
Mathematical Programming 82 (1998) 339-355

A modified layered-step interior-point algorithm for
linear programming 1

Nimrod Megiddo a,b,2, Shinji Mizuno '.', Takashi Tsuchiya ',*
" ZBM Research Division, Almrrden Research Center, 650 Harry Road, Sun Jose, CA 95120, USA

School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
The Institute ofStatistica1 Mathemutirs, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106, Japan

Received 25 June 1996; revised manuscript received 19 May 1997

Abstract

The layered-step interior-point algorithm was introduced by Vavasis and Ye. The algorithm
accelerates the path following interior-point algorithm and its arithmetic complexity depends
only on the coefficient matrix A . The main drawback of the algorithm is the use of an unknown
big constant x, in computing the search direction and to initiate the algorithm. We propose a
modified layered-step interior-point algorithm which does not use the big constant in comput-
ing the search direction. The constant is required only for initialization when a well-centered
feasible solution is not available, and it is not required if an upper bound on the norm of a
primal-dual optimal solution is known in advance. The complexity of the simplified algorithm
is the same as that of Vavasis and Ye. 0 1998 The Mathematical Programming Society, Inc.
Published by Elsevier Science B.V.

Keywords: Linear programming; Layered-step interior-point method; Path of centers;
Crossover events

1. Introduction

Interior-point methods for solving linear programming problems were introduced
by Karmarkar [I]. Although the arithmetic complexity of the interior-point methods
is polynomial, it depends on the size L of input data (A , b, c), where A is the coefficient
matrix of a linear programming instance, b the right-hand side vector, and c the

'Corresponding author. E-mail: tsuchiya@sun312.ism.ac.jp.
Research supported in part by ONR contract N00014-94-C-0007 and the Grant-in-Aid for Scientific

Research (C) 08680478 and the Grant-in-Aid for Encouragement of Young Scientists (A) 08780227 of the
Ministry of Science, Education and Culture of Japan. This research was partially done while S. Mizuno
and T. Tsuchiya were visiting IBM Almaden Research Center in the summer of 1995.

E-mail: megiddo@almaden.ibm.com.
' E-mail: mizuno@ism.ac.jp.

S0025-5610/98/$19.00 O 1998 The Mathemal cal Programming Society, Inc.
Published by Elsevier Science B.V.
P I I S O O 2 5 - 5 6 1 0 (9 7) 0 0 0 7 3 - 7

340 N. Megiddo et ul. 1 Mathematical Programming 82 (1998) 339-355

coefficient vector of the object function. Recently Vavasis and Ye [2] proposed a very
elegant algorithm, whose arithmetic complexity does not depend on b or c. Hence-
forth, we refer to the Vavasis and Ye algorithm as the VY algorithm. Like Tardos'
algorithm [3] does, the VY algorithm solves flow problems in strongly polynomial
time. The VY algorithm is also called a "layered-step" interior-point algorithm, since
it occasionally uses a layered least squares (LLS) direction to compute a new iterate.

The VY algorithm is at least as fast as the O(JilL)-iteration primal-dual path-fol-
lowing algorithm proposed by Kojima et al. [4] and Monteiro and Adler [5] or the
predictor-corrector algorithm by Mizuno et al. [6]. Furthermore, if the path of cen-

ters has an almost straight part, the layered step may accelerate the algorithm. In
particular, it attains an exact optimal solution when the iterate is close enough to
a solution. So a layered-step interior-point algorithm is not only efficient in theory,
but may also become a very good algorithm in practice.

The number of arithmetic operations performed by the VY algorithm is bounded
in terms of a big constant X, which is defined as the maximum of I I A ~ (A D A ~) - ' A D I I ,
where D is a diagonal matrix whose diagonal entries are positive. This number is
used for (i) computing the search direction, and (ii) constructing a problem which
is equivalent to the original problem with a trivial initial primal-dual interior feasible
solution when no feasible initial point is available. A drawback of the VY algorithm
is that a good estimate of II , should be known in advance, which may be difficult to
compute. It may, however, be estimated by 2L if A is an integral matrix of input size L.

In this paper, we propose a modification of the layered-step interior-point algo-
rithm. Our algorithm does not use any unknown number for computing the search
direction. Instead, we need an estimate of the norm of an optimal solution, but it is
only necessary for constructing an equivalent problem to initiate the algorithm. If we
know j,, we obtain a bound on the norm of an optimal solution as shown in [2] and
hence our algorithm is implementable. Thus, our algorithm is an extension of the VY
algorithm. We will show that the worst-case complexity of our algorithm is the same
as that of the VY algorithm, and does not depend on the estimate of the norm of the
optimal solution. We believe this is a significant step towards implementation of the
VY algorithm.

2. Layered least squares step

Let A be an m x n matrix, where m < n. In this section, we explain the LLS step
according to [2]. This step computes an LLS direction (ax*, Oy*, Os*) for given x E W,
s E IW", a positive n x n diagonal matrix A, and a partition J = (J 1 , J2 , . . . , Jp) of the
index set {1,2, . . . , n). (In the algorithm by Vavasis and Ye [2], the vectors x and s are
current iterates and the diagonal matrix A and the partition J are computed from
them.)

Let x ~ , , . . . ,xJ,, be subvectors of x indexed by J , , J 2 , . . . , Jp Similarly, we define
subvectors of s, 6x, and 6s. We also denote diagonal submatrices of A by A,, , . . . , A,,".

N. Megiddo et al. I Muthematicul Programming 82 (1998) 339-355 34 1

The dual layered least squares (DLLS) step is defined as follows: given a vector s,
let L,D = (6s: ATy + 6s = 0, y E Rtn). Then for k = 1,2, . . . , p define the subspaces

I: = {minimizers 6s of ((A;' (6 ~ ~ + SJ,) (1 subject to 6s E LEI)

so that L? > Lf 3 . . . > L;. Vavasis and Ye proved that L: has a unique element 6s*
suchthatATiSy*+6s* = O f o r a 6 y * . I f p = l thenwehaveJ1 ={1,2, . . . , n)and

If A is appropriately determined, it can be shown that this direction coincides with
the part of the primal-dual affine scaling direction that corresponds to the dual slack
variables.

The primal layered least squares (PLLS) step is similar, except that we work with
the null space of A, A instead of A-' , and the reverse order of the partitions. That is,
for a given vector x, we define Li = {dx: A6x = 0). Then, for k = p,p - 1.. . . , 1, de-
fine the subspaces

P LA-, = {minimizers 6x of I(AJ, (~xJ , + xJ,) 1 1 subject to 6x E L,P}

so that L,P 3 LiPl 1 . . . 3 LOP. The direction 6x* is the unique element in LOP. If p = 1
then we have J1 = {1,2, . . . , n) and

If A is appropriately determined, it can be shown that this direction coincides with
the part of the primal-dual affine scaling direction that correspmds to the primal
variables.

It was shown in [2] that the DLLS step and PLLS step are computed in 0(nm2)
arithmetic operations.

3. Algorithm

In this section, we summarize VY algorithm and explain our algorithm. For an
m x n matrix A and vectors b E Rm and c E Rn, we define a primaldual pair of linear
programming problems

minimize cTx subject to Ax = b,x 3 0 (1)

and

maximize bTy subject to ATy + s = c, s 3 0. (2)

We assume that the primal-dual pair has a feasible interior point (x,y,s) (i.e.,
x > 0 and s > 0) and Rank(A) = m.

For each p > 0, we denote by (x(p),y(p),s(p)) the solution of the system

T Ax=b, A y + s = c , Xs=pe , x 3 0 , s 3 0 ,

where e is the vector of 1's and X = diag(x) is the diagonal matrix such that Xe = X.

The solution is called a center and the set P = {(x(p),y(p),s(p)): p > 0) is called a

342 N. Megiddo et ul. 1 Mathematical Programming 82 (1998) 339-355

path of centers. Let p E [O, 1). For each center (x (p) , ~ (p) , s (p)) , we define a neigh-
borhood

N (P , p) = { (x , y , s) : Ax = 6, ATy+s = c, I/Xs - pel/ <Pp, x 3 0 , ~ 3 0) .

Then the set

N P) = U N (B ,
0 0

is a neighborhood of the path of centers P.
Let 1 > P2 > P I > 0. For a given point (x , y , s) E N(/3,, p) and g 3 1, we construct

a partition (J 1 , J2 , . . . , Jp) of { 1 , 2 , . . . , n } as follows. Let

Note that if (x , y , s) E P then 6, =a. We define the diagonal matrix
A = diag(6) = f i i i -1 /2~ ' /2 . Let n be a permutation that sorts the 6,s in nondecreas-
ing order:

& (I) d 642) d . . . <6,,,,).

Let J1 = { n (l) , . . . , ~ (i) } be the set of successn e indices of n such that the "ratio-
gap" satisfies 6,(,+1)/6,(,) dg for j = 1 , . . . , i - 1, but 6,(,+1)/6,(i) > g. Then put
n(i + l) , n(i + 2) , . . . in J2, until another ratio-gap greater than g is encountered,
and so on. Let J, be the last set which contains n(n) . Each component J, of the par-
tition is referred to as a layer.

3.1. Vavasis and Ye's algorithm

We now summarize the results by Vavasis and Ye [2]. The complexity of their al-
gorithm is expressed in terms of the following constant:

X A -- { I I A ~ (A D A ~) - ~ A D I I : D is a diagonal matrix with

positive diagonal entries).

Existence of this constant was first established by Dikin [7] and rediscovered by
Vanderbei and Lagarias [8], Todd [9] and Stewart [lo] . It is hard, in general, to com-
pute this number, but if A is an integral matrix with input size L, then we can estimate
X A by 2•‹(L). Below we summarize the VY algorithm.

Algorithm. Let 1 > p, > P I > 0 , g = g* = 64(1 + P,)n2(xA + I) , and k = 0. Let
0 0 0 (x , y , s) E N (P 1 , pO) be an initial interior-point.

Step 1: Let (x , y , s) = (x k , 9 , s k) , p = pl', and 6 = f i i i - ' / 2 ~ 1 / 2 e . Determine the parti-
tion (J1 , . . . , J,) for g, and compute the LLS direction (dx*, 6y*, as*) for the partition
(J I , . . . , J,,). Apply a test for deciding whether or not to use the LLS direction. If so,
then a step size a is computed (see [2]) and we set

(x', y1,s') = (x , y , s) + a(6x*, dy*, 6s*) , p' = (1 - u)p.

N. Megiddo et al. / Mathematical Programming 82 (1998) 339-355 343

(x1,y',s') E N(P2, p') is ensured theoretically. Otherwise, an ordinary predictor step
(as in [6]) is taken.
Step 2: Compute a new iterate ($ + I , yk+',sk+') E N (P I , p') from the point
(x', yl, s') E N(P2, p') such that pk+' = p'.
Step 3: Increase k by 1 and go to Step 1.

The values of P I and P, used in [2] are 0.2 and 0.65. The initialization will be dis-
cussed later. The complexity analysis of the VY algorithm is based on the idea of
crossover events.

Definition 1. Let (x' , y l , s l) E N (P I , p l) and let (x2, y2, s2) E N(P1, p2) be two points in
the neighborhood of the central trajectory such that p' > p2. If there exist dual slack
variables si and sj such that

s,' < 3gns; (3)

and

si 3 5gnsj for all (x , y , s) E N (P I , p) such that 0 < p < p2, (4)
then we say a crossover event occurs between (X I , y ' , s l , p l) and (x2, y2, s2, p2). We call
[p l , p2] the interval of the crossover event.

Suppose that we have several crossover events. If the intervals of these events do
not intersect, then we say that these crossover events are disjoint. Vavasis and Ye
proved that there are at most i n (n - 1) disjoint crossover events.

The following theorem summarizes the main issues of the complexity analysis of
the VY algorithm.

Theorem 1 (Based on Theorem 2 in [2] and [l l]) . Let (x , y , s) E N (P 1 , p), and let
(x+, y+, s+) E N(P1, p+) be the point obtained by performing one iteration of the V Y
algorithm. Let n(A) = max {n l (A) , n3 (A)) , where nl (A) and n3 (A) are as dej7ned in [2].
(n (A) = ~ (n ' . ~ (l o ~ X, + log n)) .) Then,

(i) (x+, y+, s+) is an optimal solution, or

(ii) a crossover event occurs between (x , y , s, p) and (x', y', s', p'), where (x', y', s', p') is
any point such that (x', y', s') E N (P 1 , p') and

and co is a constant depending only on P I .

This definition of the crossover event is slightly different from the original one by Vavasis and Ye [2].
Instead of (3) they used the condition that 6: <gn6; (this implies (3) when B = 0.2), and instead of (4) they
required that s, >5gns1 holds for all (x , y , s) on the central trajectory such that 0 < p<p2 . But our
modification does not make any substantial change in the arguments.

344 N. Megiddo et al. / Mathematicul Programming 82 (1998) 339-355

Proof. When an ordinary predictor step is taken from a point such that
(x, y, s) E N(P, , p), then p' 6 (1 - co/ f i)p for some constant co. The execution
and the analysis of the main loop of the VY algorithm is done by cases (cf. Section 5
of [2]). In their original proof they have three cases, case 1-111. In a recent paper [I I]
they proved that case I1 never takes place, so we only count cases 1 and 111. In case I
the algorithm takes the ordinary predictor step, whereas in case I11 it takes the LLS
step. From Vavasis and Ye's proof of their Theorem 2, the count is as follows. In
case I, one crossover event occurs in nl (A) ordinary path-following interior-point
steps. In case 111, either an optimal solution is reached, or the crossover event occurs
in one LLS step plus n3 (A) ordinary steps. This observation and the definition of the
crossover event imply the theorem.

From the result above, the number of steps required by the algorithm [2] is bound-
ed by n(A) x(the number of disjoint crossover events). The value of n(A) is about or-
der of n' 5(log X A + log n). Since the number of the crossover events is 0 (n2) , the
algorithm solves the problem in 0 (n3 5(log jl, + log n)) steps, where each step re-
quires 0(m2n) arithmetic operations.

As a by-product of their analysis, Vavasis and Ye proved that the number of dis-
joint crossover events is more tightly bounded by in2. This bound cannot be further
improved, since Mizuno et al. [12] present a linear programming instance with $n2
disjoint crossover events.

A drawback of the VY algorithm is that it relies on a number X, which is difficult
to compute or even estimate in a practical way. To overcome this difficulty, we do the
following. We do not know the value of zA, but observe that it is used only for de-
termining the correct partition of the set of indices. The first question is how many
partitions can be generated when we vary the value of g from 1 to infinity. As we ar-
gue below, there can be at most n such partitions, which can easily be computed with-
out knowing ?,. One of these partitions is the right partition with which we can
compute the LLS step of Vavasis and Ye. Thus, we can compute all the candidates
for the correct LLS direction associated with each of the n patterns, and then take the
step which decreases p the most. Apparently, this idea increases the complexity of the
algorithm by a factor of n since we compute n directions instead of one direction, but
as we will show in Section 4, all of these directions can be computed in 0(nm2) arith-
metic operations, which is the same complexity of computing one LLS step.

Now, observe how the partition varies as we increase g from 1 to infinity. It is
readily seen that the number of layers is decreasing and the change of layers occurs
in such a way that two neighboring layers are merged into one larger layer, and for
sufficiently large g, the partition consists of one component, the entire index set
{1,2 , . . . , n) itself. Thus, we have at most n partitions, one of which gives the LLS

N. Megiddo rt al. / Mathematical Programming 82 (1998) 339-355 345

search direction of Vavasis and Ye. To describe this observation mathematically, let
q be the number of layers when g = 1. We define g l , . . . , g, recursively as

until gl attains m a ~ { 6 , ~ + ~) / 6 , ~)) . Then, gi is the least value for which the number of
the layers of the partition is i, and it remains unchanged as long as g E [g, ,gipl) .

Now we are ready to state our algorithm.

Algorithm. Let 1 > P2 > P I > 0 and k = 0. Let (xO, yO,sO) E N (/ ? , , pO) be an initial
interior point.
Step 1 : Let (x , y , s) = (x k , y k , sk) , p = pk, and 6 = ~ f l ~ ' / ~ ~ ' l ' e . Compute gi
(i = 1, . . . , q) as above. For each i = 1 , . . . , q, compute the partition (J; ,J; , . . . , J;')
of {1,2, . . . , n) for g = g,, an LLS direction (6xi, dyi , 6s') for the partition, and a step
size a' according to VY algorithm (regarding that g gives the correct partition). Let
p' = (1 - ai)p. Choose j which minimizes pi. Let (x', y', s') = (x , JJ, s) + aJ(hxJ, dyj, 6s')
and p' = pJ.
Step 2: Compute a new iterate (X k + ' , f l+', sk+') E N (P I , pk+I) from the point
(2, y', s') E N (& , p') such that pk+' = p'.
Step 3: Increase k by 1 and go to Step 1.

Thus, several LLS steps (directions) for various values of g are computed by the
algorithm. Henceforth, the LLS step (direction) which uses the value g* (which is
used by the VY algorithm) is referred to as the "correct LLS step (direction)".

The complexity analysis summarized in Section 3.1 is based on the decrease of p.
Hence we can get at least the same complexity result as in Section 3.1 if we use a di-
rection which assures the same or more reduction of p instead of the correct LLS di-
rection. Since Step 1 of our algorithm uses such a direction, the number of steps in
our algorithm is not more than that of the VY algorithm. Furthermore, as we will
show in Section 4, we can compute all the candidate search directions in 0 (n m 2)
arithmetic operations which is the same as computing a correct LLS step. Since
the number of arithmetic operations to test each candidate is negligible compared
with that of computing the search directions, we obtain the following result.

Theorem 2. The worst-case complexity of our algorithm is at least as good as that of
the VY algorithm [2].

4. Computing all the candidates of the correct LLS step in 0(m2n) arithmetic
operations

In this section, we show that the number of arithmetic operations for computing
all the (at most n) candidates for the correct LLS direction is asymptotically the same

346 N. Megiddo et 01. 1 Mathematical Programming 82 (1998) 339-355

as the number of arithmetic operations for computing the correct LLS step itself.
Here arithmetic operations mean addition, subtraction, multiplication, division,
comparison and taking square root.

4.1. Computing L L S step for given value of g by using a block lower triangular form
(B L T form)

Let (J I , . . . , J,) be a partition of indices which determines the layers at the value g.
We also denote by Aj, the submatrix of A associated with J,. Let n ~ , be the number of
variables in the ith layer SJ,, and let r ~ , be the number such that

for all i = 1 , . . . , q. We call r ~ , the degree of freedom associated with the layer SJ,. Note
that TJ, can be 0 if the dimension of the range space does not change by adding A:.

Now we introduce a representation of the range space of AT suitable for comput-
ing the LLS step. We have the following theorem.

Theorem 3. Let (J 1 , . . . , J,) he a partition, and let JT, J;, . . . , J,* be the index sets
(1, . . . , TJ , } , { r ~ ~ + 1, . . . , r~~ + r h) , . . . , { ~ y i : rJ, + 1 , . . . , C:=, YJ ,) . There exists a
q x q block lower triangular matrix T partitioned row-wise with respect to J 1 , . . . , J,
and column-wise with respect to J ; , . . . , J,*, satisfying the following properties.
1 . Rank Tj,j; = r ~ , , i.e., the columns of Tjzj; are independent.
2. For all k = 1 , . . . , q, we have

Conventionally, we regard TJ,j; as a block even f r J , = 0 (in such a case the block is an
empty set).

We omit the proof of this theorem here, because it is an elementary argument of
linear algebra. This representation can be computed within 0 (n m 2) arithmetic oper-
ations, e.g., by using the techniques similar to LU decomposition.

Definition 2. We call the matrix T in Theorem 3 as a BLT form of AT with respect to
the partition (J , , . . . , J,).

N. Megiddo et al. / Mathematical Programming 82 (1998) 339-355 347

The BLT form is a modification of a representation of I ~ (A ~) introduced in [13]
for analyzing boundary behavior of the affine scaling algorithm for degenerate LP
problems.

We write the ith block column of T as Tj;. Then we have

In terms of T , the tangent space of L: is simply written as ~ ~ , + , Im(TJ;) . Then,
we have the following proposition.

Proposition 1. Let ask-' E L ~ ~ (G S ~ - ' may not be unique, but Ss:;' (1 = 1 , . . . , k - 1) is
unique). Then L K 1 is written as follows.

We define T = A-IT, and write the ith block column of T as Tj;. Based on Prop-
osition 1, the DLLS step can be computed as follows. Suppose that L;., is already
determined and 6sk-' E LFPl is available. Then LF is represented as

4

minimizers 6s of /IAi'(GsJi + sJ,)l/ subject to 6s = d s k l + Tj:u,,:

Since TJkJ; = 0 for all i = k + 1, . . . , q, we see that the minimization problem in-
volved in LF is essentially an optimization problem with respect to U J ; . Therefore,
L; is determined by computing a solution of the least squares problem

minimize 1 1 A;' (6s:;' + Tji J; UJ; + S J ~) 11.
"J;

Since Tjkj; is column independent, the optimal solution is written as follows:

Then Ask = ask-' + TI;uJk. is an element of L;. We can repeat this procedure in-
creasing k one by one to the end. The procedure to compute the DLLS step is for-
mally described as follows:

[Computation of the DLLS step ds* at s]
begin

so := s; 6s" := 0;
for i := 1 to q do

begin
1 -T

U j ; := -(~:~;Tj,j;)- T J i J ; A ~ ' ~ ; ~ ' ;
(We use the Cholesky factorization iJ; L> of lTJ; fJrJ; to obtain US .)
6s' := 6s1-' + Tj; uj; ;
(6s;) (j = 1, . . . , i - 1) remains unchanged and Ss;, = 6s5, holds.)

348 N. Megiddo et ul. / Muthemuticul Progrumming 82 (1998) 339-355

si := so + 6s'
end

6s* := s4 - so (= (ds;,, . . . , 6 $))
end

The PLLS step is computed as follows. We write the ith block row of T by Tj,,
then we have

TT is a block upper triangular matrix. We have the following proposition.

Proposition 2. Let Sx"l E L:+~. (Sxk+' may not be unique, hut Sx;:' (1 = k + 1, . . . , q)
is unique.) Then L;+~ is written as follows.

L:+, = {SX: TT6x = 0, SxJc = 6x$,+' for i = k + 1 , . . . , q)

Given Sx"' E L:+,, L! is determined by computing displacement 6 ~ : ~ associated
with J k . Due to Proposition 2 and the block upper triangular structure of TT, we
see that 6 g h is an optimal solution of the following optimization problem.

minimize lJAJh (xJh + 6xJh)ll

subject to T;,;6xjk = - T;~;s$,:~
1 = k f l

Note that SxT1 is already determined if we determine LF, LF-, , . . . , L:+, backward.
Based on these observations, the PLLS step can be computed according to the fol-
lowing procedure.

[Computation of the PLLS step 6x* at xJ
begin

v := 0;
for i := q down to 1 do

begin
".; := - 1 + [A ~ ~ ~ J ; (~ & ~ ~) - ' (~ J ; ~ J , - V J ;)] ;

(We use the Cholesky factorization L ~ L : , of f " J : ~ J , J ; to obtain dx;,
Note that VJ; = Cy=,+l T;,;Gx;,.)
v := v + T;&>

end
6x* := (Sx;, , . . . , Sx;<,)

end

N. Megiddo et ul. 1 Mathematical Progrunzrning 82 (1998) 33Y-355 349

The major work for computing the DLLS step and the PLLS step is the Cholesky
factorization of T:~,: Tj,j;. Once this factorization is obtained for all those matrices,
the steps are computed in O(mn) arithmetic operations.

4.2. Computing the LLS steps efficiently when two layers are merged

In Section 4.1 we observed that given a partition J we can compute the LLS steps
in O(mn) arithmetic operations if (i) a BLT form T with respect to the partition J is
available and (ii) the Cholesky factorization of T:'TjJ5' are available for all the layers

Jl .
Now, suppose that we increase g and that two layers Jl and J I + 1 are joined. Then

we have a new partition J' = (J ; , J,', . . . , J:-,) = (J , , J, U J,,,, . . . , J,) and the
number of layers is q - I .

In this section, we assume that (i) a BLT form T with respect to J and (ii) the
Cholesky factorization of TI~,T~,~, for all i = 1 , . . . , q are available, and show how
we can compute efficiently (i) a BLT form T' with respect to the new partition J'
and (ii) the Cholesky factorization of ?'',; f",f7 for all J' = 1, . . . , q - 1.

By definition of the BLT form, we hive the following proposition.

Proposition 3. The matrix T is also a B L T j o r m with respect to the new partition J' by
regarding the block rows assocluted with J, and J,,, as one block row associated with
Jl U Jl+, and by regarding the block columns associated with J;L and $*,, as one block
column associated ~vith J,* U J:, .

Now we estimate the complexity of computing the Cholesky factorizations. It is - -
easy to see that TJfr, = TJ,y for j = 1 , i - 1 and

i 1

and fj;j;, = T/,+,j;+l for j = i + I , q - 1 . Since the Cholesky factorization of

T& is already available for all i = 1.. . . , q, it is only necessary to compute the
Cholesky factorization of T&,+, ,,:,,Ll T ~ ~ ~ + ~ , ~ ~ ~ ~ ~ for computing the new LLS steps
associated with the new partition. We can efficiently compute the Cholesky factoriza-
tion by using the previous factorizations and the rank-one update of the Cholesky
factorization [I 4,151.

Lemma 1. Let W he the matrix o f the,fbrm

350 N. Megiddo et al. 1 Mathematical Programming 82 (1998) 339-355

where FVil a ql x pl matrix with independent columns, W21 a 92 x p1 matrix, and W22 is
a q~ x p2 matrix with independent columns. I f the Cholesky decompositions of W,: f l 1
and W; W22 are already available, we can compute the Cholesky decomposition of wT W
in

arithmetic operations.

Proof. Let L L ~ be the Cholesky factorization of W , where

L I I is a pl x pl lower triangular matrix, L2] a p2 x pl matrix, and L22 a p2 x p2 lower
triangular matrix. Writing the relation WT W = LLT by components, we have

L I I L T ~ = ~ p h + 6~21 (5)

L Z I L T ~ = J+gW21
~ 2 1 ~ ; , + L22L:? = 4 ; ~ 2 2 .

Since the right-hand side of (5) is the sum of fl and q2 rank-one matrices and the
Cholesky factorization of & T f l I is already available, we can compute L I 1 in O(q2&
arithmetic operations by repeating q2 times the rank-one update of the Cholesky fac-
torization [14,15].

Next, we compute L21. We compute W: w ~ ~ , and then solve the systems of linear
equations p2 times repeatedly to obtain each column of LT,, where L1 I is the coeffi-
cient matrix and each column of W,TW22 is the right-hand side. This requires
0(J1p2q2) arithmetic operations for computing Wz W22 and O h P : / 2) arithmetic op-
erations for solving the systems of linear equations.

Finally, we obtain L22 according to the formula L22L:2 = 4 ; K 2 - L21L:I by pl
times rank-one updates of the Cholesky factorization. This requires O(plp:) arithme-
tic operations. In total, we can compute the Cholesky factorization of WT W in

O (q 2 ~ : + PlP2q2 + :P~P: +PIP:)

arithmetic operations. This completes the proof.

Applying Lemma 1 with W = T4,J1,, I;,J;+l, we see that the Cholesky factorization
- T of T l l ~ l , + I I;LJ;+I Can be computed in

O(n/,+,6, + ~ J , - I Y J , ~ , , + , + ~ Y J , + ~ Y ? , + r~,$,+,)

arithmetic operations. Thus we have the following theorem.

Theorem 4. Let J - (J I , . . . , J,, J,, 1 , . . . , J,) be a partition, and T he a BLT fijrm with
respect to J . Let J' = (J I , . . . , J, I , J, U J,+I. J,, 2.. . . . Jq) . I f the Choleskyfuctorization

N. Megiddo et ul. / Mathematical Programming 82 (1998) 339-355 351

of qJ. TjJS (j = 1, . . . , q) is already computed, the Cholesky factorizution of cJ,. qJy
I /

Cj = li, . . . , q - I) for J' can be computed with

O(n~,+,r;, + ~ J , + ~ ~ J , ~ J , + ~ + ;r~,+,rj , + r~,<,+~ 1

arithmetic operations.

4.3. Computing all the candidates o f the correct LLS step and its complexity

Now we consider applying the procedure of the previous sections repeatedly, as
we increase g, when a merge of two layers occurs. Let (J ~ , . . . , J ~) be the initial par-
tition determined by g = 1 in our algorithm. We can compute all the candidates for
the LLS step according to the following procedure.

[Computation of the candidates of the correct LLS step]
begin

J (J , , Jq) := (~ 1 , . . . , J ~) ;
Compute a BLT form T with respect to the partition J ;
Compute the Cholesky factorization it*iJ; of TZJ;FJ,~; for j := 1, . . . , q;
Compute DLLS step for J ;
Compute PLLS step for J ;
for k := q down to 2 do

begin
Determine the two layers J, and J,+l to be merged;
Merge the two layers, i.e., J' := (J I , . . . , J, U J ,+I , . . . , Jk);
Compute the Cholesky factorization i:.,;ii.ur;, of

FTuJ,+,,J;u; FJN,+~~J;U;~ ;
Compute ~ L L S step for J';

Compute PLLS step for J';
J := J'

end
end

A merge of two layers occurs at most n times while g is increased from 1 to infin-
ity. The total number of arithmetic operations to compute the q directions is estimat-
ed as follows.

Theorem 5. The q candidates for the LLS step can be computed in 0 (m 2 n) arithmetic
operations.

Proof. The major part in the algorithm is:
1. Initial computation of a BLT form with respect to the layer (jl, . . . , J,) and the

Cholesky factorization of T:~: Tj,j; (i = 1, q) ;

352 N. Megiddo et ul. 1 Marhenzaticul Programming 82 (1998) 339-355

2. Updates of the Cholesky factorization in the main "for" loop;
3. Computation of the DLLS step and the PLLS step.
It is not difficult to see that the number of arithmetic operations for 1 is 0 (m 2 n) .

The number of arithmetic operations for 3 is 0 (m 2 n) because, given the Cholesky
factorizations, it takes O(mn) arithmetic operations to compute one set of LLS direc-
tions, and at most m directions are computed throughout the process, even though
the merge process occurs q 2 nz times.

Finally, the number of arithmetic operations in executing 2 is bounded as follows.
For this purpose, we consider a binary tree where each node represents a layer gen-
erated in the merge process. A layer a with children and a2 is obtained by merging
al and a2. Let n(a) be the number of the variables in a, and let r (a) be the degree of
freedom of a, which is defined by ~ank(T, ,) . The root of this tree represents the layer
consisting of all the variables. The leaves of the tree represent the initial layers
j l , . . . , J,. Now, let C (a) be the total number of arithmetic operations for computing
the Cholesky factorization of T:f,,. From the previous arguments, we see that, if x
has children a, and cc2, then

C (x) d C(a1) + C(a2) + M I (nzr: + rlr2n2 + tr2r: + rlr;) .

where n2 = n(a2), rl = r(a1) and r2 = r (a2) and M I is a positive constant. On the oth-
er hand, if a is a leaf, we have

C (a) d ~ 2 n (x) r (a) ' , (6)

where M2 is a positive constant, as we form T ~ T , , and then factorize it directly.
We will show that C (a) d max{M1, M2)n(a)r(x)' for every x. Then, C ({ 1 , . . . , n)) ,

which is the total number of arithmetic operations for updating f:f,, for all a, is
bounded by max { M , , M2)nm2, and we are done.

The proof is by induction. Observe first that the claim holds for every leaf because
of Eq. (6). Now pick cc with children a, and x2, and show that the claim always holds
for a layer x if it holds for xl and a2. Then we have C ((1 , . . . , n)) < max { M I , M?}nm2
as asserted.

By definitions and the assumptions and Theorem 4 and rl d n l , we have

This completes the proof. O

5. Initiating the algorithm

We describe how to initialize the algorithm. Here we need a bound on the norm of
an optimal solution. Following the approach of Vavasis and Ye, we consider the fol-
lowing problem:

N. Megiddo et al. 1 Mathematical Programming 82 (1998) 339-355

minimize cTx + ~ e ~ x 2

x1,x1x2>0

and its dual

maximize bTy + 2NeTyl

Y
I I O O yl

subjectto [:T 1 O 1 O) [s ,
- A T O O O I S

S2

Vavasis and Ye show that if we set N > (1 + jA)l\cll and N > XAI(dll, where d is
a solution of Ad = 6, then this extended problem is equivalent to the original prob-
lem with a trivial well-centered initial solution.

Instead of the assumption that the value of j, is available, we assume that upper
bounds C,, C2 on the norm of optimal solutions for (1) and (2) are available. Due to
complementarity, if we let N > max {CIl C2), then the variables s2 and xl are guar-
anteed to be positive at an optimal solution, which implies that their counterparts xz
and s l are always zero on the optimal set. Thus, the (x, y, s)-part of an optimal solu-
tion of (7) and (8) is an optimal solution of the original problem whenever it has an
optimal solution. Let k be the coefficient matrix of (7). It was shown by Vavasis and
Ye that &-<3JZ(1 + j A) . Thus, applying our algorithm to this extended problem,
we are able to solve the problems (7) and (8) in 0 (n 3 5(log 1, + log n)) steps, where
each step requires O((m + n12n) arithmetic operations.

If we do not have any upper bound on xA, then we may resort to the following
technique, which is a modification of the technique suggested by Renegar [2] . Let
g(k) be a function which is easily computed and very rapidly increasing and run
the algorithm by letting N = g(k)max{llcIl, Ildll). Soon after N becomes greater than
max{(l + XA)IIc//,jIAIIdll), we can solve the problem.

This modification costs a factor of g- ' (max((1 + X,), jA)) in complexity. In the
original form of VY algorithm, we cannot take g (k) as a function more quickly in-
creasing than 0(2~"), because we have to estimate XA with certain accuracy. If g(k)
grows too quickly, it affects the complexity argument in their algorithm. But in
our modification, we do not have this kind of concern. We can take any g(k) which
is quickly increasing, as long as the complexity of computing g(k) is not greater than
the work for executing another part of the algorithm. If we take g to be a function

354 N. Megiddo et al. / Mathematical Programming 82 (1998) 339-355

defined recursively by g(k + 1) = 2fi(k) (g(1) = 1) and run the algorithm by letting
N = g(k), for example, then our algorithm has a complexity of terminating within
O(log* jA . n3 5(log j, + log n)) steps where each step requires O(n(m + n)') arith-
metic operations. This is a slight improvement on the complexity of VY algorithm
(with Renegar's modification) when X , is unknown.

Our algorithm may have a similar advantage over theirs when we resolve the
problem by estimating an upper bound for X,. While they need an estimate which
is "accurate" to some extent, any upper bound is enough in our approach.

6. Concluding remarks

We have proposed a modification of the VY algorithm, eliminating the need for
jA in computing the search direction. There are several topics for further research.

The first issue to be dealt with is sparsity. To solve large-scale problems, we have
to develop an implementation which preserves sparsity of the original A . Since VY
algorithm deals with layers, we have less freedom if we wish to exploit sparsity.
But yet we have some freedom to exchange rows of AT within the same layer, without
changing the result of our paper. It is an interesting question to find the best way to
preserve sparsity when making the BLT form. Developing techniques to preserve
sparsity in the Cholesky factorization is also important.

We could remove j, in computing search direction, but still we need it if neither
an upper bound for a norm of a primaldual optimal solution nor a well-centered
primaldual feasible solution is available. So, eliminating & from the initialization
phase of the algorithm remains a challenging interesting question. As was mentioned
in Section 5 , any cheap way of computing an upper bound for X, suffices for our pur-
pose.

References

[I] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984)
373-395.

[2] S. Vavasis, Y. Ye, A primal-dual accelerated interior point method whose running time depends only
on A, Mathematical Programming 74 (1996) 79-120.

[3] E. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Operations
Research 34 (1986) 250-256.

[4] M. Kojima, S. Mizuno, A. Yoshise, A polynomial-time algorithm for a class of linear complementary
problems, Mathematical Programming 44 (1989) 1-26.

[5] R.D.C. Monteiro, I. Adler, Interior path following primal-dual algorithms. Part I: Linear
programming, Mathematical Programming 44 (1 989) 2 7 4 1.

[6] S. Mizuno, M.J. Todd, Y. Ye, On adaptive-step primal-dual interior-point algorithms for linear
programming, Mathematics of Operations Research 18 (1993) 96&981.

[7] 1.1. Dikin, V.I. Zorkalcev, Iterative Solution of Mathematical Programming Problems: Algorithms
for the Method of Interior Points (in Russian), Nauka, Novosibirsk, USSR, 1980.

[8] R.J. Vanderbei, J.C. Lagarias, 1.1. Dikin's convergence result for the affine-scaling algorithm,
Contemporary Mathematics 114 (1990) 109-1 19.

N. Megiddo et ul. 1 Mathematicul Programming 82 (1998) 339-355 355

[9] M.J. Todd, A Dantzig-Wolfe-like variant of Karmarkar's interior-point linear programming
algorithm, Operations Research 38 (1990) 1006-1018.

[lo] G.W. Stewart, On scaled projections and pseudoinverses, Linear Algebra and its Applications 112
(1989) 189-193.

[l l] S. Vavasis, Y. Ye, A simplification to a primal-dual interior point method whose running time
depends only on the constaint matrix, Technical Note, Department of Management Science,
University of Iowa, Iowa City (1997).

[I21 S. Mizuno, N. Megiddo, T. Tsuchiya, A linear programming instance with many crossover events,
Journal of Complexity 12 (1996) 474-479.

[I31 T. Tsuchiya, Global convergence property of the affine scaling method for primal degenerate linear
programming problems, Mathematics of Operations Research 17 (1992) 527-557.

1141 J.M. Bennett, Triangular factors of modified matrices, Numerische Mathematik 7 (1965) 217-221.
[15] P.E. Gill, G.H. Golub, W. Murray, M.A. Saunders, Methods for modifying matrix factorization,

Mathematics of Computation 28 (1974) 505-535.

