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KERNELS OF COMPOUND GAMES WITH SIMPLE 
COMPONENTS 

The kernel is a solution concept for a cooperative game. 
It reflects symmetry properties of the characteristic function 
and desirability relations over the set of the players. Given 
m games over disjoint sets of players and an m-person game,- 
one defines a compound game over the union of the m disjoint 
sets. These m games are the components and the above rn- 
person game is called the quotient. The quotient may be 
treated as a game played by representatives of the component 
games. 

The kernel of the compound game is characterized fully. 
The compound kernel is, in fact, a composition of the com- 
ponents' kernels by means of a distinguished subset of the 
imputation space of the quotient game. This subset depends 
also on the number of veto players in each component. 

An effective formula for the compound kernel is given for 
compound simple games. This formula enables short cuts in 
the computations leading to the kernel of a decomposable 
game. The results are applied to compound majority games 
and a complete description of their kernels is given. 

1. Introduction. The kernel of a characteristic function game 
was defined by M. Davis and M. Maschler in [2] and i t  is related to 
the theory of bargaining sets. M. Maschler and B. Peleg ([4, 51) 
presented many interesting properties of the kernel. The kernel reflects 
strength relations between players and symmetry properties of the 
characteristic function. 

Compound simple games were defined by L. S. Shapley in [ll]. 
In  this paper we deal with compound games which are not necessarily 
simple, but their components are simple (see [13; p. 291). The decom- 
posability of games was investigated by Shapley in [IS] and by the 
present author in [ 7 ] .  

This paper aims a t  describing the kernel of a compound game in 
terms of the quotient game and the kernels of the components. In 
fact, we introduce a subset of the imputations space of the quotient 
game which determines the structure of the kernel of the compound 
game. The kernels of the components are composed according to a 
formula which depends on that subset and generate the compound 
kernel. The formula is shown to be effective for computation and i t  
can be simplified when the quotient game is also simple. 

L. S. Shapley ( [U,  13, 141) and G .  Owen ([9]) proved that von- 
Neumann-Morgenstern solutions of the component games compose in 
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a natural manner which results in a solution of the compound game. 
B. Peleg gave a characterization of the kernel of another kind of 
composition for games ( [ l o ] ) .  The nucleolus of a compound game was 
characterized in [8].  The kernel of a product of simple games was 
characterized in [6 ] .  This paper generalizes the results of [6] with 
respect to the kernel. 

2. Preliminaries. A characteristic function game is a pair r = 
(N;  v), where N is a nonempty finite set ( N  = {I, . . ., n))  and v is a 
real-valued function defined over the subsets of N. The elements of 
N are the players and the subsets of N are the coalitions. 

If for every coalition S either v(S) = 0 or v(S) = 1 then we call 
the game a simple game. Those coalitions that have a unit value are 
called winning coalitions. The set of the winning coalitions is denoted 
by W and the game is represented also by (N, W).  We always 
assume 0 4: 7 and NE % 

A game is said to be monotonic if for every pair of coalitions S, T. 

A 1-normalized game is a game (N;  v) such that 

A 1-0-normalized game is a 1-normalized game (N;  v) such that 

We assume that always 

A player i E N is called dummy if for every coalition S 

Notice that if i is a dummy then according to (2.4) 

A player i in a simple game ,? = (N;  W )  is called veto player if i E S 
for every S E 2Z 

A compound game is defined as follows. Let r% = (Ni; 7Ki), 
i = 1, .- ., m, be m simple games over disjoint sets of players. Let 
T o  = (M;  u) be an m-player characteristic function game (M = (1, . . , 
m}). The compound game r = r,[rl, . . ., rm] is defined over the set 
N = Nl U . . U Nm and its characteristic function v is defined by 
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r, is the quotient and TI, . . ., r, are the components. Thus, a coa- 

lition in the compound game has the value (in the quotient) of the 
set of those components in which i t  has enough players to form a 
winning coalition (in that game). The concept of a compound game 
contains as particular cases the product and the sum of simple games. 
The product of two simple games r , ,  rz is defined by 

and their sum is defined by 

(2.9) rl e r2 = B; [ r l ,  r21 
where B, and B; are defined by 

An imputation in an n-player game r = (N;  v) in an n-tuple of 
real numbers x = (x,, . . . , x,) such that 

and 

The set of the imputations is denoted by Z ( r ) .  A pseudo-imputation 
is an n-tuple of nonnegative numbers x = (x,, . ., x,) that satisfies 
(2.13). A weak imputation is defined by (2.12) and 

The set of the weak imputations will be denoted by g ( r ) .  For every 
coalition S we denote 

and call e(S, x) the excess of S with respect to x. The maximum 
surplus of a player i against another player j with respect to x is 
defined by 

(2.17) sij(x) = Max {e(S, x): S c N, i E S, j 4: S )  . 
The kernel (for the grand coalition) of a game r = (N;  v) is defined 

to be the set Z(r)  of all the imputations x E Z(r) such that for 
every pair of distinct players i, j E N, xj > v({j}) implies 
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Equivalently, x belongs to the kernel of the game if and only if for 
every pair of distinct players i, j 

The kernel is nonempty whenever E(r) is nonempty (see [2]) and for 
monotonic games in 1-0-normalization (2.19) may be changed to 

(see [5; Corollary 3.91). The pseudo-kernel1 of a game is the set of all 
the pseudo-imputations x such that for every pair of distinct players 

Let a transformation T from ET into ET be defined by 

Tx = Ax + b 
(c, x) + 6 

where A is a linear transformation of E' into itself, b and c are 
r-dimensional vectors and 6 is a real number. We assume that if c 
is the zero vector then 6 # 0. Any transformation of this type will 
be called a projective transformation of ET. Note that it is not defined 
for x in N(T) = {y: (c, y) + 6 = 0); this set may be empty though. 
Convexity is preserved by projective transformations, i.e., if T i s  a 
projective transformation of ET and if P c ET is such that T is defined 
for every x i n  conv P then 

(2.23) T(conv P) = conv T(P) . 
An s-variable transformation T from Xi=, El (El  = ET,  i = 1, . . -, S) 
into ET is called a multi-projective transformation if for every i, i = 1, 
. . . , S, and fixed x', . . ., %<-I , xi-' , . . , xs in Er the transformation 
Ti: E' 4 ET defined by 

is a projective transformation of E'. If Pi c E:, i = 1, . . ., s, are sets 
such that the multi-projective transformation T is  defined for every 
(xl, . ., x8) E conv PI x . . x conv P, then 

(2.25) T(conv PI x . . x conv P,) = conv T(P, x . . x P,). 

3. Basic lemmas. We assume that for every player i E N in (N;  v) 

(3 -1) v({i}) = 0 . 
A11 the statements in this paper hold for the pseudo-kernel of a game which is not 

necessarily 1-0-normalized. We do not use explicitly the normalization assumption. The 
reader is referred to [5; p. 5731 for a clearification of this point. 
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Notice that if i e Nk is a player who do not satisfy (3.1) in the com- 
pound game then {i} € Tk  and therefore either the kernel of rk is 
empty, or it consists of a unique point where i gets a unit payoff 
and the other players in rk get zero. Our  compound games are 
assumed to be monotonic and dummy-free. We also assume that for 
every component game rk = (Nk;  T k ) ,  k = 1, . ., m, Nk e Tk  and 
0 4 Tk. It is left to the reader to verify that our assumptions imply 
that the component games are also monotonic and dummy-free.  

LEMMA 3.1. Let  7C be the kernel of a simple game r = (N ;  W) .  
Denote 

(3.2) p(x)  = min { x ( S ) :  S e V )  ( x  e Z(I')) . 
There exist convex polyhedra K,, . ., KT such that  X = UL, Ki and 
such that  p(x)  i s  l inear in each Ki, i = 1, . . a ,  r. 

Proof. x ( r )  is a finite union of convex polyhedra (see [I; Q 31). 
The required polyhedra are the nonempty intersections of the form 
Pi n H, where 

(3.3) Hs = { x  e En: x ( S )  2 x ( T )  for every T E W }  ( S  E. gr) 

and Pi are the polyhedra assured by 111. 
For every player i and x e 2(r )  let us denote 

(3.4) gi(x) = Max {e(S, x): i E S c N }  

(3.5) hi(x) = Max {e(S, x): i 4 S c N }  . 
LEMMA 3.2. Let  I' = (N; v) be a monotonic game sat is fying (3.1). 

I f  x e Z ( r )  then  for  every i e N 

(and therefore gi(x) = s(x)  = Max {e(S, x): S C N )  - see (3.4)-(3.5)). 

Proof. Since for every pair of distinct players i, j s J x )  = sji(x) 
( x  E X(r)), i t  follows that 

gi(x) = Max {e(S, x): i E S c N }  
= Max [Max {e(S, x): i E S 5 N},  0] 
= Max [Max {sii(x): j E N, j # i), 0] 
= Max [Max {sji(x): j e N, j f i), 01 
= Max [Max e(S, x): i 4 S, 0 f S c N) ,  0] 
= Max {e(S, x): i g S c N }  

= hi(x) . 
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If i, j are two distinct players in (N;  v )  we denote 

(3-8) Z j  = { S C N ~ E S ,  j @ S )  

and if the game is simple, (N;  YT),  denote 

(3.9) x j = w n x j .  
Also, 

(3.10) ai j(x)  = Max {e(S, x):  i 4 S f  j e S ,  0 # S c N }  ( x  E $(r)) 
(3.11) b,,(x) = Max {e(S, x): i E S f  j E S, S c N )  ( x  E g(r)) . 
Given an imputation x E Z(r) in a compound game r = (N;  v )  we 
denote by p a weak imputation in (see (2.7)) 

where 

We will write ek(S,  x), sk(x)  (see Lemma 3.2), Yi;, Ft$, sit(x), g:(x), 
h:(x), aFj(x), b&(x), where these expressions refer to the game rk, k = 0,  
1, -, m. Note that 

LEMMA 3.4. Let r = (N; v )  be a compound game, let x E Z(r) 
and let if j E N k  be two distinct players belonging to the same component 
game rk, k = 1, --., m. 

( i ) If j i s  not a veto player in rk then 

(3.15) sij(x) = Max [gi(p) + sikj(x) - sk(x), hi@) - xi] . 
( i i )  If j i s  a veto player in r, then 

Proof. ( i ) If j is not a veto players in rk then there exists a 
coalition S E W k  such that j 4 S .  Thus, S U {i) E 2P3. Considering 
the compound game, we find that 

sij(x) = Max {e(S, x): S E Zj} 
= Max [Max {e(S, x): S E Sj, S n N k  E Wk}  , 

Max {e(S, x): S E A,, S fl N k  4 Wk)l 

(3.17) = Max [Max { u ( T )  - p(T\{k)): k E c M }  - min { x ( S ) :  S E 

T i ; }  9 

Max { u ( T )  - p ( T ) :  k 4 T c M )  - xi] 
= Max [Max {eO(T, p): k E T c  M )  +pk-min{x(S):  S E vi?} , 

Max {eO(T, p): k 4 T c M )  - xi] 

= Max [gO,(p) f s$(x) - sk(x), - xi] . 
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( i i )  If j is a veto player in r, then 7YiS = (a and 

sii(x) = Max {e(S,  x): S E Zj, S n N, @ W k )  
(3.18) = Max {eO(T, p):  k @ T c M }  - xi 

= hi@) - xi . 
LEMMA 3.5. Let  r = (N; v )  be a compound game, let x E Z(r)  

and let i E N,, j E N, be two players belonging to distinct component 
games r,, r,, 1 2 k < 1 5 m. 

( i ) I f  j i s  not  a veto player in r, then  

( i i )  I f  j i s  a veto player in r, then  

The proof is similar to that of Lemma 3.4. 

LEMMA 3.6. Let r = (N; v )  be a compound game and let x E Z(r) .  
For  every k ,  k = 1, . ., m, 

Proof. Assume that p,[x] = 0 and let So  E W k  such that x(So) = 0. 
Clearly, for all i, j such that So  E xj stj(x)  = 1. Hence 

Assume that x ( N k )  > 0 and let j~ N, such that x j  > 0. j @ So and 
therefore j is not a veto player. Let i E So. According to Lemma 3.4, 

sij(x) = Max [gO,(p) + $(x) - sk(x),  - xi] 
(3.23) = Max [ g ; ( ~ ) ,  h u ) ]  

= sO(p) . 
On the other hand, 

It follows that sij(x) > sji(x) in contradiction to our assumption that 
x E X((r). The other direction of (3.21) is immediate. 
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LEMMA 3.7. Let r = (N; v )  be a compound game and let 
x E Z(r). For  every k,  k = 1, . . ., m, 

Proof. If pk = 0 then for every T c M 

= eO(T, p)  . 
It follows that 

(3.27) gOk(~) = so@) = 4%) . 
Suppose pk > 0 and let i E Nk such that  xi > 0 and 

(3.28) g f ( x )  = sk(x)  . 
Thus, 

(3.29) gi(x) = Max [g",(El, h",(El - xi] . 
If i is not a veto player in rk then 

(3.30) hi(%) = Max [ g " , ~ )  + h:(x) - sk(x),  hOk(~l)I 

In this case it follows from Lemma 3.2 and (3.29)-(3.30) that 

and this is equivalent to (3.25). If i is a veto player then 

(3.32) hdx)  = h" ,~ )  

In this case (3.31) follows from Lemma 3.2, (3.29), and (3.32). 

REMARK 3.8. If i is a veto player in r, then it follows from 
Lemma 3.2, (3.29), and (3.32) that 

4. On the kernel of a component game. The barycentric pro- 
jection of an imputation x E E(r) on a coalition S such that x ( S )  > 0 
will be denoted (see [13; p. 61) by B,x and defined to be an I S I-tuple 
B,x = [(B,x),],, , where for every i E S 

(4.1) X i  (B,X)~ = - 
x ( S )  ' 

Notice that if r is a compound game and r, = (N,; rk) is a com- 
ponent game of r then B N k x  is a pseudo-imputation in rk or even an 
imputation if (3.1) is satisfied in rk. 
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THEOREM 4.1. Let r = (N; v) be a compound game and let x E S ( r )  
be a n  imputation such that for every k, k = 1, ., m, 

Under these conditions, if x(Nk) > 0 and rk is a game with veto 
players then 

if and only if for every pair of distinct players i, j E N, 

Proof. The kernel of a simple game with veto players consists 
of a unique point in which the veto players share equally while the 
others get zero ( [ 5 ;  Theorem 4.11). 

( a )  Suppose B,,x € x ( r k )  and let i, j be two distinct players 
in . If both of them are veto players then (see Lemma 3.4) 

and since xi = xj i t  follows that sij(x) = sji(x). If j is a veto player 
but i is not, then (notice that s$(x) = sk(x) since all the winning 
coalitions in r, have the same excess 1 - x(Nk)) 

According to (4.5) (it holds when i is not a veto player) and the fact 
that xi = 0, i t  follows that 

Considering (4.2) i t  follows that sij(x) 5 sji(x). If j is not a veto player 
(4.4) follows from the fact that xj = 0. 

( b )  Suppose (4.4) is true for every pair of distinct players i, j. 
(4.5)-(4.6) hold for every pair of veto players. According to (4.4) 
xi = xj. Suppose, per absurdum, that there is j E Nk, who is not a 
veto player, such that xj > 0. Let i be a veto player in r,. (4.4) 
implies sij(x) 5 sji(x). Thus, according to Lemma 3.4 and (4.2) 

and hence 
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This means that j belongs to every winning coalition having a maximal 
excess ((4.10) holds for each veto player i). Thus, a coalition S that 
has a maximal excess contains all the veto players and all the other 
players of positive payoff. Therefore, 

I t  follows that all the winning coalitions have the same excess in 
contradiction to  (4.10). This contradiction proves that  each player j 
who is not a veto player gets zero and therefore BNkx belongs to the 
kernel. 

THEOREM 4.2. Let r = (N, v) be a compound game and let 
x E Z(r) be a n  imputation satisfying (4.2). Under these conditions, 
if rk is free of veto players and x(Nk) > 0 then 

if and only if for every pair  of distinct players i, j~ Nk 

Proof. Let i, j be any two distinct players in rk and denote 

It follows from (4.2) (note that s(x) = sO(p)) that 

Using Lemma 3.4 we find that 

(4.18) 
s&) = Max [g0,(p) + stj(x) - sk(x), hi@) - xi] 

= &(p) - sk(x) + Max [sikj(x), sk(x) - A - xi] 

and it  follows that 
h 

sij(x) = sji(x) - Max [sFj(0), sk(2) - A - 
(4.19) 

= Max [s;$(0), sk(2) - 2 - Zj] . 
Suppose (4.13) is satisfied for every pair of distinct players i, j E Nk. 
We will show that for every j E Nk ( j  is not a veto player) 
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Indeed, if h5(2) < g:,(2) then there exists So such that j E So and 

Let i e N,\So ((4.21) implies ek(So, 2) > 0 and therefore So + N,). Clearly, 

Since 

(4.23) Max [stj($), sk(2) - - = Max [sii(2), sk(3) - 2 - Zj] 

i t  follows that 

The last equality is true for every i 4 So so that x(So) = 1 in contra- 
diction to (4.21). Thus, (4.20) is proved. Let So c N, be a coalition 
such that j @ So and 

Since for every i E N, (i # j)  

(4.26) ek(So u {i), 3) 2 ek(So, 2) - Zi = sk(9) - zi 
it follows that 

Analogously, 

It follows from (4.17), (4.19), and (4.27)-(4.28) that 

and hence x E X ( r , ) .  On the other hand, if 2 E X ( r , )  then (4.29) is 
satisfied by every pair of distinct players i, j E N,. Lemma 3.2 implies 
h5(2) = sk(2). Hence, there is So c N, such that j @ So and sk(9) = 

C ek(S,, 2) = hjk(2). Thus, 

(4.30) sikj(2) 1 ek(So U {i}, 2) 1 ek(So, 2) - Zi = sk(2) - 2i . 
In a similar way we can show that (4.28) holds. (4.13) follows from 
(4.17), (4.19), (4.28), and (4.30). 

5. The dependence on the quotient game. In the preceding 
section we proved that the barycentric projection of a point in the 
compound kernel on any component must belong to the kernel of that 
component (or to the pseudo-kernel if (3.1) is not satisfied in the com- 



542 NIMROD MEGIDDO 

ponent game). Moreover, if the barycentric projection of an imputation 
in the compound game is in the kernel of the component then the 
imputation must satisfy the kernel condition ((2.21)) for every pair of 
distinct players in that component. To complete the characterization 
of the kernel of the compound game we have to show how the com- 
ponents' kernels should be composed in order to obtain the compound 
kernel. 

The compound kernel depends on the quotient game by means of 
a subset of its imputations space which is defined as follows. 

DEFINITION 5.1. Let r = ( M ;  u) be a monotonic m-player game. 
Let w = (w,, . . , w,) be a n  m-tuple of nonnegative numbers. The 

[weak] w-equalizing set [ g w ( r ) ] 9 " ( r )  of I' is defined to be the set of 

all  the [weak] imputations [y E &(r)] y E S ( r )  that satisfy the follow- 
ing three conditions: 

( i )  For each i, i = 1, ..., m, 

( 5 4  gdy) = S(Y) . 
( i i )  For  every pair of distinct players i, j e  M, if wi = 0 and 

wj > 0 then 

(iii) For  every pair of distinct players i, j  e  M, if both wi > 0 
and wj > 0 then 

REMARK 5.2. The w-equalizing set for a monotonic game r = (N;  v) 
satisfying (3.1) is a generalization of the kernel. In fact 

REMARK 5.3. 9w(I')[~w(r)] is a finite union of convex polytopes. 
The number of linear inequalities which determine the w-equalizing n 

set is of the same order of magnitude of that number in the kernel. 
When most of the wi-s are zeroes this number is smaller than the 
respective number in the kernel. The computation of gW(r) can be 
carried out according to [I]. We conjecture that an algorithm based 
on the "profile" idea can be built for e W ( r )  (see [3, 41). 

The w-equalizing set of a simple game is sufficient for determining 
the weak w-equalizing set of that game: 

LEMMA 5.4. If r = (M;  2 2 )  is  a monotonic simple game without 
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veto players then  
N 

(5.5) gw(r) = {CYX:  x E L P ~ ( ~ ) ,  o s a 5 1) . 
Proof. For every pair of distinct players i, j E M 2Yij f 0. Hence 

for every x E $(r) 

(5.6) sij(x) = Max {e(S, x): S E Sij} = 1 - min { x ( S ) :  S E S i j }  . 
Similarly, 

(5.7) g,(x) = 1 - min { x ( S ) :  i E S E %) 

(5.8) s(x)  = 1 - min { x ( S ) :  S E %} . 
Also, if there is S E 22 such that i, j B: S then 

(5.9) ai j (x)  = 1 - min { x ( S ) :  i, j B: S E 22) 

and otherwise 

(5.10) ai j (x)  = ~ ( x )  . 
An imputation x E S(r )  satisfies the conditions of Definition 5.1 if 
and only if every multiplication of x by a satisfies them. This proves 
(5.5). 

EXAMPLE 5.5. Let M3 denote the 3-player majority game2. The 
(0, 0, 0)-equalizing set for M3 and L P ( ' . ~ ~ ~ ' ( M ~ )  are as illustrated. 

If w,, w,, w, > 0 then g W ( M 3 )  = Z ( M 3 )  = {(1/3, 113, 113)). 
The w-equalizing set will be now used to characterize the depend- 

ence of the compound kernel of the quotient game. 

LEMMA 5.6. Let r = (N; v) be a monotonic compound game 
satisfying3 (3.1). Let xk E Z(rk)  and let a,, k = 1, . ., m, be non-  

M3 is a &player simple game in which a coalition wins if and only if i t  consists of 
a t  least two players. 

If (3.1) is not satisfied by the compound game or by a component then our claims 
remain correct provided the "kernel" is replaced by the "pseudo-kernel". 
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negative numbers such that C;1"=, ak  = u(M) = v(N). Let xk* e Z ( r )  
where x:* = x: for i e Nk and x? = 0 otherwise. Let w, denote the 
number of veto players i n  r,. Let x = C;1"=, akxk*. Under these con- 
ditions 

Proof. According to Lemma 3.2, for each player i E Nk (k = 1, 
..-, m) 

( a ) If x E Z ( r )  then Lemma 3.7 implies condition (i) (see Defi- 
nition 5.1). 

( b )  We prove the necessity of condition (ii). Assume that w, = 0 
and w, > 0, 1 5 k < 1 5 m. Let i e N, and let j E N, be a veto player 
in . Since xk E Z ( r k )  and x1 E Z ( r , ) ,  it follows from (5.12) and 
Lemma 3.5 that 

and 

Note that (5.13)-(5.14) hold even if x e Z ( r )  and (5.14) is independent 
of j being a veto player. If x E Z ( T )  i t  follows from condition (i) 
(we have proved its necessity) and (5.14) that 

Suppose x(Nk) = 0. For every T c M 

(see (3.26)). Thus, taking the maximum over the coalitions T such 
that k, 1 @ T, 

It follows from (5.13) and (5.17) that 

Since sij(x) = sii(x) condition (ii) follows from (5.15) and (5.18). Assume 
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x(Nk) > 0. Choose i e Nk so that xi > 0. Thus, 

Since sii(x) = sji(x) i t  follows from (5.13) and (5.15) that 

and condition (ii) follows from (5.19)-(5.20). 
( c) We prove the necessity of condition (iii). Assume wk, w, > 0 

( I  5 k < 1 5 m) and let i e Nk and j e N, be veto players in their 
component games. According to [5; Theorem 4.11 

Lemma 3.5 and (5.12) imply 

and, symmetrically, 

The last two equalities are independent of x belonging to the kernel. 
If x E Z ( r )  then sij(x) = sji(x) and condition (iii) follows from (5.22)- 
(5.23). 

( d ) Assume that ~ [ x ]  E 5 "(To) and let us prove that x e Z ( r ) .  
Condition (i), together with Theorems 4.1-4.2, imply for every pair of 
distinct players i, j G N, (k = 1, . a ,  m) 

Let i E Nk and j e N, (1 k < I 5 m). If i and j are veto players in 
their components then (5.22)-(5.23) hold and condition (iii) implies 
sij(x) = sji(x). If j is a veto player and i is not a veto player then 
(5.13)-(5.14) hold and conditions (i) and (ii) imply sij(x) = sji(x) = sO(p). 
If both i and j are not veto players then (5.14) and the symmetric 
equality, 

imply, according to condition (i), that sij(x) = sji(x) = sO(p). Thus, (5.24) 
holds for all the pairs of distinct players i, j e N. Hence x E X ( r ) .  

6. The kernel of the compound game. The results of the 
preceding sections lead to the main theorem of this article, a theorem 
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that determines the structure of the kernel of a compound game. This 
theorem, which is interesting in itself, enables shortcuts in the compu- 
tations leading to the kernel of a decomposable game. 

THEOREM 6.1. Le t  r = I',[r,, . ., r,] be a monotonic d u m m y -  
free compound game w i t h  simple component games TI, . . , r,. Assume 
that  every component that consists of more t h a n  one player i s  in 
1-0-normalization4 (Nk E 7Tk and for i E Nk {i} 4. W k ) .  Let wk denote 
the number  of veto players in rk and w = (w,, ., w,). Under these 
conditions x E SY ( r )  belongs to the kernel ,  X ( T ) ,  i f  and only  i f  for 
every k ,  k = 1, . ., m, such that  x(Nk) > 0 B,,x E c X ( r k )  and the weak 

imputa t ion  p[x] belongs to the weak w-equalizing set, 2 " ( r 0 ) ,  of the 
quotient game To. 

Proof. ( a ) Suppose x E X ( r ) .  Lemma 3.7 assures that the 
conditions of Theorems 4.1-4.2 are satisfied. 
follows that for every k such that x(Nk) > 0 
every x e Z ( r )  

From these theorems i t  
B X  E X ) .  Since for 

(for the *-notation refer to Lemma 5.6; if x(Nk) = 0 for a certain k 
we define BNkx to be any point in Z ( rk ) - anyhow i t  is multiplied by 
zero) i t  follows from Lemma 5.6 that p[x] E +"(To). 

( b)  Suppose x E Z ( r )  is an imputation satisfying our conditions. 
Lemma 5.6 implies that x E 3if(r) .  

COROLLARY 6.2. Under the conditions of Theorem 6.1 

Proof. Suppose x E X ( r ) .  For every k E M such that x(Nk) > 0 
let xk = BNkx and let = p[x]. For k E M such that x(Nk) = 0 let xk 
be any point in the kernel z ( r k ) .  According to Theorem 6.1 
xk e Z f ( r k )  for every k E M and ,i2 E +(r0). The minimum payoff to 
a winning coalition is positive for every point in the kernel of a simple 
game (see 16; Lemma 3.71). Thus, pk[xk*] > 0 and 

. - 

The normalization assumption may be dropped and the theorem is true for the 
pseudo-kernel instead of the kernel (see Lemma 5.6). 



KERNELS OF COMPOUND GAMES WITH SIMPLE COMPONENTS 547 

According to (6.1) 

and that proves that Z ( r )  is obtained in the right-hand side of 
(6.2). Let x belong to the right-hand side of (6.2). Thus, x E S ( r )  
and there exist xk E X ( r k ) ,  k = 1, . - 0 ,  m, and ,G E ~ W ( P , )  such that 
(6.4) is satisfied. Necessarily, for every k such that x(Nk) > 0 xk = 
B,,x and for all the k E M 

and hence p[x] E Gw(I',). Theorem 6.1 implies x E 3?(r). 
Corollary 6.2 shows how the kernel of the compound game is 

obtained from the kernels of the components and the weak w-equaliz- 
ing set for the quotient game. The next theorem shows how the 
kernel is obtained if we are restricted to vertices of certain polyhedra 
generating the components' kernels and to the vertices of the weak 
w-equalizing set. 

THEOREM 6.3. Assume the conditions of Theorem 6.1. Let 
Z r ( r k )  = U%kl Kjk, k = 1, m, where Kjk, j = 1, -.., sk, k = 1, . . a ,  m, 
are ,convex polyhedra i n  which pk[x] is a linear function of x (see 

Lemma 3.1). Let s w ( r o )  = Ug"=, Kj where K:, j = 1, . . , so, are convex 
polyhedra. Under these conditions 

p E vert K:o, x' E vert K;;, i = 1, . . . , mi . 
Proof. Define a mapping V :  5 "(To) x =(TI) x . . x 3T(r,)  --t E" 
by 

According to Corollary 6.2 

If 1 5 jk 5 sk, k = 0, 1, - - -, m, then the restriction of ?F to the set 
K,", x Kll x . . x Kj", is defined everywhere and i t  is a multi-projective 
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transformation since p,[xk*] is linear in K&, k = 1, . . -, m. Thus, Y 
is convexity-preserving in this domain (see (2.25)) and therefore, 

YIK,Oo x - .  x K c ]  = conv Y[vert Kj0 x . . . x vert Krm] 

(6.9) = conv {Y(P, xl, -, xm): 9 E vert K,Oo , 
xiever t  Kji, i = 1, m) . 

To complete the proof of the present theorem, notice that 

In case To is a simple game without veto players the kernel of 
the compound game can be presented using 9 " ( r 0 )  instead of 2 " ( r 0 ) .  
This will be done by an appropriate modification in the definition of 
the mapping V. Moreover, in this case the intersction with Z(r) 
can be omitted. 

THEOREM 6.4. Under  the  conditions of Theorem 6.1, assume tha t  
To i s  a s imple  game without  veto players. L e t  Kjk, j = 1, . . , s,, 
k = 1, ., m, be a s  in Theorem 6.3. Let  9 "(To) = Uitl KjO where KjO, 
j = 1, . ., so, are convex polyhedra. Under  these conditions 

8 0  8 7n Pk/~k[x~*] p*: 
z q r )  = u . . u conv {c, 

j,=1 j,=1 k=1 

(6.11) C Pi/~i[x~*l  
i=1 

9 E vert K;", xi E vert Kji, 1 S i 5 m 1 . 
Proof. Since To is a simple game without veto players, it follows 

from Lemma 5.4 that 9 E 3 "(To) if and only if P/P(M) E .9 "(To). It 
follows that all the vertices of Sw(I',) except the origin are vertices 
of T w ( r 0 ) .  Anyhow, the origin contributes nothing to (6.6) so that 
i t  can be omitted from vert Kjo (see (6.6)) and we may write kFw(r,) 
instead of 3"(T0) .  Moreover, instead of intersecting with Z ( r )  in the 
right-hand side of (6.6), we can obtain exact imputations by normali- 
zation, i.e., by defining 

REMARK 6.5. If 1, . ., 1 are the veto players in To then either 
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(in case 1 = m), or 

(in case 1 2 I < m) where rh is a monotonic simple game without veto 
players. The kernel of r ; [ r ,+, ,  . . , r,] can be computed according to 
Theorem 6.4. Given the kernels of the components, the kernel of the 
product is very easy to compute (see [6; Theorem 3.11). The set of 
vertices of a polyhedron in the kernel of a product is the union of sets 
of vertices of polyhedra in the kernels of the components. 

EXAMPLE 6.6. Let r, be a monotonic simple game in which all 
the 3-player coalitions except {I, 2, 3) and {4, 5, 6) win. It is left to 
the reader to verify that the kernel of r, is the line segment [(1/3, 
113, 113, 0, 0, O), (0, 0, 0, 113, 113, 1/3)]. Denote 

Thus, 

(6.16) p(xm) = min {xa(S): S E W }  = 
1 2  - a if - 5 a S 1 .  1 

2 2 - 

p(2) is a linear function of 2 in K, - [(1/3, 113, 113, 0, 0, O), (116, 116, 
116, 116, 116, 1/6)] and in Kz = [(O, 0, 0, 113, 113, 1/3), (116, 116, 116, 116, 
1 6  1 / 6 1  Consider the kernel of the game r,, = r, @ r,. The quo- 
tient game is ({I, 2); {I}, {2), {I, 2)). There are no veto players in r,. 
The (0, 0)-equalizing set for the quotient game consists of a unique 
point - (112, 112). A vertex of X ( r , , )  is a combination of vertices of 
the polyhedra that generate Z ( r , ) .  The combination is determined 
by (6.12). For instance, if x' = (113, 113, 113, 0, 0, 0) and x2 = (116, 116, 
116, 116, 116, 116) then, since, necessarily, ,i? = (112, 1/2), x = T(9, x', x" = 
( I / ,  5 5 0 0 0 1/15, 1/15 1/15, 1/15, 1/15 1/15) Because of the 
symmetry, each imputation x in Z ( r , , )  can be represented by a 
quadruple (al; a,; a,; a,) where a, = x, = x, = x,, a, = x, = x, = x, etc. 
The kernel of r,, consists of the following four quadrangles, presented 
by their vertices. (a) AEFO (b) BEHO (c) CGFO (d) DGHO, where 
A = (116; 0; 116; O), B = (116; 0; 0; 1/6), C = (0; 116; 116; O), D = (0; 116; 
0; 1/6), E = (115; 0; 1/15; 1/15), F = (1115; 1/15; 115; O), G = (0; 115; 
1/15; 1/15), H = (1115; 1/15; 0; 1/5), and 0 = (1112; 1/12; 1/12; 1/12). 

EXAMPLE 6.7. Let be a kplayer monotonic simple game whose 
minimal winning coalitions are (1, 31, (2, 31, {I, 41, {2, 4). X(n) is the 



NIMROD MEGIDDO 

line segment [(1/2, 112, 0, O), (0, 0, 112, 1/2)] (notice that C ]  = Bt @ B,*; 
see (2.11)). The function p(x) is constant over X([7) (p(x) = 112). 
Consider the kernel of the 10-player game r = M,[n, M,, M,] (see 
Example 5.5). X ( M 3 )  consists of the unique point (113, 113, 113). 
9 CO.O.O) (M,) was shown to consist of three line segments having a 
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common vertex. Let x1 = (112, 112, 0, 0) E X ( a ) ,  x2 = x3 = (113, 113, 
113) and ,2 = (112, 0, 1/21 E 9(0-0,0"(M,). It can be verified that Y(,2, x', 
xq x3) = (2/7,2/7,0,0,0,0,0,1/7,1/7,1/7). Running over all the possible 
combinations we find that X ( r )  consists of the two quadrangles (a) 
ABEF (b) CDEF and the triangle (c) GEF, where A = (217; 0; 117; O), 
B = (0; 217; 117; O), C = 217; 0; 0; 1/7), D = (0; 217; 0; 1/7), E = (115; 0; 
1/10; 1/10), F = (0; 115; 1/10; 1/10) and G = (0; 0; 116; 116). 

7. Kernels of compound majority games. A majority game 
is an n-player simple game M,,, in which a coalition wins if and only 
if it consists of a t  least k players. In this section we apply the results 
of the preceding one to games of the form 

where m = no  and 0 < k,  < n,, i = 0, 1, ..., m. 

LEMMA 7.1. Let x E S(M,,,)  and denote 

(7.2) 9 = {S: (V T c N)(e(S, x) 2 e(T, x))) . 
Under these conditions if S, T E 9 and i, j E (S U T)\(S n T) then 
X, = Xj. 

Proof. Assume i E S\T and j E T\S. Thus, 

and therefore 

(7.4) 

Similarly, 

(7.5) xj 5 x i .  

If i, j E S \ T  let I E T\S (if S II T then, clearly, xi = xj = 0) and accord- 
ing to what we have proved in (7.4) and (7.5) xi = x, = xi. 

 LEMMA^.^. L e t x a n d 9 b e a s i n L e m m a 7 . 1 .  IfSl,... ,S,~=9 
and i, j E U;=, SJ n;=l Sp then xi = xj. 

Proof. ( a ) Assume that there is p, 1 5 p 5 r ,  such that i ,  j $ S,. 
If there is q such that i, j E S, then i, j E (S, U S,)\(S, n S,) and we 
can apply Lemma 7.1. If there is no such q let s be such that i E S, 
and let t be such that j~ St and Lemma 7.1 can be applied again. 

( b ) Suppose that for every p, p = 1, - - . , r, either i e S, or j e S,. 
Let p be such that i G S, (and therefore j E S,) and let q be such that 
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j @ S,. Thus, i, j E (S, U S,)\(S, n S,) and Lemma 7.1 can be applied. 

LEMMA 7.3. If i E U;=, S,\ n;=, S, and j E n;,, S, where x, 9, 
S,, . . ., S, are as  i n  the preceding Lemma, then xi L Xj.  

Proof. Let T E  3 be such that i & T (clearly, j E T) and apply 
(7.5). 

REMARK 7.4. An imputation x E Z(Mn,,)  belongs to 9 (o~~...O)(M,,k) 
if and only if Us,, S = N, where -9 i s  defined by (7.2) (see Defi- 
nition 5.1 condition (i)). 

THEOREM 7.5. Let x € Z ( M n , , ) .  XE&PO(M~,,) if and only if 
there is S c N  such that IS1 = k - 1 and for every ZES and i, j @ S  
Xi = X j  2 Xi. 

Proof. ( a ) Assume that there is a coalition S as specified in the 
theorem. In this case all the k-player coalitions T containing S have 
the same payoff. Thus, this collection of coalitions is exactly 9 and 
since i t  covers N it follows that x E &iP"'M,,k) (Remark 7.4). 

( b )  Assume, conversely, that x E g0(M,,,). Let g = ns, , S. 
According to Lemmas 7.2-7.3 and Remark 7.4, for every I E 3 and . . - 
2 , j  @ S xi = xj 2 x,. The maximum excess is achieved in a k-player 
coalition. Since S is an intersection of a collection of k-player coa- 
litions covering N (k < n) i t  follows that I I 5 k - l. Obviously, every 
(k - 1)-player coalition containing satisfies the condition concerning 
1, i, and j. 

COROLLARY 7.6. Denote by as (S  c N) an. imputation such that 
a; = 111 S I for i E S and a: = 0 for i @ S. Then 

(7.6) 90(Mn,,) = U conv {aT: T 3 S) . 
(*-?+1) 

) and denote by MS the set of all the Proof. Let s E (% - 
+ 

imputations x such that for every I & S and i, j E S xi = xj 2 x,. 
( a ) Let XT 2 0, T IS be such that C,,, xT = 1. Let x = C,,, XTaT. 

Then 

and therefore x E J&. We have, thus, proved that MS 3 conv {aT: 
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T 2 S} .  
( b )  Let x E Ms. Without loss of generality assume that S  = 

{k, k + 1, . -, n} and the players are arranged so that x, 5 x2 5 . I 
xk-, 5 xk = . . . = x,. Since Cg, xi = 1 it  follows that x, 5 11% and 
for every i 

Let T, = N and for every i, i = 1, . . ., k - 1, Ti+1 = Ti\{i}. Let a, = nx, 
and for every i , i = 2 ,  ..., k - 1, a i=  (n - i +  l).(xi-xi-,). Then 
ai 2 0, i = 1, . . a ,  k - 1, and 

Define a, = 1 - ZL' ai and y = Ct, criaTi. Also, for every j, j = 1, 
., n ,  let j* = min (j, k). Then 

Hence, y = x. We have proved that x E conv {aTi: i = 1, . , k} c 
conv {aT: TI> S } .  Thus, Ss = conv {aT: T 3 S}.  According to Theorem 
7.5 9O(MmPk) = USE Ms (I N\S I = k - 1) and this completes the 
proof. 

Let r be the game defined in (7.1). For every Sc M (S + 0 )  denote 
by bS an imputation in r such that for every i E N, (1 = 1,. . ., m) 

THEOREM 7.7. Let r be the game defined i n  (7.1). Then 

(7.11) x ( r )  = (J conv {bT: T 3 S }  . 
s~(m-i'~+l) 

Proof. Because of the symmetry, X(M,,,) consists of a unique 
point - (lln, . , 11%). The minimum payoff to a winning coalition 
is therefore kjn. According to Corollary 7.8 9O(M,,,,,) is the union 
of the polyhedra Ss (S c M, I S I = rn - ko - 1) whose vertices are 
aT, T 2 S. The combination of the components' kernels defined by 
aT, T c M, (see (6.12)) is the imputation x E Z ( r )  where for every 
i~ N, (1 = 1, . - - ,  m) 
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It follows from Theorem 6.4 that Z(r)  is the union of the polyhedra 
Qs (S c M, I S I = m - k,  + 1) whose vertices are the bi"-s (T 3 S). 
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