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In this paper we analyze the average number of steps performed by the self-dual simplex 
algorithm for linear programming, under the probabilistic model of spherical symmetry. The 
model was proposed by Smale. Consider a problem of n variables with m constraints. Smale 
established that for every number of constraints m, there is a constant c ( m )  such that the number 
of pivot steps of the self-dual algorithm, p(m, n ) ,  is less than c (m) ( ln  n)"""'+". We improve upon 
this estimate by showing that p(m, n )  is bounded by a function of m only. The symmetry of the 
function in m and n implies that p(m, n )  is in fact bounded by a function of the smaller of m 
and n. 
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1. Introduction 
In this paper we analyze the average number of pivot steps performed by the 

self-dual simplex algorithm [12] (also referred to as 'Lemke's algorithm' [15]). The 
probabilistic analysis of this algorithm was initiated by S. Smale [20, 211. The 
probabilistic model, proposed by Smale, is that of complete spherical symmetry. 
An equivalent model for analyzing the self-dual algorithm is one in which all the 
coefficients of the linear programming problem are sampled independently from 
the standard normal distribution. The equivalence stems from the fact the number 
of steps is independent of the radial part of the distribution. 

Our analysis in this paper is carried out precisely under Smale's model. We note 
however that his proof works for a more general model. Smale proved that the 
expected number of steps p(m, n ) ,  performed by the self-dual algorithm on  a problem 
of order m x n, satisfies 

where c ( m )  is a constant depending on m. Dantzig [12] conjectured that the expected 
number of steps of the simplex algorithm (denote it by ~ * ( m ,  n)) satisfies p*(m, n )  s 
c (m)n  and hence Smale's result can be appraised as proving something close to 
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Dantzig's conjecture, with reservations concerning the probabilistic model and the 
algorithm. 

Blair [ 7 ]  proves that the expected number of undominated columns in a problem 
of order m x n ,  under an  even more general model, is less than 
c(m)(ln n ) m ( m + ~ )  l n ( m + l ) + m  . In general, estimations of numbers of vertices, numbers 

of undominated columns, or  numbers of nonredundant constraints, lead to exponen- 
tial estimates on the number of steps. Blair's bound is somewhat close to Smale's 
but naturally cannot produce the result of the present paper since the expected 
number of undominated columns does tend to infinity. 

Another important analysis was carried out by Borgwardt [9, 10, 1 1 1 .  He worked 
with a different probabilistic model under which the problem was always feasible. 
Furthermore, a special algorithm had to be designed in order for the probabilistic 
analysis to be valid, and  this algorithm solved only problems drawn from the 
particular distribution. Denote the expected number of steps under Borgwardt's 
model by pB(m,  n ) .  We first note that p"  is not symmetric in m and n  while p is. 
Borgwardt proved that pB(m,  n )  was polynomial as a function of two variables. 
Specifically, 

where c = [ ( ~ T T ) / ~ ] ( T T / ~ +  l l e ) .  Thus, Borgwardt's analysis does not show that the 
number of steps tends to a finite limit when either of the dimensions tends to infinity 
while the other is fixed. 

The work of Smale and Borgwardt (and the article in Science magazine [14]) 
encouraged a number of other researchers to improve analysis and extend it to other 
algorithms and probabilistic models. The papers of Adler [ I ]  and Haimovich [ 1 3 ]  
are among those important developments. Since the first version of the present paper 
different variants of the self-dual algorithm have been observed to require only 
0 ( m 2 )  pivot steps on the average [ 3 ,  4, 5, 6 ,  221. The author of the present paper 
has however shown [ I81  that all these variants can be considered as special cases 
of the self-dual algorithm. The result in [2] has a spirit similar to that of the present 
paper. It should be noticed that the result of the present paper does not fall within 
the framework of [ 2 ] .  

The reader may wish to refer to Smale's papers for the main results leading to 
the analysis described in the present paper. The background given in Section 2 is 
rather brief. 

2. Preliminaries 

Smale [ 2 0 ]  presented a formula for p(m, n )  which was based on probabilities of 
random rays lying in certain random cones. We will not discuss here the derivation 
of the main formula. All we say at this point is that we will be estimating probabilities 
of events related to the formula. First, we introduce the notion of the 'Gaussian 
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volume' (or the 'spherical measure') of a matrix, which arises naturally in Smale's 
analysis. The Gaussian volume G V ( M )  of a matrix M E  R m X n  is defined as the 
probability that a random vector v E Rn, drawn from the standard n-normal distribu- 
tion, belongs to the convex cone spanned by the columns of M. In general, the 
Gaussian volume of any measurable set is the probability that v belongs to the set. 
Our main interest will be evaluating 'expected' volumes of matrices, some of whose 
entries will be random normal variates, that is, each has the density function 

Thus, 

- - exp(-ti Mu 1') du. 
( 2 ~ ) " ' ~  U € R ~  

Using conventional notation, let 

We will assume throughout that all the random entries of our matrices are standard 
normal variates (usually independent). The non-random entries will be zeros, ones 
and negative ones. 

Smale [20] showed that p(m, n) can be expressed as the sum of volumes of 
matrices of different types. We first describe the types of matrices which arise in 
the formula for p(m, n). The different types of matrices correspond to different 
types of bases. We then analyze each type separately, showing that the contribution 
of each is bounded by a function of m only. 

To understand the roles of the different types of matrices, we have to look more 
closely at the self-dual algorithm. Consider the following linear programming 
problem: 

Maximize cTx 

subject to A x  < b, 

where x, c E Rn,  A E R m X n  and b E Rm. Let 
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and q = ( c ,  -b)T. A 'primal basis' is a set of m linearly independent m-vectors 
p', . . . , pm, where each p, is either a column of -A, or a unit vector (consisting of 
m - 1 zeros and a single unity). Let P' = (On, (where 0, is a zero n-vector). 
Analogously, a 'dual basis' is a set of n linearly independent n-vectors q',  . . . , q n  
where each q' is either a column of AT or a unit vector. Denote QJ = (qJ, o , ) ~ .  Now, 
the set B = { P ' ,  . . . , Pm,  Q', . . . , Q n )  is called a 'complementary basis' if for every 
i, i = 1, . . . , m + n, either the ith column of m, or the ith unit vector e '  E Rm+" belongs 
to B. Note that B is linearly independent if we start from primal and dual bases. 
It follows that in order for B to be a complementary basis, it is necessary that the 
number of p"s selected from -A equals the number of q"s selected from A'. 
Assuming m < n, this number cannot exceed m. A complementary basis is 'feasible' 
if 

in which case B - ' ~  is a vector whose first n components constitute a dual-optimal 
solution, and the last m components constitute a primal-optimal solution. In the 
special case where q = e = (1, .  . . , Rm+", the columns of the identity matrix 
I,,,,, constitute a complementary basis. In general, the self-dual algorithm attempts 

to find complementary bases relative to points of the form v(t) = (1 - t)e + tq, t 
varying from 0 to 1. An equivalent interpretation can be given in terms of artificial 
bases. A set B* of m + n linearly independent (m + n)-vectors is called an 'artificial 
basis' if it can be obtained from a complementary basis by replacing one of its 
columns by -e, or if it is itself a complementary basis. Two artificial bases are 
'adjacent' if their intersection consists of m + n - 1 columns. The self-dual algorithm 
generates a sequence of (feasible) artificial bases, in which every two consecutive 
ones are adjacent. If the linear programming problem is feasible and bounded then 
the algorithm terminates with a feasible complementary basis. Otherwise, it recogn- 
izes that no such basis exists. 

The different types of matrices described below correspond to the different types 
of artificial bases, depending on the column replaced by -e. For example, the 
quantity V,(m, n, k )  defined below is equal to the probability that a specific artificial 
basis will be reached by the algorithm; such a basis is characterized by the property 
that it is obtained from a complementary basis, containing k columns from each of 
the matrices -A and AT, by replacing one of the unit columns (corresponding to 
a dual slack) by -e. It is easy to verify that the number of different bases of this 
type in a problem of order m x n is equal to ( n  - k)(;)(T). Similarly, V,(m, n, k)  
represents the same probability for an artificial basis obtained by replacing one of 
the units columns (corresponding to a primal slack) by -e. The number of different 
bases of this type is equal to (m - k)(;)(T). Now, V,(m, n, k )  represents the same 
probability for an artificial basis obtained by replacing a column of AT (expanded 
with zeros) by -e, while V,(m, n, k )  represents bases where a column of - A  was 
replaced. 
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As a matter of fact, there are two types of matrices that need to be studied. We 
describe four types, which constitute two equivalent pairs if we interchange the 
roles of rn and n. However, since we analyze the asymptotic behavior when n  tends 
to infinity and m  is fixed, such a symmetry does not suffice. Thus, we will estimate 
expected volumes of matrices of the following types: 

The first type of matrices is of the form 

where X E R k x k ,  Z E R ( ~ - ~ - ' ) ~ ~  , wE ~ ( m - k ) x k  and y € R k  ( O ~ k s r n ~ n ) .  We 
denote E ( G V ( M , ) )  = V l ( m ,  n, k ) .  A matrix of the type of M I  arises in the formula 
for p(m, n )  a number of times which equals ( n  - k ) ( i ) ( T )  and thus we will be 
interested in the quantity 

The second type of matrices is of the form 

where X E R k x k ,  Z E R ( ~ - ~ ' ~ ~  , W E  R ( ~ - ~ - ~ ) ~ ~  and y € R k  ( O ~ k ~ r n ~ n ) .  We 
denote E ( G V ( M , ) )  = V2(m,  n, k ) .  Note that V,(rn, n, k )  = V, (n ,  m, k )  = Vl(n ,  rn, k ) .  
A matrix of the type of M, arises in the formula for p(m,  n )  a number of times 
which equals (rn - k ) ( i ) ( T )  and thus we will be interested in the quantity 
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The third type of matrices is of the form 

where X E R ~ " ' ~ - " ,  z ~ ( n - - k ) x ( k - l )  , w ~ ( m - k ) x k  and y E Rk.  We denote 
E ( G V ( M , ) )  = V,(rn, n, k )  and will be interested in the quantity 

since this represents the contribution of V3(rn, n, k)  to p(rn, n ) .  
The fourth type of matrices is of the form 

where X E R ( ~ - ' ) ~ ~  , zE  ~ ( n - k ) x k  wE ~ ( m - k ) x ( k - l )  and y E R k .  Denote 
E ( G V ( M 4 ) )  = V,(rn, n, k ) .  Obviously, V,(rn, n, k )  = V,(n, rn, k ) .  We are interested 
in the quantity 

The asymptotic behavior when rn is fixed and n tends to infinity turns out to be 
different for V, and V4. 
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Since p ( m ,  n) is symmetric in m  and n, we assume that m  s n. It has been shown 
by Smale that 

We use asterisks to denote the square submatrix in the lower-right corner of the 
matrices M, ( i  = I ,  2 , 3 ) ,  for example, 

MT ~ ( 2 k + l ) x ( 2 k + l )  . The following proposition enables us to reduce the dimensions 
of our integrals from the order of ( m  + n) x ( m  + n)-matrices to the order of (2k)  x 
( 2 k ) -  and ( 2 k  + 1)  x ( 2 k  + 1)-matrices. 

Proposition 2.1 

where a and x are in R' 

Proof. The proof follows by a geometric argument: the integral reflects the proba- 
bility that a random point ( x , ,  . . . , xl, y ) T  satisfies 

or, equivalently, 

The distance between the hyperplane 

{ f f T x  + y = f f O )  

and the origin is equal to 
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The standard multinormal density function is spherically symmetric and the proba- 
bility that a random point will fall on that side of a hyperplane which contains the 
origin, is equal to @(d) ,  where d is the distance between the origin and the 
hyperplane. This implies our claim. 

3. An estimation of V,(m,  n, k) 

We now turn to estimating V l ( m ,  n, k ) .  Applying Proposition 2.1, let us denote 

where A E R:, a, p E R: and IIx(12 = 2 xi. We sometimes use the abbreviation 1x1 
for (det XI. 

Proposition 3.1 

where the integration is over A, a, f i  B 0, X E R k x k  and y E R k.  

Proof. We are interested in the probability that a random v  E Rmtn belongs to the 
cone spanned by the columns of M I .  Now, under our model M I  is non-singular 
with probability one. Assuming this indeed is the case, let u = M,'v  and represent 
u as u = (w', w2,  A,  a, P ) ~  where w' E R " - ~ - ' ,  w2e R m P k ,  A E R 1 ,  a E Rk,  P E R k  and 
u = ( v l ,  v2, v 7 )  where v 1  E R " - ~ - ' ,  U'E R " - ~  and v 3 €  RZk+'. It follows that 
(A, a, p )T  = ( M T ) - ' ~ ~ ,  w1 = v 1  - Za + A  and w2 = v2 - Wp + A .  

By definition, 

where the integration is over all 2, W, X and y (see the dimensions of their respective 
spaces above) and over v  such that M y l v  2 0. Substituting v3 = M;"(A, a, P ) ~ ,  we 
can simplify the integral as follows. When A, a, P,  Z and W are given then 
w l = v l - Z ~ + A  and 

where Z '  is the ith row of Z, and 

m - k  

pr{w2> 0) = 11 @(A - wip). 
i = l  
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Integration over Z and W (using Proposition 1 )  yields 

(given A, a and p )  and 

The rest of the proof follows easily. 

We now develop a different expression for A. First, denote X O  = y and let ( X I ) =  

( i  = 1,. . . , k) denote the ith row of the matrix X. Also let 

and l k = ( l ,  . . . ,  Rk. 

S(y, x)  = 

Proposition 3.2 

Aa 
det R ~ ,  R = ( a a T +  lk)- le  R ~ ~ ~ ,  

- 1  

Proof 

The rest follows easily. We can now offer interpretations for different quantities 
(that arise later in our analysis) as follows. 

1. S(y, X). As is well known, this is equal to k!  times the regular volume in R~ 
of a simplex whose vertices are y = xO, XI, .  . . , x k .  

2. $(y, X ) .  This is defined by 

which is equal to the joint probability density function of the variates xO, XI, . . . , xk, 
assuming these vectors are drawn independently from the k-normal distribution, 
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with mean vector p and variance-covariance matrix R. Such an  assumption turns 
out to be convenient for our analysis later. We emphasize here that our probabilistic 
model remains unchanged. 

3. C A ( X ) .  This is defined by 

The integral reflects the probability that a Gaussian vector v* E R k  is representable 
as v* = xTp  + A  1, with p > 0 (when A and X are given). In other words, C A ( X )  is 
the Gaussian volume of a cone obtained as follows. Take the cone spanned by the 
rows of X and translate it so  that its vertex maps to the point Al,. 

4. h(A, a ) .  This is defined by 

which reflects the expectation of a product of two volumes. It is ( k !  times) the 
volume of the simplex (whose vertices are XO,  XI , .  . . , x k )  times the Gaussian 

volume of the cone spanned by the rows of X and then translated as explained 
above. The expectation is relative to a k-normal distribution N ( p ,  R )  from which 
x O ,  XI , .  . . , xk are sampled independently. 

For an asymptotic analysis of V, (m,  n, k ) ,  when n tends to infinity while m and 
k are fixed, we may look at  the following quantity: 

A n -k - l  1 

I ( @ ( - " - ; ) ) ' - * I  exp{-' ( k +  ldet  R1'ki"/2h(A, a )  d l  d a .  
4-G 2 1+1142  

Note that /det  R / '~+""  is ' inserted here in order to cancel ldet R ~ - ' " I ' / ~  in the 
definition of $(y,  X). 

Proposition 3.3 

Proof. This is immediate from Proposition 3.1. 

Proposition 3.4 

v;(n ,  k )  
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Proof. The proof goes by substituting A = 6 m  (into the definition of V:(n, k)) 
observing that 

ldet ~ l ( ~ ~ " / ~  = (det(affT+ I ~ ) ) - ( ~ + ' ) / ~  = (1 + 1 1  a 112)p(k+"/2. 

For simplicity of notation let 

and also let 

Thus, 

Our goal now will be to show that 

To that end, we first estimate H(6, a ) .  Recall that h(6, a )  was interpreted as an 
expectation of a product of two volumes: 

h(6, a )  = ~ [ S ( Y ,  X ) G ( X ) I  

where y as well as the rows of X are sampled independently from the k-normal 
distribution with mean vector 

and variance-covariance matrix 

R = ( a a T +  lk)-'. 

It can be verified that 

and, for i # j, 

Note that the matrix aaT+ Ik is positive-definite; its eigenvalues are: 1 with multi- 
plicity k - 1, corresponding to vectors orthogonal to a ,  and 1 + /I a / I 2  corresponding 
to the eigenvector a.) 
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Proposition 3.5. For any two random variates Y ,  and Y,.  

Z (  YI Y2)S  8( Yl)%(  Y 2 ) + 4  Y I ) d  Y2). 

where denotes expectation and u denotes standard deviation. 

Proof. This is a well-known fact, usually stated as that the correlation is less than 
or equal to I. 

Corollary 3.6. h ( A ,  a )  % [ S ( y ,  X ) ] % [ C , ( X ) ] +  u [ S ( y ,  X ) ] u [ C A ( X ) ]  

Proposition 3.7. There exist constants c = c ( k )  and d = d ( k )  such that 

Proof. Recalling that R  is positive-definite, let A E  R * ~ *  be a matrix such that 
A ~ A  = R-' (det A  > 0 )  and let 

Obviously, det A  = det A* = JI + IIa 1 1 ' .  Also let Z '  = A ( X r  - p )  ( i  = 0,  1 ,  . . . . , k) .  Let 

that is, S ( Z )  equals k!  times the volume of the simplex whose vertices are 
Z', Z ' ,  . . . , zk. The presence of a column of -1's implies that S ( Z )  = 

det A*S(y, X), so we have 

det 

idet R I  - ( k + l l l 2  k 
- - k l k + l , , 2  Jdet  A * J - ' S ( Z )  exp Idet A * ) ~ ' ~ + "  dZ. 
----- ( 2 ~ )  I 

- - 
-1 z0 

. 
z ' 
. ,  

- 1  zA - - 

Letting 

that is, c ( k )  is equal to k!  times the expected volume of a k-simplex whose vertices 
are sampled independently from the standard k-normal distribution, we have 

g [ S ( y ,  X ) ]  = c(k)ldet  A*Ip' = 
c ( k )  

J W '  
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We will later state a precise expression for c ( k ) .  The claim about u [ S ( y ,  X ) ]  can 
be proved analogously and a precise expression for d ( k )  will be derived. 

Proposition 3.8. The expected volume of a simplex whose vertices are sampled indepen- 
dently from the standard multi-normal distribution in R~ is equal to 

while its variance is equal to 

Proof. Consider the determinant S ( Z )  discussed in the proof of Proposition 3.7. 
We may interpret S ( Z )  also as the volume in Rk+' of a hyperparallelepiped 
generated by the columns of that matrix. The volume V ( v l , .  . . . , v " )  of a hyper- 
parallelepiped generated by a set of vectors v l , .  . . . , us E R', relative to the linear 
subspace that they span, can be described as follows. Consider first the case s = 1. 
Here the volume is obviously 1 1  v' 1 1 .  Inductively, consider the linear subspace spanned 
by v ' ,  . . . , v ' ~ '  and let vQe represented as v" vv'+ v" where v' is orthogonal to 
that subspace while v" lies in it. Thus, V ( u l ,  . . . , v " )  = 1 1  v'll V ( v l ,  . . . , us- ' ) .  When 
the vectors v ' ,  . . . , v s  E R' are drawn independently from the normal distribution, 
the same formula applies to expected volumes. Moreover, given v ' ,  . . . , us- ' ,  an 
equivalent way of sampling v' is to draw v' and v" independently from standard 
normal distributions over their respective subspaces. Thus, v' is generated by samp- 
ling 1 - s + 1 coordinates independently from standard normal distributions. In other 
words, the norm of v' is the square root of a X 2  variable with 1 - s + 1 degrees of 
freedom. It follows [23] that 

In our case, we start with a fixed vector of norm J k  + 1 and it follows by induction, 
that the expected volume that we get is 

- 

Our first claim now follows since r ( o . 5 )  = Jn. 
A similar analysis applies to the variance. Consider %'[(s(z))~] .  First note that 

%'llv'l12] is equal to 1 - s +  1. Since we start from a vector whose squared norm is 
equal to k + 1, it follows inductively that ~ [ S ( Z ) ) ~ ]  = ( k  + l ) k .  . . I  = ( k +  l ) ! .  This 
implies our second claim. 
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Corollary 3.9 

and 

Before proceeding to the estimation of C, ( X ) ,  we find it convenient to substitute 

We have 

and, for i # j, 

Thus, 

We now turn to estimating the other volume C,,(X). 
Let K = (1 , .  . . , k} and for every J c K define an  event Ev(J )  as follows. Recall 

that the vectors x', . . . , xk are sampled independently from the k-normal distribu- 
tion with mean vector 

and variance-covariance matrix R = ( a m  + I , ) - ' .  Now, Ev(J )  will be the event in 
which J is the set of all the coordinates j such that Xi 2 0 for all i ( i  = 0, 1, . . . , k). 
In particular, for each j & J there exists an  i such that X ;  < 0. Obviously, the events 
Ev(J )  ( J c  K )  constitute a partitiion of the sample-space. We now estimate the 
probability Pr(J)  of the event Ev(J) .  

Proposition 3.10 
h-IJI-I 

Pr ( J )  s (1 -2&) ( k  + 1)  @(-max{r,)). 
16J 
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Proof. First, observe that each XI is normal with mean 

and variance 

This can be verified once we know that 

for i # j. Thus, 

Now, for every i, the variables Xi an Xi  are n e g a t i v ~ . ~  d (provided j f I )  
since 

C O V ( X ~ ,  Xj) = R,, = -T,T, 

It thus follows that for any fixed i ( i  = 0 , 1 , .  . . , k )  and any set L G K, 

Pr{Vj E L)(A'i < 0) s @(-ST,). 
] E L  

In fact, since the random vectors x', X I , .  . . , ~ h r e  independent, it follows that 
for any set L of pairs ( i ,  j ) ,  

Similarly, for every j, 

P r { ( 3 i ) ( x ;  <: 0 ) )  s I - (1 - @ ( - 8 ~ , ) ) ~ + '  = 1 - ( @ ( 8 ~ ~ ) ) ~ + ' ,  

Corollary 3.11. For any nonempty set J, 
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whereas 

Proposition 3.12 

g[C,(X)] < ( k +  l )@(-6 max{r,))+O(@(-6)). 
l s j s k  

Proof. We first estimate the conditional expectation of CA(X),  given the event 
Ev(J). Now, given that Xj 3 0 for every j E J and i ( i  = 0,1 , .  . . , k), in order for a 
vector v to be representable as 

with p 3 0, it is necessary that 

for all j E J. If u is a Gaussian vector then the probability of the latter is 

Thus, 

Finally, 

Proposition 3.13 

Proof. The proof is essentially the same as that of Proposition 1.12: 
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This establishes our claim. 
Denote 

P = P,,, = @(-a max (7,)). 
I s l s k  

We have established that for some constant c, = c,(k) 

Proof. This is a direct consequence of what we have just proved. 
Let B: denote the intersection of the k-dimension1 unit ball, centered at the 

origin, with the non-negative orthant in R ~ ,  that is, 

Also, let v(k) denote the volume of B:. It follows (see [19]) that 

Furthermore, the k-dimensional area of the intersection of the surface of the unit 
ball with the nonnegative orthant is equal to kv(k). 

Proposition 3.15 

g ( 6 ) >  c,(k 

Proof. Recall that 

Moreover, the integral 

converges. The rest follows easily. 
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Proposition 3.16. There exists a constant C = C ( k )  such that 

Proof. For r 3 0, we have 

It follows that 

Since the latter depends only on the norm of T, it now becomes convenient to switch 
to polar coordinates. Let t = 11 711. Integration over all the angular coordinates yields 
a constant factor c2(k) which equals times the volume of the unit ball in R~ 
(or, equivalently, 112~  of the surface area of that ball). More precisely, 

Thus, 

Next, we estimate the latter by integrating separately over the intervals [0, E ]  and 
[s, 11, where O <  E < 1. Thus, we note that the integral 

We note that the integral 

converges, since @ ( - y / f i )  is asymptotically equal to &cp(y/&)/y, as y tends to 
infinity. We will later give an  upper bound for this integral as a function of k. The 
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second integral is of a lower order of magnitude, in view of the following: 

It follows that 

where 

Remark. The constant c,(k) grows quite rapidly with k. Obviously, 

c,(k) = kk" lom m x k - I  dx. 

The integral grows like 2k(k/2)! On the other hand, it does not seem that a sharper 
estimate of Pr(J) (see Proposition 9) can yield a better bound. More specifically, 
we can use the initial estimate 

This leads to 

We now integrate separately over 1 1  711 s E and 1 1  711 2 E ,  the former being the dominant 
term. Thus, 
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and the equivalent of c , ( k )  becomes 

Even the latter grows super-exponentially with k. 
We are now ready to show that for every fixed k, the sequence nk" V,(m, n, k )  

( n  = 1 , 2 , .  . . ) is bounded. 

Theorem 3.17. For everyfixed m and k there exists afinite number Vr(m, k )  such that 

nk+'Vl(m, n, k ) ~  V;'(m, k).  

Proof. In view of our last proposition we need to consider the following integral: 

Note that, for any finite D and any fixed k, 

This is true because the integrand tends exponentially to zero. Thus, it suffices to 
consider the following integral: 

On the other hand, by Mill's ratio, 

More precisely, the following estimates can be obtained by integrating p ( t )  (from 
6 to infinity) by parts, using the identity p ( t )  = ( tp ( t ) ) ( l / t ) ,  and then repeating 
with p ( t ) ( l / t 2 )  as the new integrand. Thus, for 6 > 0, 

Also, for 8 2  D >  1, 
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We have argued that D can be chosen arbitrarily large without affecting the 
asymptotic behavior of the integral as n  tends to infinity, With increasing values of 
D we get decreasing upper bounds on limsup I (n ,  k ) .  The limit of these upper 
bounds shows that limsup I (n ,  k )  is not greater than 

roo 

This suffices for proving that our sequence is bounded. 
We finally turn to bounding the asymptotic contribution of V l ( m ,  n, k )  to p(m,  n )  

when n  tends to infinity, while m  and k  are fixed. Let us denote it by 

It can be verified that the constants we have encountered during our analysis were 
the following: (27r-'k+1''2 (this one cancels out in the final integral), c , ( k ) ,  c 2 ( k ) ,  
c , ( k )  and the estimate of the final integral was 

It follows that the product of all coefficients yields 

The product of c , ( k ) c , ( k ) c , ( k )  grows super-exponentially with k. On the other 
hand, in order for a sum of the form 

to be polynomial in m, it is necessary for the sequence C ( k )  to tend to zero 
super-exponentially. Thus, we are at this point quite far from proving that p(m,  n )  
tends to a polynomial function of m  as n  tends to infinity. 

4. An estimation of V,(m, n, k)  

The estimation of V,(m, n, k )  goes like that of V, (m,  n, k) ,  whereas V,(m, n, k )  and 
V,(m, n, k )  are somewhat different. Our proofs in the present section are rather 
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concise. For more detail refer to the preceding section. First, we recall that 

where M ,  E R ~ ~ ~ ~ ~ ,  X E ~ ~ ~ ( ~ = l '  and y E Rk.  Denote 

where A E R:, a E R:-', p E R:. We know that 

A A m - k  

J1 + I IP 1 1 2  
where the integration is over A, a,  p 3 0 and all X E R ~ * ( ~ - ' )  and y E R k.  Denoting 
the ith row of X by ( x ' ) ~ ,  the exponential factor simplifies as follows. 

Denote 

Obviously, S ( X )  equals ( k -  l ) !  times the (regular) volume of a simplex whose 
vertices are the rows of X. Also, denote by X* a (k  x k)-matrix whose last row is 
yT and the rest of whose rows are those of -xT. NOW let 

It can be seen that C,,(y, X )  is the (Gaussian) volume of a cone defined as follows. 
For each i, i = 1, .  . . , k, append to the ith row of X a kth coordinate, - y ,  and 
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denote the resulting vector by Y'. Now translate the cone spanned by the vectors 
Y',  . . . , y k ,  SO that its vertex maps to the point A l , .  Next, denote 

where R = ( a a T +  I k  E R ( ~ - ' ) ~ ( ~ - ' )  . Thus, we may interpret $ ( y ,  X )  as the joint 
probability density function of vectors Y' ,  . . . , yk. Assuming these vectors are 
drawn, independently, from a k-normal distribution with mean vector p (p, = Srj 
for j = 1, .  . . , k - 1 and pk = 1) and variance-covariance matrix 

Now, define 

which reflects the expectation of a product of two volumes. Next. define 

A n - k  

VXn,  k) = 1 (4  ( -)) Ad(A, a ,  P, X, y)  
J1+ 11a1l2 

- 
A 1 kh2 

-L I ( @  ( exp{-- ---I Idet Rlk"h(A, a )  d l  da .  
( 2 ~ 1 ~ 1 ~  J l  + lla l l  2 1+11a1I2 

We now substitute 
-- 

A = S J I + I I ~ ~ ~ ~  and a = ~ J l + l l a 1 1 ~  ( r g R k - ' ) .  

This yields 

where 
- - 

H(S, T) = h(SJ1  +Ia1I2, T J ~ +  IlaJ12) = h(A, a ) .  

We now define 

and our goal is to show that 
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We rely on the inequality 

h ( A ,  a ) <  '-[s(X)I'-[CA(y, X)I + ~ S ( X ) I ~ C A ( Y ,  X ) I .  

First, by Propositions 3.7 and 3.8, we know that 

and 

Secondly, we estimate E[CA(y, X)] and u[CA(y, X ) ]  along the lines suggested in 
the preceding section. We define EV(J )  to be the event in which J G  K is the set 
of all the coordinates j in which each of the vectors Y', . . . , yk has a non-negative 
component. We note that 

Pr(Yf<O)=@(-67,) ( j = l ,  . . . ,  k-1)  and P~(Y:<O)=; .  

It is convenient to define T~ = O and then the estimates from the preceeding section 
follow through with the k vectors Y',  . . . , yk replacing the k +  1 vectors 
x', x', . . . , xk. In particular, for a nonempty J, 

whereas 

Pr(C3) S kO(-6 max{r,)). 
' S j S k  

It follows that 

g[CA(y, X ) ]  <: k@(-6 max{~,) )  t o ( @ ( - 6 ) )  
l ~ i S k  

and 

a[CA(y,  X ) ]  <:Jk@(-6 max{r,)) SO(@(-8)) .  
l S , S k  

Thus, 

We now get 
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from which it follows that 

The rest is essentially the same as in the analysis of V,(m, n, k). 

Theorem 4.1. For everyjixed m and k there exists ajinite number V l ( m ,  k) such that 

nkv3 (m ,  n, k) s V!(m,  k). 

Proof. Since g ( 6 )  = 0 ( 1 / 6 ~ ~ ' ) ,  the present theorem follows from Theorem 3.17 with 
k - 1 replacing k. We note that the bound has the same order of magnitude as that 
of Theorem 3.17. 

5. The estimation of V,(m, n, k)  and V,(m, n, k)  

The analysis in this section is similar to those of the previous cases, even though 
an unexpected complication (with a surprising result) does arise, as we shall see 
later. We start with V,(m, n, k). Consider the matrix 

where M: E R ~ ~ ~ ~ ~ ,  x ~ ( k - l ) x k  and y E R k.  Denote 

where A E R:, a E R:, p E R:-'.  We know that 

where the integration is over A, a, p 3 0  and all X E R ( ~ - ~ ) ~ ~  and y E R k. Denote 
the ith row of X by ( x ' ) ~  and, for the convenience of notation, let xk  = y. NOW, 
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the exponential factor simplifies as follows, 

Denote by S(y ,  X )  the absolute value of the determinant of a matrix whose columns 
are X ' ,  . . . , X k - '  , X k  = y. If the vectors X ' ,  . . . , X k  are drawn independently from 
a k-normal distribution with mean vector p and variance-covariance matrix R = 

(aaT+ Ik)-I ,  then it can be shown (as we did in Section 3) that 

and 

As in the previous sections, 

Next, let 

which is equal to the joint probability density function of the variates x ' ,  . . . , X' 
assuming these vectors are drawn independently from a k-normal distribution with 
mean vector p and variance-covariance matrix R. 

Now, let 

and define 

Here we cannot interpret C , ( X )  as simply as we did in the previous sections, but 
we can successfully bound it as follows. First, let xJ denote the j th column of X  
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for j = 1, .  . . , k. Now, denote by Q,(X) a matrix of order ( k  - 1)  x ( k  - 1) whose 
rows are ( x ' ) ~ ,  . . . , (d- l )T,  . . , ( x ~ ) ~ .  Obviously, 

Moreover, 

It follows that 

We can now apply our estimates from Section 3 to the integrals 

After the usual substitution 

we obtain 

~ [ c ( ( x ) ]  s k@(-6 max {T~}) +0 (@( -8 ) )  
I s i s k  

and 

u[c!(x)]<:J~@(-~ max{~~})+O(@(-6) ) .  
I s i s k  

Finally, for C A(X)  we get 

%'[C,(X)] s k2@(-6 max{.r,}) +O(@(-6)) 
l s j s k  

and 

u[C,(X)] <: kJk@(-6 lS,=k max{q}) +O(@(-6)).  

Returning to the main proof, let 
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which, as before, reflects the expectation of a product of two volumes. Next, define 

We know that 

where 
- 

H ( 6 ,  T) = h ( 6 J 1 +  lla112, rJ1 + l l ( ~ / / ~ )  = h ( h ,  a ) .  

We now define 

and for our purposes it would be sufficient to show that 

However, it is easy to see that our previous bounds now lead to 

Recall that, 

Now, consider the integral: 

In analogy to the previous sections, for every D S  1 and k, 

lim I (n ,  k )  = lirn n k  ( @ ( S ) ) " - ~  e-(1/2)ks2 
n-U- n-0: 

It follows that 

cn 

lim I (n ,  k )  = lim(2n)*/'nk [ (@(6)) ' -*(l-  @(S))"'(f) 4 ( 6 )  66. 
n - c c  n - c ~ .  

r) 
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The presence of 116 in this formula implies that I (n ,  k)  tends to zero as n tends 
to infinity. Thus, we have the following theorem. 

Theorem 5.1. For every $xed m and  k, 

lim nkv4(m, n, k )  = 0. 
n'm 

The analysis of V,(m, n, k)  is similar. Consider the matrix 

where A E R:, a E R: ,  p E R:. We know that 

where the integration is over A, a ,  P 3 0 and all X E R~~~ and y €'Rk. Denote the 
ith row of X by ( x ' ) ~ .  The exponential factor simplifies as follows. 

IIMZ(a, A, PIT1l2+ IIX1l2+ I I Y I I ~  
= I I - A I ~ + x ~ ~ / ~ + ( - A  +yTp) '+ ( I - A I ~ - x ~ P ) ~ ~ +  IIx1I2+ I ~ Y / / ~  

= ; [(xi - + ) T ( a a ~ +  I ) ( x i  -- ( k +  l )A2 
, = I  1 + l l  a l l  

Denote by S ( X )  the absolute value of the determinant of X. We know that 



N. Megiddo / Average analysis of the self-dual algorithm 

and 

As in the previous sections, 

Next, let 

which is equal to the joint probability density function of the variates X I , .  . . , xk  
and y  assuming the X"s are drawn independently from a k-normal distribution 
with mean vector p and variance-covariance matrix R = (acyT+ I ~ ) - I  and y  is drawn 
(independently) from the standard k-normal distribution. We next define a matrix 
Q ( y ,  X )  as in the case of V4(m, n, k ) .  As a matter of fact, the details of the analysis 
from this point and on have already appeared in one of the previous cases. It follows 
that as in the case of V4(m, n, k ) ,  the contribution of this type of matrices to the 
expected number of steps, tends to zero when n  tends to infinity while m is fixed, 
that is 

Theorem 5.2. For euery jxed  m and k, 

lim n  'v2(m, n, k )  = 0. 
n-rco 

6. Conclusion 

We have established in this paper that p(m, n )  is bounded from above by a 
function of m. Recall that p(m, n )  reflects the average number of steps and not the 
actual running time. The time it takes to perform a single step is in the worst-case 
proportional to n. Thus, the average running time does increase with n  but is, 
asymptotically, linear in n. This may not be a surprise, in view of the existence of 
(worst-case) linear time algorithms for every fixed m, as shown by the author 
elsewhere [16]. 

It may be argued that the result of this paper is due  to the fact that, under Smale's 
model, as n  tends to infinity (with m fixed) the problem is unbounded with 
probability tending to one. The latter is of course true but does not explain the fact 
that the average number of steps of the self-dual algorithm tends to a finite limit. 
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To understand this claim, consider the following linear programming problem: 

Maximize cTx 

subject to Ax b, 

(where x, c E Rn,  A E R m X n  and b E R m ) .  Let us work (for example) with a weaker 
probabilistic model in which the coefficients are drawn independently from any 
distributions, provided each is positive or negative with equal probabilities. Consider 
a fixed column j (1  s j s n). If s, > 0 and a, < 0 for i = 1, . . . , m, then the problem 
is both feasible and unbounded, since for any set of values for the other variables, 
we can select a sufficiently large value of x, that will satisfy all the constraints and 
will let us increase the objective-function value indefinitely, even when the rest of 
the variables are fixed. In such a case we say that j is a good column. Under our 
model, the probability that the j th  column will be good is equal to 2-'"+". Thus, 
an  efficient algorithm can be designed as we argue below. 

The algorithm first scans the columns, one after the other, to check whether any 
of them has the sign pattern that creates unboundedness, in which case it stops 
(declaring the problem feasible and unbounded, and presenting the discovered good 
column as evidence). If none of the columns is good, then the algorithm proceeds 
like a variant of the simplex algorithm. Now, the probability that a good column 
exists is equal to 

which tends to one whenever n tends to infinity while m is fixed. Moreover, the 
expected number of columns we need to check before we discover a good one (or 
recognize that none is good) is less than 2"+', independently of n. Thus, for n 
sufficiently large, the algorithm will, very probably, discover a good column within 
a number of steps of order 2"+'. However, this does not say much about the expected 
number of steps. Notice that the expected number of steps depends on what happens 
in the rare event in which none of the columns is good. However, any non-cycling 
simplex algorithm cannot perform more than (":") steps. It follows that the contribu- 
tion of this number to the average is smaller than 

which tends to zero when n tends to infinity while m is fixed. Thus, such an  analysis 
predicts an  excellent asymptotic expected performance under the present model. 
O n  the other hand it pertains to a different algorithm and does not explain the 
particular behavior of the self-dual method. 

At this point we can argue that the computational experience in linear program- 
ming to date may not have shown us the theoretical expected number of steps, but 
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rather the performance in the vast majority of the cases. It may well be that the 
expected number of steps is exponential as a function of two variables (see [I71 
for an  interesting related analysis). The observed phenomenon that the number of 
steps is usually less than 3m ([12]) does not necessitate that the limit of p(m, n),  
when n tends to infinity, is a linear function of m. It may well be exponential in m. 

Another aspect of this argument is that it may be the conditional expected number 
of steps, given that the problem is bounded, grows to infinity with n, even when m 
is fixed. We note that the growth, in terms of n when m is fixed, is polynomial since 
it is bounded by (":"). On the other hand, it follows from our analysis in this paper 
that the conditional number, pC(m,  n),  satisfies 

where C ( m )  is such that p(m, n ) ~  C ( m ) .  So all we can say at this point is that 
pC(m, n) is also bounded by an exponential in terms of n (when m ix fixed), where 
the base of the exponent approaches 1 rapidly with m. 

Finally, since the first version of this paper was written, lexicographic variants 
of the self-dual method have been noticed to perform on the average no more than 
0 ( m 2 )  pivot steps for any n 13, 4, 5, 6, 221. Adler and Megiddo [S ]  even proved a 
quadratic lower bound under certain conditions. However, it is still not known 
whether the starting point e yields a polynomial expected number of steps. 
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