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FINDING LEAST-DISTANCES LINES*

NIMROD MEGIDDO* AND ARIE TAMIR?

Abstract. We consider the following problem related to both location theory and statistical linear
regression. Given n points in the plane find a straight line L so as to minimize the weighted sum of the
distances of the points to L relative to either the Euclidean metric or the /;-metric. We present O(n log n)
and O(n log n) time algorithms for the Euclidean and rectilinear cases, respectively.

1. Introduction. We consider the following problem which is related to both
location theory and statistics: Given n points in the plane (x4, y1), * * *, (xn, y.) together
with positive weights wy, -+, w,, find a straight line L so as to minimize
Z, 1 wid(x;, yi; L), where d is the distance function from L relative to either the
Euclidean metric or the /;-metric.

The location theory aspects of the problem are obvious. One may think of locating
a portion of a new railroad so as to minimize the average cost to the users who have
to reach the tracks from different small towns. The problem is also closely related to
linear regression, with the difference that here we minimize the sum of distances
instead of the squared distances. The latter case is computationally much easier since
there are easy formulas available for the least-squares line. This is true both in the
case where the distance is measured parallel to one of the axes and also when the
distance is measured vertically to the line.

We note that the problem is related to the classic Weber problem [5], [13]. The
Weber problem is to find a single point so as to minimize the average distance from
it to n given points. When the problem is posed with respect to the Euclidean metric
no polynomial time algorithms are known even when all the weights are equal. Relative
to the /;-metric the Weber problem is separable into two one-dimensional problems
and hence is solvable in linear time by a weighted-median-finding algorithm [1].

Following the terminology of location theory we call our problem the 1-line
median problem. We present in this paper an O(n” log n) algorithm for the Euclidean
problem and an O(n log n) algorithm for the rectilinear problem.

2. The Euclidean problem. In this section we focus on the Euclidean case. It is
easy to see that a 1-line median can always be chosen so as to contain one of the n
given points. This is because a parallel translation of the line which contains none of
the points results in a linear change in the objective function as long as none of the
points is reached. We, however, claim that a 1-line median can be chosen so as to
contain at least two of our n points. This will enable us to consider only a set of O(n?)
candidate lines for the 1-line median.

LeMMA 1. Relative to the Euclidean metric there exists a 1-line median which
contains at least two points from the set {(x1, y1), - * * , (Xn, Yu)}.

Proof. We have already argued that at least one point lies on the line. Thus, we
assume without loss of generality that the point (x;, y;) lies on the line. Moreover,
we may translate the coordinate system so that x; = y; = 0. In other words, we may
pose our problem as of finding a straight line of the form ax + by = 0 which minimizes
the sum of weighted distances from the points (x;, y;) (i =2, -+, n) to the line. The
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distance between a point (x;y;) and a line ax+by =0 (a®+5>#0) is equal to
(a®+5> ?ax; +by;| so, formally, we now wish to minimize the function
f(a, b)=37_, w;lax; +by;| subject to the constraint a®+5>=1.

Suppose (a*, b*) is an optimal solution for the optimization problem we have
posed. Let §"={i:2=i=n,a*x;+b*y;20land S ={i: 2=i=n, a*x; +b*y, =0} It
follows that

fla*,6*)= ¥ wi@*x;+b*y;)— ¥ wi(@*xi+b*y:)

ieS™ ieS™

= ( Y owxi— ¥ w,x,-)a*%—( Y owyi— ¥ w,-y,-)b*.
ieS* ieS™ ieS* ieS™
Let « and B denote the coefficients of a* and b*, respectively, in the latter equality,
ie., fla*, b*)=aa*+Bb*. A necessary condition for (a*, b*) to minimize f(a, b)
(subjectto a®+b> = 1) is that it is also an optimal solution for the following optimization
problem:
minirglize aa + b,

s.t. ax; +by; =0 (ieSM),
ax,-+by,- =0 (l 657)9
a’+b>=1.

If a*x; +b*y; = 0forsomei (2 =i =n), then the lemma holds since the line a*x + b*y =
O passes through (x4, y1) and (x;, y;). Thus, assume a *x, + b*y; # 0foralli i =2, - - -, n).
We now observe that the constraints ax; +by; =0 (i€ S") and ax; +by; =0 (i€ S") are
not binding at the point (a*, 5*). This implies that (a*, »*) is in fact an optimal solution
for the problem of minimizing aa + 86 subject only to a®+b* = 1. We note that under
the present assumptions a >+ 32 # 0, since otherwise all the points are colinear, which
in turn implies a*x; +&*y; = 0 for all i. The latter optimization problem has a unique
local minimum (a’, '), where a' = —a (a? +Bz)‘1/2 and b'=—-8 (a2+Bz)—1/z and the
corresponding objective-function value is —(a”+8%)"% Thus (a*, 5*)=(a’, b’) and
hence aa* + Bb* = —(a®+B%)"/? < 0. This however is a contradiction since aa* + Bb* =
Y, wila*x; +b*y,|=0. It follows that at least for one i (2=<i=n) a*x; +b*y; =0 and
that completes the proof.

An obvious consequence of Lemma 1 is that a 1-line median can be found in
O(n’) time: Enumerate all the O(n?) candidates and compute the weighted sum of
distances in each case.

We now develop an O(n”log n) algorithm for the 1-line median problem. The
idea is to sort the candidate lines according to their slopes and then enumerate them
in that order so that it takes only constant time to evaluate the sum of distances in
each case. Let —o<g; =5, =-- - =g, =---=g5, =00 denote these slopes and assume
that together with each slope we have an associated pair of points.

A necessary condition for a line ax + by +¢ =0 to be a 1-line median is that it
separates the set of points into two sets of approximately the same weight; more
precisely, if W=Y"_, w, T"={i: ax; +by;>~c}and T~ ={i: ax; + by; <—c}, then the
necessary condition is that ¥, .+ wi, ¥,.r— w; =3W. In other words, the number —c
has to be a weighted-median of the set H = H(a, b) ={ax; + by,} of the “‘heights” of
the different points above the line ax + by = 0.

Obviously, for every pair (a, b) there is such a number c. Imagine that we increase
the slope of our line continuously from —oo to +00, always selecting the number ¢ so
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as to satisfy the necessary condition. Consider the linear order induced on the set of
points by heights relative to the line. This order changes only when the slope of the
line coincides with one of the s;’s, in which case the ranks of the two points associated
with the critical slope are interchanged. This observation enables us to keep track of
the sets T*, T~ as we continuously change the slope of the line. Specifically, the sets
T*, T~ change only when the pair of points involved in a critical slope consists of no
more than one member from either set. We note that some of the critical slopes may
coincide (if three or more points are colinear), however this does not affect the
complexity of the algorithm since we traverse all the pairs of points in any case. Given
a, b and the sets T, T, ¢ may be redefined as —max {ax; + by;: i€ T*} and then the
weighted sum of distances becomes

(a2+b2)A1/2[( Y wxi— Y w,-x,-)a+( Y owyi— Z, wiyi>b+( Y owi— ¥ w,-)c].

ieT* ieT™ ieT™ ieT ieT™ ieT™
Suppose that we keep track of the sets T and T~ as well as the quantities

Y owix, L wX, L Wys L Wy, L W, 2w, max{ax;+by;;£T"}
ieT™ ieT™ ieT™ ieT™ ieT" ieT™

when we sweep the slopes in a nondecreasing order. Then it takes only O(n?) time
to evaluate the objective function at all O(n?) critical slopes and choose the optimal
slope. (To avoid the square-root operation we may instead maximize our objective
function squared.)

3. The rectilinear problem. In the present section we consider the 1-line-median
problem in the case where the distances are measured rectilinearly, i.e.,

d(xy, yis X5 y7) = Ixi = x| + |y — yjl.

It turns out that the distance between a line {ax +by +¢ =0} and a point (x; y;) is
given simply by |ax; + by; +c|/max (|a|, |p|). In other words, if the slope of the line is
between —1 and 1, then the distance is measured from the point to the line in parallel
to the y-axis; otherwise it is measured in parallel to the x-axis. Thus, we can solve
two problems: one in which all distances are measured in parallel to the y-axis and
another one in which they are measured in parallel to the x-axis; we then select one
of the two accordingly.

We shall now describe an algorithm for finding a straight line y = ax +b so as to
minimize ZLI w; ]yi —ax;—b l This problem resembles the problem of linear regression
where we seek best fit in least squares. However, we do not have available a nice
formula for this least-distances line like the one for the regression line. Nevertheless,
the present case is more favorable than the Euclidean one due to convexity properties
which are discussed below.

Letf(a, b)=Y,_, wily; —ax; —b| and g(a) = min, f(a, b). Obviously, f(a, b) is con-
vex and this implies that g(a) is convex.

We will find the minimum of g(a). We note that the function g(a) is linear on
intervals between consecutive slopes of lines determined by two of the given points.
Thus, g(a) is piecewise linear with breakpoints only at these values. The latter can
be proved along the lines of Lemma 1. It is easy to devise an O(n” log n) algorithm
like the one in § 2. We will, however, develop a more efficient algorithm, exploiting
the convexity of g.

It is easy to verify that, given a, the number b = b(a) which minimizes f(a, b) is
a weighted-median of the set {y; — ax;}. Thus, g(a) can be evaluated in O(n) time [1].
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Furthermore, even if a is a breakpoint of g, we can evaluate the one-sided derivatives
g.(a), g_(a) of g at a. This is carried out as follows. Let §™ ={i: y; —ax; <b},
S°={i: y;—ax;=b} and §* ={i: y; —ax, >b}. We know that w(S~), w(S§*) =3 W. (For
any X {1,2,:-+,n}, w(X)=X,.xw:.) Consider the set S° with the order induced
by the x/s. According to our choice of b, §°# &, Thus, there exists an i € $° such
that thesets S°” ={j € §% x, >x;} and § ={jeS%x, <x;}satisfy w(S)+w(S°)=3W
and w(S™)+ w (SO )=3iW. If £ >0 is sufficiently small, then b(a +¢)=y;—(a +¢)x:
This implies that g4 (a) =X, cs-uso- WiXi — Ljesuso WiXi §°* and §° can be obtained
in O(n) time, [1], which is, therefore, also the time to compute g’ (a). The evaluation
of the left-hand side derivative is analogous. Thus we conclude that for a given a, it
takes O(n) time to compute g(a), g4 (a) and g’ (a).

Let a* denote the slope of the 1-line-median. For any a if g/ (a)<0, thena =a*
and if g’ (a)>0, then a Za™; otherwise, g_(a)=0=g' (a) and that implies a =a*,
This enables us to search for a* efficiently.

We will search for a’ by applying a general method for solving parametric
combinatorial problems first introduced in [6]. Efficient implementations are achieved
with the aid of parallel computation algorithms as explained in [7]. The application
in the present case is as follows. We utilize a parallel sorting algorithm by Preparata
[8] which employs n logn “processors” and runs in O(log n) time. We will sort the
set {1, - -, n} by the numbers {y; —a*x;} without actually knowing the value of a*.
Instead, throughout the process an interval [a, 8] such that a« =a™ =g will be main-
tained. At any stage, the interval will have the property that the outcomes of all the
comparisons executed so far will be independent of a provided a € [a, B]. Finally, the
entire order will be constant over the current interval.

Suppose that we sort the set {y, —ax;}, where a is restricted to some interval
[«, 8], but unspecified yet. Then, when we need to compare some y; —ax; with y; —ax;,
the ratio a’ = (y; —y;)/(x; —x;) becomes critical for that comparison. However, we can
test in O(n) time whether a’=a* or a’'=a™ and update the interval accordingly.
Corresponding to each step in Preparata’s sorting scheme, there will be n log n such
critical values produced, one by each processor. We can search the set of critical
values for a*, namely, we will perform a binary search uatil our interval is narrowed
down so that it does not contain any critical value in its interior. This binary search
requires O (log n) tests, where each test decides whether a critical point is to the left
or to the right of a*. Thus a single stage requires O(n log n) time. However, the
entire sort runs in O(log n) stages, so that our algorithm finds in O(n Iog2 n) time an
interval [ao, Bo] such that a* € [ao, Bo] and g(a) is linear over [ao, Bo]. Finding a* is
now straightforward.

To conclude this section we contrast our O(n log2 n) algorithm with the different
solution approaches to the problem which have appeared in the statistics literature.
The first approach was to apply infinite iterative processes to find the least weighted
absolute deviation line. References [4], [10] represent this approach. It should be
noted that some of these iterative procedures do not even guarantee convergence
(e.g., [10]). The second approach (e.g., [2], [3], [12]) was to formulate and solve the
problem as a linear programming problem. These methods (which are also applicable
to the multidimensional case) are finite, but it is not at all clear whether their bounds
are polynomial in the number of points. To our knowledge, the method in [9], [11]
is the only one which has a polynomial bound. Using our notation, the method amounts
to the evaluation of all the breakpoints of the piecewise linear function g(a), which
are between some arbitrary value @ and a* (the minimum of g(a)). In the worst-case
all the breakpoints of g(a) may have to be looked at. Since no method is known to
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perform this task in o (n?) time, our O(n log” n) algorithm improves considerably over
all existing methods.
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