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PATH INDEPENDENT CHOICES 

BY EHUD KALAI AND NIMROD MEGIDDO 

1. INTRODUCTION AND DISCUSSION OF DEFINITIONS AND RESULTS 

IN THIS PAPER we examine situations in which an individual or society has to choose one 
element out of a given finite set of elements. For example, given a list of candidates for 
presidency, the society has to choose a president. Another example: given a set of 
commodity bundles in the budget set, a consumer has to choose one bundle. 

Very frequently, a consumer may find two bundles which he likes equally, and in order to 
choose one out of the two he needs a random device that will make the decision for him. 
Similarly, a society may find itself in situations in which there are several candidates with 
identical amounts of support. Under such conditions, choosing one of the candidates would 
have to rely on some randomization. Thus, we shall be dealing with situations in which a 
decision maker (either an individual or a society) has to choose a lottery (i.e., a probability 
distribution or any convex combination) over a finite set, when that set is given to him to 
choose from. 

As a matter of fact, the set of alternatives, from which the decision maker has to choose, 
may itself involve probability distributions. Consider the following example. A committee 
has to decide where some convention will take place. Two cities have been suggested to 
host the convention. One of the cities has a 50 per cent probability for rain on the 
convention day, so that all outdoors activities would have to be cancelled if that city is 
chosen and it rains. Thus, the committee has to make a decision without really knowing 
what the actual outcome will be. 

In view of the above discussion, we would like to incorporate lotteries both in the given 
alternatives, and in the choices based on them. Thus, we formalize choices in the following 
way. Let our universe of alternatives X be a subset of some topological real linear space (for 
example, a Euclidean space). The structure of a real linear space enables us to interpret a 
point x, in the convex hull of a set S, as a lottery over the elements of S. Let X *  denote the 
set of all finite nonempty subsets of X. 

CHOICE FUNCTIONS: A mapping c : X* -;, X is called a choice function, if for every 
S E X*, c(S) E convex hull (S). 

Thus, a choice function is a rule, that selects for every finite nonempty subset S of the 
universe of alternatives, a unique lottery c(S) over the elements of S. This lottery may of 
course be equivalent to one of the elements of S, if that element has probability one in the 
lottery. 

PATH INDEPENDENCE: A choice function C : X* + X is said to be path independent if 
for every S E X * ,  the elements of S may be considered in any order p = ( x l , .  . . , x,) and the 
pairwise choices y, = ~({y , ,~ ,  x,})(i = 2,3 ,  . . . , s ;  y1 = xl) always lead to y ,  = c(S). 
Equivalently, c is path independent if for all S, T E X*, such that S fl T = 0, 

c (S U T) = c ({c (S), c (-T)}). 

Path independent choice functions are easier to implement since they are determined by 
the choices over pairs of alternatives. Thus, the decision maker does not have to consider 
the entire set of alternatives all at once, and may rather confine himself to pairwise 
comparisons. Another benefit of path independent choice functions is that they eliminate 
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the possibility that a chairman may manipulate the resolution made by some legislative 
body, merely by putting the different motions to vote in a suitable order. 

It should be mentioned here that the notion of path independence has been extensively 
studied by Plott [I] (see also [2] for further references and discussion). However, Plott's 
definition differs from ours in the following way. The choice function in Plott's definition is 
a rule that assigns to every set S of alternatives, a subset ( C ( S )  of S. No lotteries are 
allowed. In that setup, path independence is defined by C ( S  U T )  = C ( C ( S )  U C ( T ) )  for all 
S, T. Thus, Plott's definition is somewhat more restrictive than ours, since not only disjoint 
sets, but also overlapping ones have to satisfy the condition. 

The goal of this paper is to demonstrate that the path independence condition is very 
restrictive. The main theorem is as follows. 

THEOREM 1 : If c : X *  + X i s  a path independent choice function, then for every S E X* 
there exist x, y E S (not necessarily distinct) such that c ( S )  = c({x, y}). 

Notice that no additional conditions are assumed in this theorem. A consequence of 
Theorem 1 is displayed in the following example. 

Consider a situation where a society has to choose one out of a set of m candidates. We 
define the universe of alternatives to be X = {x  = ( x l ,  . . . , x,): Z xi = 1, xi 2 0). The points 
of X naturally correspond to probability distributions over the' set of candidates, and 
particularly, the extreme points of X correspond to the "sure" lotteries, where a certain 
candidate is chosen with probability one. Theorem 1 implies that for every finite subset S 
of X, the choice over S is a lottery in which at most two elements of S participate with 
positive probability. In particular, the choice over the entire set of candidates is a lottery 
over two candidates at most. Thus, even if there are three or more candidates that are 
symmetric with respect to the social profile of preferences, still the choice (if it satisfies path 
independence) has to be some lottery in which no more than two candidates participate. 
That does not seem to be a reasonable way of breaking such ties, since it involves an 
arbitrary discrimination against some of the candidates. 

We will also prove that path independence does not comply with continuity, even in the 
weak sense defined below. A choice function is said to be continuous if for every x, y E X  
and every sequence {y,};P=, c X, if lim yk = y then lim c({x, yk}) = c({x, Y } ) .  

k-m k-m 

THEOREM 2:' If X contains the convex hull of three non-colinear points, then a choice 
function over X cannot be both path independent and continuous. 

2. AUXILIARY LEMMAS AND PROOFS 

We denote in short xy for c({x, y}), for every x, y E X .  Thus, xy = yx and xx = x. 

LEMMA 1 : If for every set {x,  y, z )  c X o f  three pairwise distinct elements ( xy ) z  = x (y z ) ,  
then for every x, y E X ,  either x (xy ) = xy or x (xy ) = x. 

PROOF: Suppose, to the contrary, that there are x, y E X  such that both x (xy )  # xy and 
x(xy)  # x. This implies x # y. Also, since xy = x 3 x (xy )  = xx = x, it follows that xy # x, 
and since xy = y j x ( x y )  = xy, it follows that xy # y. 
Denote z = xy, w = XZ,  and t = zy. Thus, x, y, z are pairwise distinct and x, w, z are 
pairwise distinct. It follows that 

(1 )  xt = x ( z y )  = x ( y z )  = ( x y ) z  = zz = z ,  and 

We wish to thank Hugo Sonnenschein for suggesting the investigation of the relationship between 
path independence and continuity. 
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Note that since z is the open line segment (x, y) and w is in (x, z), then w # y. 
Analogously, z E (x, y) and t E [z, y] imply t # x. Also, w E (x, z )  and t E [z, y] imply t # w. 
Some more equalities follow: 

Equalities (4) and (6) are contradicting and that completes the proof of this lemma. 

REMARK: Surprisingly, the conditions of Lemma 1 do not imply x(xy) =xy as may 
have seemed natural to expect. This is shown by the following example. Let X = [0, 11. 
Define c ((0, 1)) = .5, c ((0, S))  = 0, c ({S , 1)) = 1. Also, for every A E [O, 1]\{0, .5,1) define 
OA = 1 A  = .5A = A  and for p E [O, 1]\{0, .5,1) define Aw = max{A, p). All the conditions of 
Lemma 1 are met, however, O(01) = 0 # 01. 

LEMMA 2: I f  (xy)z = x(yz) for every set {x, y, z} c X o f  three pairwise distinct elements, 
then for all x, y, z EX, (xy)z E {xy, XZ, yz}. 

PROOF: In view of the condition assumed in the lemma, we may use the symbol xyz 
whenever x, y, z are pairwise distinct. The assertion of the lemma is obvious if x, y, z, are 
not pairwise distinct. Assume, to the contrary, that x, y, z are pairwise distinct and 
xyz&{xy, xz, yz). It follows that {x, y, z)n{xy, xz, yz) = 0. (If, for example, xy = x then 
xyz = xz, and if xy = z then (xyz) = (xy)(xy) = xy, and in both cahes our assumptions are 
contradicted.) 

Note that (xy)(xz) = (xy)(zx) = (xyz)x = x(xyz), and by Lemma 1 (with yz here playing 
the role of y in the lemma) either (xy) (xz) = xyz or (xy) (xz) = x. We now distinguish two 
cases. 

Case I :  x, y, z are colinear. We may assume, without loss of generality, that y belongs to 
the open line segment (x, z )  and xyz belongs to the closed line segment [x, y] (otherwise, 
the names x, y, z may be changed so as to conform with these assumptions). 

Since xyz E (xy, Z )  it follows that xy E (x, xyz). Analogously, since xyz E (xz, y] it follows 
that xz E (x, xyz). Thus, (xy)(xz) E [xy, xz] c (x, xyz). In other words, (xy)(xz) # x and 
(xy)(xz) # xyz and that contradicts what we have found before. 

Case 11: x, y, z are affinely independent. In this case x, yz, xz are affinely independent 
and hence (xy)(xz) # x. Also, since xyz E (xy, z], and since xy, xz, z are affinely indepen- 
dent, it follows that (xy)(xz) # xyz. Again, we arrive at a contradiction. 

T H E  PROOF OF THEOREM 1: The proof is by induction on I S \ .  The assertion is trivial 
for IS1 G 2. If S = {x, y, z} and IS1 = 3 then the conditions of Lemma 2 are met: 

( x Y ) ~  = c(Ic{x, YI, z)) = c({x, y, 2)) 

= c({x, c({Y, ~ 1 ) ) )  = X(YZ) 

and hence 

4 s )  = xyz E {XY, XZ, YZ) = {c(Ix, Y)), ~ I x ,  zI), ~ I Y ,  zHI. 

Suppose, by induction, that the claim is true for sets of cardinality not greater than n. Let 
S={x,, . . . ,x,+,}. By the induction hypothesis, there are i, j (1 ~ i ,  j s n )  such that 
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c({xi, . . . , x,)) = c({xi, xi)). Thus, 

c ( S )  = c({c({x,, . . . , x,)), x,+d) 

and by what we have already proved, 

This completes the proof. 

THE PROOF OF THEOREM 2: Assume that c : X* + X  is path independent and we will 
prove that c is not continuous. 

Without loss of generality, assume that X  = convex-hull {x,  y, z }  where x, y, z are affinely 
independent. We distinguish two cases. 

Case I :  There exist a, b E X  such that abg {a,  b). First, note that for every d E X  which is 
not colinear with a and b, ad € { a ,  d ) ;  this is because (ab)d = (ad)b  and in order for 
c({a, b, d ) )  to belong to [a,  b ]  U [a,  d l  U [b, d l  (Theorem 1 )  and to Cab, d l  fl [ad, b ] ,  ad must 
be a vertex of the triangle a, b, d. Now let {dk)p=l be a sequence of points that are not 
co-linear with a and b, and such that limk,, dk = b. Obviously, if limk+co ~ ( { a ,  dk)) exists, 
then it must equal either a or b, and hence cannot equal ab. That contradicts continuity. 

Case I I :  For all a, b E X ,  ab E {a,  b). In this case a complete linear order R is induced on 
X  by aRb e a b  = a. [Anti-symmetry: aRb & bRa 3 a b  = a & ba = b 3 a = b. 
Transitivity: aRb & bRd j a b  = a & bd = b +ad = (ab)d = a(bd )  = ab = a +aRd].  
Without loss of generality, assume xRyRz. Suppose, per absurdum, that c, is continuous. 
Let A = {w  E X  : W R Y ,  w # y)  and B = {w E X  : yRw, w Z y). It is easy to verify that A and 
B are both open relative to X and nonempty. Obviously, A fl B = 0 and A U B = X\{y}. 
That implies that X\{y) is not connected, and hence, a contradiction. Thus, c cannot be 
continuous. 
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