lines forming these 
domains are as follows. First, there are the lines u /a j  = v/b, ,  i = 1, . . . , n. Along any 
line v = a u  ( a  > 0) the function f(u,u) breaks as we describe below. Let LE = j i : b, 
5 a a i )  and G =  { i :  b ,>  aa,}. Thus, for iE LE (assuming v =  au), - u / a , S  -v /b , ,  
and for i E G, - u/a, > - v/b,. A critical value of u on our line must be such that for 
some k (1 S k S n) - u . C f = , m i n ( l / a , , a / b , )  = 1, i.e., 

However, given k, the curve Ck = {(u, v) : c!= ,min(- u /a , ,  - v /  b,) = I ) (which has 
the form of a broken line) breaks only a t  points where u/a,  = v/b, for some i, 
1 5 i i k. This implies that the map of linearity domains of f(u,v) is as shown in 
Figure 1. See also Figure 2 for the curves Ck . 

In  the subsequent sections we develop procedures for the following problems. Let 
(u*,u*) denote a maximum of f(u,v). First, given a straight line o = a u  we will 
recognize in O(n) time whether v* < au*, v* = au*, or u* > au*. Secondly, given one 
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of the curves C, ( 1  5 k S n), we will recognize in O(n) time the position of (u*.v*) 
relative to C,, i.e., whether ~ f , , m i n ( -  u*/a, ,  -v*/b,) is less than, equal to, or  
greater than 1. 

The tests we have just defined enable us to reduce the problem in the following way. 
First, assume c ,  L c, L . . . >= cn. This assumption is only for the convenience of 
notation. We start by finding the median c,,/, (assume, for convenience, n is even) and 
identifying the sets ( c , ,  . . . , c,,,~), { c , / ~ +  ,, . . . , c,,). We  now test the curve C,,/2. If 
we find that z:i2,min( - u*/a,, - u*/bi) L 1 then the corresponding solution z* 
= (zy, . . . , z,*) must satisfy z: = 0, i = n / 2  + I, . . . , n. We  thus reduce problem (P3) 
to the same one with n /2  replacing n. The case of an  equality is particularly easy since 
then we actually obtain u* and v*. If z:i2,min(- u*/a, ,  -u*/b,)  < 1 then z: = 

min(- u*/a i ,  - v*/bi), i  = 1, . . . , n/2. In this case our problem is reduced to the 
following: 

n / 2  

maximize clzi+ Xu + Yv + C cimin(- u / a i ,  - u/b,) 
i=n/2+1 i= l 

(P5) 

0 5 zi 5 min(- u/a,  , - v/bi) ( i  = n/2  + 1, . . . , n). 

This is obviously more complicated than problem (P3) with n /2  variables since both 
the function and sum of ti's contain a piecewise linear function of u and v. However, 
we also work on the front of this complication in the following way. We find the 
median a, of the ratios b,/ai, i  = I ,  . . . , n/2. Next, we test the line v = an,u, i.e., 
determine whether v* < curnu*, v* = a,u*, or  v* > a,,u*. Assume, for example, v* 
h a,u*. In this case for every i  such that b,/a, h a ,  we have - u*/a, 2 - v*/b,. 
Denoting T = { 1 5 i  5 n/2  : bl/a, 2 a,} we have to solve an  easier problem: 

maximize ciz, + Xu + v + x cimin( - u/a, , - v/b,) (P6) 
i=n/2+1 

ie T 

This problem is obviously not harder than 

maximize C cir, + Xu + Y - 2 2 a s.t. x z, = I + ( C I /b,)c. (P7) 
ie T ( ; E T  bi c. 1 ie T i E  T 

0 I z, 5 min{ - u / a i ,  - v/bi)  ( i  @ T ) .  

However, the latter is of "size" not greater than 3/4  of the original problem since 
I TI 2 n/4. The only difference is the linear term on the right-hand side of the 
constraint on the sum of zj's. However, the latter does not affect our ability to test lines 
and  curves as described above in linear time. The fact that the problem is reduced with 
a linear-time effort to a problem of the same kind whose size is not more than 3/4  of 
the original one implies that the total effort is linear in n. In view of the discussion 
above we need to consider a more general problem obtained by adding a linear 
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function of u  and v to C ~ = , z , ;  however, we later discuss the solution of problems of 
the type of (P8) below only when they are derived from the original problem. 

n n 

maximize x c,z,+ Xu + Yv s.t. x z,+ Au + Bv = 1, 
z ,  U, U i =  l i= l 

(P8) 

u + a , z i S O  ( i =  I, . . . ,  n) ,  

v + b , z , I O  ( i =  1 , .  . . , n ) ,  

t i P O  ( i =  I, . . . ,  n )  

(where A ,  B  < 0). The dual of the latter is: 

minimize t s.t. t + a,x, + b,y, 2 c, ( i  = 1, . . . , n) ,  
X. 1'. I 

(P9) 

x i , y i 2 0  ( i = l ,  . . . ,  n).  

Testing a ray. In this section we develop a procedure for testing the following: 
Given the function 

n 

f (u ,v )  = Xu + Yv + max C,Z, : 2 ti = I - AU - Bv,O 5 zi 
i =  l i =  1 

and a ray v  = au ( a  > 0), recognize whether the maximum of f, (u*,v*),  satisfies 
v* < au*, v* = au*, or v* > au*. 

The procedure starts by maximizing f on the ray v  = au. Several quantities defined 
later are dependent on a ;  however, we omit a  from their notational description for 
simplicity. Thus, we now consider the following problem 

maximize x c,z,+ ( X  + a Y ) u  s.t. ti= 1 - ( A  + aB)u ,  
2. U i= l i =  l 

P O )  

This problem is quite easy to solve. Consider the function 
n 

g ( u )  = ( X  + a Y ) u  + max cizi : x zi = 1 - ( A  + a B ) u ,  
i =  l i =  l 

The function g(u )  is piecewise linear and concave. Its breakpoints are where 
- u ~ : ,  Imin(l / a , ,  a / b i )  = I - ( A  + aB)u  for some k ,  0  S k 5 n  (assuming c ,  1 . . . 
L c,). Let u0 denote a maximum of g. Given any value u' of u  we can determine 
whether u' < uO, u' = uO, or u' > u0 in O(n)  time as follows. First, compute g(u').  This 
is essentially like solving (P4). Let k be such that 
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(assume for convenience rnin(l/a,+,,a/b,+ ,) = a). We know that such k can be 
found in O(n)  time (even if the el's are not sorted) by repeated median finding. 
Knowing the critical index k, we can express g(uf) as follows: 

(assuming c,+ , = 0). If - u ' ~ t = ~ m i n ( l / a ~ , a / b , )  < 1 - ( A  + aB)uf then g is linear in 
the neighborhood of u', with a slope of X + a Y - ( A  + aB)c, + , - c!= ,(c, - c, + ,) 

min(1 /a,. a/b,). The sign of this slope tells us whether u' < uO, u' = uO, or u' > uO. If 
- u'Cl, ,min(l /a, ,  a/b,) = 1 - (A + aB)u' then g breaks at u'. The left-hand side 
derivative at u' equals the slope we have calculated in the previous case (since any 
decrease in the value of u, which is assumed to be negative in any case, takes us back 
to that previous case). The right-hand side derivative is similar but with k - 1 
replacing k ,  i.e., 

k - l  

X + a Y  - ( A  + aB)cA - 2 (ci - ck)min(l/al,  a/b,). 
i =  l 

Given the one-sided derivatives of g at u', it is easy to recognize whether u' < uO, 
u' = uO, or U' > uO. 

Now, maximizing g(u) is carried out by a binary search. We first let u' be equal 
to the median of critical values of u, i.e., where - u ~ ~ ~ ~ , m i n ( l / a ~ , a / b , )  = 1 - 
(A + aB)u; namely, 

If u' = uO then we are, of course, done. If u' > u0 then our maximization problem is 
now reduced to a similar problem with only n/2 variables: 

fl/2 fl/2 

maximize alzi+ (X + aY )u s.t. zi= I - (A + aB )u, 
I =  l i =  l 

If u' < uO then the variables z , ,  . . . , z,,, are determined to be equal to their respective 
upper-bounds at the optimal solution of the problem corresponding to g(uO). In other 
words, our problem is then reduced to: 

fl/2 

maximize cjzi+ X + aY - x c,min(l/o,. a /bl)  u 
i = n / 2 +  1 i =  1 I 
O I z , S u . m i n ( l / a i , a / b i )  ( i = n / 2 + 1 ,  . . . ,  n). 

It follows that the maximum of g(u) is found with a total effort of O(n). 
We now turn to the question of recognizing the side of the ray v = au which 

contains the maximum (u*, v * )  of f(u, v) .  It follows from the concavity of f(u, v) that it 
is sufficient to look in the neighborhood of the point (uO,auO). More specifically, 
denote h(a) = Max,f(u, au). We are seeking Maxh(a). Knowing that h increases at a 
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tells us that u*/u* > a, and knowing that h decreases at a tells us that u*/u* < a ;  if h 
is maximized at a then u*/u* = a so that u* = u0 and u* = auO. The problem is 
therefore to determine the behavior of h at a. Consider first the dependence of u0 on a .  
Since g(u) is piecewise linear it follows that it attains its maximum, uO, at a breakpoint. 
In other words, there exists k, 0 S k S n such that 

Hence, 
k 

It is only a technical matter to determine the one-sided derivatives with respect to a of 
the quantity on the right-hand side of the latter equation. This finally tells us the side 
of the ray on which (u*, u*) lies. 

Testing a curve. We describe in this section a procedure for determining the side of 
the curve 

which contains (u*,u*). We describe a procedure that, given (u,u), determines if 
Au + Bu + ~ f =  ,min(- u/a,, - u/ b,) is less than, equal to, or greater than 1. To that 
end, consider the dual problems (P8), (P9). Let t* denote their optimal value. We first 
note that if t* < c, (1 S i S n) then at an optimal solution either xi > 0 or y, > 0. By 
the complementary slackness conditions, we have either u + a,z, = 0 or u + bizi = 0. In 
other words, t* < c, implies zi = min(- u/a,, - ulb,). Now, consider the following 
problem: 

minimize t s.t. t + aixi + by, = ci ( i  = I, . . . , n), 
x ,  y ,  r 

(PI 1) 

and its dual 
n n 

maximize cizi+ Xu + Yu s.t. x zi+ Au + Bu = 1, 
2, u, 1) i =  1 i =  1 

(P12) 

u + a i z i S O  ( i =  1 , . . . ,  n), 

u +  biziSO ( i =  I , .  . . , n ) .  

We will later discuss an algorithm for (P11). However, we first argue that solving (P11) 
is the key to testing a curve. Let us denote by cx", Y,F,  ",u Coptima1 values for 
(PI 1)-(P12) and let t*, x*, y*, z*, u*, U* denote optimal values for (P8)-(P9). Since 
(P11) is more constrained than (P9), it follows that t"> t*. Suppose t"< cn (and recall 
that cn = min{ci : i = 1, . . . , n)). It follows that t* < cn and hence for every i, 
i = 1, . . . , n, either x,? > 0 or y,? > 0. By complementary sla_ckness, we haye z* = 
min(- u * / a , ,  - v*/bi), i = 1, . . . , n.  Conversely, suppos_e t 2 c,. Since t = c, - 

anZn - b z n ,  our assumption here is equivalent to either t = c, or (P11) infeasible. 
Consider, again, (P8)-(P9). If these problems are derived from the original (P2)-(P3) 
(hence, the values of n as well as other indexes may have been updated) then, 
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necessarily, u*, v* < 0. (Here u* and u* are identical to those of (P2)-(P3).) This is 
because in (P3) we have z: > 0 for some i .  Now, if t* < c, (in (P8)) then we know that 
z* = min(- u*/a,, - o*/ b,) > 0, i = 1, . . . , n. Using complementary slackness again, 
we have t* + six: + by: = c,, i = 1, . . . , n. The interesting conclusion is that t* < c, 
implies - (t*,x*, y*) is feasible not only in (P9) but also in (P11) and therefore 
t = t* < c,. 

* 
Equivalently, if t 2 c, then t* B c,. Moreover, we may assume in this case x,* = y,* 

= 0. This is true not only for n but also for every i such that c; = c,. 
The algorithmic implications of the above observations can now be described. Given 

that we need to test the curve C,, solve the problem (P12) with n = k. In other words, 
we restrict z, = 0 for i > k. Let ;denote the optimal value. If t"< c, then we know that 
2: = min(- u*/a,, - v*/b,) for i  = 1 ,  . . . , k. If t L c, then for all i such that c, 5 c,, 
x: = y,? = 0. In this case, denoting G = { i  : c, > c,), problem (P9) reduces to 

minimize t s.t. t + a,xi + b,yi > C, ( i  E G )  
x. y,  t 

and the dual is 

maximize x cizi+ XU + Yv, s.t. x zi+ A U  + BV = 1, 
Z'U'U i E G  i E G  

0 ( i E  G ) .  

Thus, testing a curve can be accomplished by solving (PI 1). 
We finally consider solving (P11). Actually, we are interested only in ;so we may, 

instead, solve (P12). Consider a simplified problem 

maximize cizi s t .  2 zi= 1,  
i =  l i =  l 

z , S Z ,  ( i = l ,  . . . ,  n). 

The analysis of (P13) is easy: If C:= ,Z, < 1 then the problem is infeasible. Otherwise 
(assuming c,, = min{c, : i  = 1 ,  . . . , n)) ,  an optimal solution is zi = Z , ,  i  = 1 ,  . . . , n - 
1, z, = 1 - C:~,'Z,, the optimal value being equal to c, + C ~ ~ , ' ( c ,  - c,)Z,. It now 
follows that in (P12) Au + Bv + C:= ,min(- u/a,, - v/b,) 2 1. The optimal z,-values 
given u and v are therefore (in (P12)): 

and the objective function value is 
n -  l 

$(u, v) = ( X  - Acn)u + ( Y - Bcn)o + c, + (c, - c,)min(- u/a, , - u/b,). 
i =  l 

Now problem (P12) is equivalent to 
n 

maximize +(u,v) s.t. Au + Bv + min(- u/a,,  - v/bi) 2 1. (P14) 
i =  l 
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It is essential to observe that +(u,v) is concave. By maximizing +(u,z;) on any straight 
line we can tell (by looking in the neighborhood of the relative maximum) on which 
side of the line the global maximum lies. We now apply this idea to a line of the form 
v = au  where a > 0. Maximizing on such a line amounts to 

It is only a technical matter to determine at  the maximum fi = fi(a) whether the 
function +(a)  = +(E(a), aU(a)) increases, decreases, or attains its maximum. This lets 
us maximize +(u,v) in O(n) time as follows. First, find the median of the ratios b,/a,, 
i = 1, . . . , n. Call it a, and determine the behavior of $(a) at  a,. If, for example, 
+(a)  is increasing at  a, then at  the maximum E (Z > a,) we have l / a ,  < Z/bi for all i 
such that a, 2 b,/a,. Let L = { i :  b,/a, < a,}, E = { i :  bi/ai = a,) and G = ( i :  b,/a, 
> a,,). Note that ( L  U E ( , ( G  U E l 2  n/2. In the present case we can update the 
function +(u, 0): 

! n -  l 

+(u ,v)=  X -  Acn - 2 (c, - c,,)/a, u + ( Y -  Bcn)v+ c, 
i =  l 

i E L U E  

n -  1 

! 
+ 2 (ci - cn)min(- u /a i ,  - v/b,). 

I =  l 
I €  G 

Moreover, we need to maximize +(u, v) subject to 

If +(a)  attains its maximum at a, then we are done. The case of +(a) decreasing at 
a, is handled in an analogous way. In any case, with an O(n) effort we reduce (P4) to 
the same problem with no more than n/2 critical ratios, accumulating at least n/2 
functions in the linear components. This establishes a linear-time algorithm for (P14). 
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