Efficient Computation of Equilibria for
Extensive Two-Person Games

Daphne Koller* Nimrod Megiddo!
daphne@cs.berkeley.edu megiddo@almaden.ibm.com

Bernhard von Stengel’
stengel@icsi.berkeley.edu

February 8, 1995

Revised version, submitted to GAMES AND EcoNOMIC BEHAVIOR

Abstract. The Nash equilibria of a two-person, non-zero-sum game are the
solutions of a certain linear complementarity problem (LCP). In order to use
this for solving a game in extensive form, it is first necessary to convert the
game to a strategic description such as the normal form. The classical normal
form, however, is often exponentially large in the size of the game tree. In
this paper we suggest an alternative approach, based on the sequence form of
the game. For a game with perfect recall, the sequence form is a linear sized
strategic description, which results in an LCP of linear size. For this LCP, we
show that an equilibrium is found by Lemke’s algorithm, a generalization of
the Lemke-Howson method.

Keywords. Equilibrium, extensive game, Lemke-Howson algorithm, linear
complementarity, sequence form.

*Computer Science Division, University of California, Berkeley, CA 94720; and IBM Almaden
Research Center, 650 Harry Road, San Jose, CA 95120

'IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120; and School of Mathe-
matical Sciences, Tel Aviv University, Tel Aviv, Israel

Hnternational Computer Science Institute, 1947 Center Street, Berkeley, CA 94704-1105; and
Informatik 5, University of the Federal Armed Forces at Munich, 85577 Neubiberg, Germany



List of Symbols

A

QT ww
|

§®@3§Nb‘\hﬁm by & O

< <
55 g

wow o8 og,

IS

payoff matrix player 1

payoff matrix player 2

inverse of basis matrix for pivoting
constant LCP vector

choice set

choice

LCP covering vector

constraint matrix for player 1

right hand side of player 1’s constraints
constraint matrix for player 2

right hand side of player 2’s constraints
entering column for pivoting

n x n identity matrix

LCP matrix

LCP dimension

dual vector for player 1

dual vector for player 2

information set

vector of basic variables

entering variable for pivoting

LCP vector of slack variables

(w with tilde) direction of secondary ray
vector of decision variables for player 1
vector of decision variables for player 2
LCP vector of variables

(z with tilde) direction of secondary ray
auxiliary variable for augmented LCP

(zo with tilde) direction of secondary ray

Greek letters

&
Oy

Ty

perturbation for nondegeneracy
sequence leading to u

sequence with last choice ¢ at u



1. Introduction

In this paper, we consider extensive two-person games with general payoffs, where
the players have perfect recall. Until recently, most methods for computing equilibria
for extensive games involved converting the game to its normal form. While efficient
solution algorithms exist for normal-form games, the conversion itself typically incurs
an exponential blowup, since the number of pure strategies, even in the reduced
normal form, is often exponential in the size of the game tree.

The normal form and the associated blowup can be avoided by considering
sequences of choices instead of pure strategies. Instead of mixed strategy probabil-
ities, the realization probabilities for playing these sequences can serve as strategic
variables of a player. The number of these variables is linear instead of exponential
in the size of the game tree. They were introduced by Koller and Megiddo (1992),
who used them for one of the players in the game. The sequence form of an exten-
sive game, described in the paper by von Stengel (1995) in this journal issue, is a
strategic description where all players are treated symmetrically. The equilibria of a
two-person non-zero-sum game are the solutions to a small linear complementarity
problem (LCP) corresponding to the sequence form. (For a summary of these and
other results, including some material of the present paper, see Koller, Megiddo,
and von Stengel 1994.)

The LCP arising from a (normal form) bimatrix game can be solved by the
algorithm by Lemke and Howson (1964), which is said to be efficient in practice;
for a nice exposition see Shapley (1974). That algorithm finds a solution to a
certain LCP with arbitrary nonnegative variables. The LCP solutions correspond to
equilibria of the bimatrix game if the variables are normalized so that they represent
mixed strategy probabilities. Unfortunately, the standard Lemke-Howson algorithm
cannot be applied to the LCP resulting from the sequence form, since realization
probabilities for sequences are defined by more complicated equations. This problem
is solved in the present paper. Instead of the Lemke-Howson method, we use the
related but more general algorithm by Lemke (1965). Since Lemke’s algorithm is
also said to be efficient in practice, this provides an effective algorithm for finding
equilibria of general two-person games in extensive form.

The present paper is self-contained and partly expository. In Section 2, we
briefly define the sequence form for an extensive two-person game, and derive the
corresponding LCP. In Section 3, we give an exposition of Lemke’s algorithm since
it is not widely known to game theorists, and since the treatment of degenerate
problems has to be supplemented. We have drawn most of the technical mate-
rial on linear complementarity from the book by Cottle, Pang, and Stone (1992).
In Section 4, we prove that Lemke’s algorithm terminates with a solution for our
application. In the concluding Section 5, we compare our result with earlier work.



2. The Sequence Form for Extensive Two-Person Games

We use the following conventions for extensive games; for details see von Stengel
(1995). An extensive game is given by a tree, payoffs at the leaves, chance moves,
and information sets partitioning the set of decision nodes. The choices of a player
are denoted by labels on tree edges. We assume for simplicity that any labels
corresponding to different choices are distinct. For a particular player, any node of
the tree defines a sequence of choices given by the respective labels (for his moves
only) on the path from the root to the node. We assume that both players have
perfect recall. By definition, this means that all nodes in an information set u of a
player define for him the same sequence o, of choices. Under that assumption, each
choice ¢ at u is the last choice of a unique sequence o,c. This defines all possible
sequences except for the empty sequence ().

The sequence form of an extensive game is a strategic description similar to
the normal form, but where sequences replace pure strategies. The probabilities for
playing these sequences and the resulting payoffs are specified as follows.

For player 1, a nonnegative vector z, called a realization plan, represents the
realization probabilities for the sequences of player 1 when he plays a mixed strategy.
These can be characterized by the equations z({)) = 1 and

—x(oy) + Z z(oye) =0
ceCly
for all information sets u of player 1, where x(0)) and z(o,c) for all sequences o,c¢
are the components of x, and C, is the set of choices at u. (A realization plan
x satisfying these equations corresponds to the behavior strategy that makes the
choice ¢ at u with probability x(oc)/x(0,) if the denominator of this term is pos-
itive, and arbitrarily otherwise.) A realization plan y for player 2 is characterized
analogously. We abbreviate these equations for the nonnegative vectors = and y
using the constraint matrices F and F' and right hand sides e and f by

Exr=e and Fy=1f. (2.1)

The first row of these matrix equations represents the realization probability one for
the empty sequence, so ¢ and f are equal to the vector (1,0,...,0)T of appropriate
dimension. The other rows correspond to the information sets of the respective
player. A typical constraint matrix is

1
-1 1 1
E=|" (2.2)
—1 1 1 1

for a player 1 with three information sets which have two, two, and three choices,
respectively, and where the first choice at the first information set precedes both the
second and third information set.



The payoffs to player 1 and 2 are represented by matrices A and B, respectively.
Each row corresponds to a sequence of player 1, each column to a sequence of
player 2. Each leaf of the game tree defines a pair of sequences. Pairs of sequences
not defined by a leaf have matrix entry zero. For a pair of sequences defined by a
leaf, the player’s payoff is his payoff at the leaf if there are no chance moves. If there
are chance moves, a pair of sequences may correspond to more than one leaf. The
payoff entry is then the sum, over all leaves that define the given pair of sequences,
of the payoff at the respective leaf times the probability that chance moves allow
reaching it. The resulting payoff matrices A and B are sparse and have a linear
number of nonzero entries. For realization plans x and y, the expected payoffs to
player 1 and 2 are then 27 Ay and 27 By, respectively.

Using these expected payoffs and the linear constraints (2.1), we can charac-
terize an equilibrium of the game as a solution to a certain LCP. An equilibrium is
a pair x,y of mutual best responses. In particular, if the realization plan y is fixed,
then x is a best response to y if and only if it is an optimal solution of the linear
program

~—

maximize ' (Ay
X

subject to 2T ET = e, (2.3)
x > 0.
The dual LP to (2.3) has an unconstrained vector p of variables and reads
minimize elp
b (2.4)

subject to ETp > Ay.

Feasible solutions x, p of these two LPs are optimal if and only if the two objective
function values are equal, that is, 7 (Ay) = eIp. By the constraints in (2.3) this is
equivalent to z(Ay) = 2T ETp or

e (=Ay+ ETp)=0. (2.5)

This condition is known as ‘complementary slackness’ in linear programming. It
states that two nonnegative vectors are orthogonal, which means that they are
complementary in the sense that they cannot both have a positive component in the
same position.

In the same way, y is a best response to x if and only if it satisfies the constraints
Fy=f —y=0 (2.6)
and there exists a vector ¢ such that

Flg> BTx (2.7)



and

y'(=BTz 4+ FTq) = 0. (2.8)
The expected payoff to player 2 is yT(BTz).

Thus, any equilibrium x,y is part of a solution x,y, p,¢ to the constraints in
(2.3)—(2.8). These constraints define a linear complementarity problem (LCP). An
LCP in standard form is specified by a pair b, M with a vector b in R" and an n xn
matrix M (see Cottle, Pang and Stone 1992, p. 1). The problem is to find z € R"
so that

z>0
b+ Mz2>0 (2.9)
b+ Mz)=0.

In order to translate our LCP into this standard form, we introduce nonnegative
vectors p’, p” and ¢, ¢"” of the same dimension as the unconstrained vectors p and ¢,
respectively, and represent the latter by p = p'—p” and ¢ = ¢’—¢”. The nonnegative
vector z of LCP variables is then z = (z,y,p,p", ¢, ¢")'. Furthermore, we let

-A BT —ET 0
BT J - 0
—F e
M = I and b= . (2.10)
F —f

Then, b+ M=z > 0 is obviously equivalent to the constraints: ETp > Ay as in (2.4),
(2.7), and (2.1). Finally, the complementarity condition 2% (b + Mz) = 0 in (2.9)
is equivalent to (2.5) and (2.8) since the remaining conditions p’T(e — Fz) =0 etc.
are implied by (2.1). To this LCP, we will apply Lemke’s algorithm.

3. Lemke’s Algorithm

Lemke (1965) described a complementary pivoting algorithm for finding a solution
to an LCP of the general form (2.9). We describe it briefly in this section; for more
detailed expositions see Murty (1988, pp. 63-84) and Cottle, Pang and Stone (1992,
pp. 270-280 and 336-342).

For Lemke’s method, the system (2.9) is rewritten and generalized as follows.
Let I be the n x n identity matrix and d be an n-vector with positive components
(for example, d = (1,...,1)T). Using an auxiliary variable zo, the term b+ Mz in
(2.9) is replaced by b+ dzo+ Mz, which is denoted by the n-vector w. The problem
generalizing (2.9) is that of finding w > 0, zo > 0, and z > 0 so that

Tw—dzg—Mz=10 (3.1)



and zTw = 0 hold. A solution w, g, z to this problem defines a solution to (2.9) if
and only if zg = 0.

In (3.1), the vector b is represented as a nonnegative linear combination of
certain columns of the matrix [/, —d,—M]. Like the simplex algorithm for linear
programming, Lemke’s algorithm traverses basic solutions of this system. These
are nonnegative solutions where only n linearly independent columns, called basic
columns, of the matrix are linearly combined. The corresponding coefficients are n
basic variables and represent the basis, a subset of {wy,...,w,, 20,21,...,2,}. All
nonbasic variables have value zero. The system (3.1) is called nondegenerate if basic
variables are always positive.

Basic solutions are changed by the following pivoting operation. The n basic
columns of [I, —d, —M] define a nonsingular n x n submatrix B, so that the vector
vp of basic variables is vg = B~'b. The algorithm chooses (see below) some nonbasic
variable v; as entering variable; let h denote the corresponding matrix column. The
algorithm then moves to a new basic solution where v; is a basic variable. It lets
v; become positive and preserves the equation (3.1), that is, Bvg + hv; = b, or
equivalently

UV = B_lb — B_lh Ui . (32)

In the standard case, the entering column B~'h has at least one positive component.
Then there is a maximum choice of v; in (3.2) so that vg stays nonnegative, while
some component of this vector becomes zero. This is made the leaving variable. It
leaves the basis and is replaced by the entering variable v;. That operation is called

a pivot and is easily computed from B7'b and B~'h. It requires an update of the
basis and of B71.

For 1 < ¢ < n, the variables z; and w; are called complementary. Lemke’s
algorithm computes with almost complementary basic solutions, where the basis
contains at most one variable of each complementary pair z;,w; for 1 < 1 < n,

Tyw = 0.

and may also contain zp. For an almost complementary basic solution, z
(A nonbasic solution w, zg, z to (3.1) with 2Tw = 0 is also called almost complemen-
tary.) If zo is nonbasic, then the LCP is solved. If z; is one of the n basic variables,
then there is a complementary pair z;,w; where both variables are nonbasic, and
either can be made an entering variable. This leads to the following algorithm.

Tw =0. If w = b+ dzy and z is sufficiently

For initialization, let z = 0, so z
large, then w is nonnegative since d > 0, and (3.1) is satisfied. The set of these
almost complementary solutions is called the primary ray. Let zo be minimal such
that w = b+ dzp > 0. Unless b > 0 (in which case the LCP is solved imme-
diately), zo is positive and some component w; of w is zero. The resulting basis
{wy, ... Wi_1, W1 ..., Wy, 20} defines the initial almost complementary basic solu-
tion to (3.1). Decreasing zo from infinity until the endpoint of the primary ray is

reached where w; becomes zero can be thought of as a pivot where z; has entered



and then w; leaves the basis. Next, the complement z; of the variable w; that has
just left is chosen to enter the basis; this starts the main loop of the algorithm.

In the main step of the algorithm, the entering variable v; is increased in (3.2)
until some basic variable becomes zero, which is made the leaving variable. Then,
a pivot is performed. If the leaving variable was zg, then the LCP is solved. If the
leaving variable was not zg, choose its complement has the new entering variable
and repeat the step. (This is known as the ‘complementary’ pivoting rule.)

This algorithm solves the LCP (2.9) except for two possible problems: ray
termination and degeneracy. Geometrically, the nonnegative solutions to (3.1) define
a polyhedron where the basic solutions represent vertices. Increasing v; in (3.2)
means moving along an edge to an adjacent vertex. In that way, the algorithm traces
a path consisting of almost complementary edges beginning with the primary ray. A
secondary ray results if the entering column B~'% in (3.2) has no positive component
since then v; can be increased indefinitely. (The analogous phenomenon occurs with
the simplex algorithm for an unbounded LP objective function.) For certain LCPs,
ray termination can be excluded, which will be the case in our application.

The second problem is cycling, that is, an almost complementary basis is re-
peated in the computation. In that case, the corresponding vertex on the computed
path is met by three or more almost complementary edges (two on the path where
the vertex appeared the first time, the third when it is encountered again). At such
a vertex, several edges can be followed, so that there must be a tie as to which
variable should leave the basis. Since only one of them can be chosen to leave the
basis, after pivoting the other will still be basic but have zero value. This means
(3.1) is degenerate. Thus, if we can eliminate degeneracy, the leaving variable is
unique, no basis is revisited, and the algorithm must terminate.

Degeneracy is avoided if the vector b is slightly perturbed by replacing it by

be)=b+(g,...,e")T, where ¢ is positive but very small. As in (3.2), the value of
the entering variable v; is then chosen to be the maximum subject to

B+ B (e, e — B7'he; > 0. (3.3)

We will show that the increase of v; is blocked (if at all) by a unique row in (3.3):
Consider any two rows j and k of the inequalities (3.3) where the components ¢;
and ¢y, say, of the entering column B~'h are positive (only such rows matter). De-
note the jth and kth row of [B™'b, B™'] by (aj0,aj1,- .., a;n) and (aro, ki, .-y agn),
respectively. The corresponding inequalities in (3.3) are

2

50 + Cl]‘1€ + Cl]‘2€ + -+ Cl]‘nafn — C; Z 0,
2

ako + ap1€ + apoe” + -+ appe” — cpv; > 0.

It is easy to see that if ¢ is sufficiently small, then row j blocks the increase of v;
earlier than row k if and only if the row vector 1/¢; - (ajo,aj1,-..,aj,) is lexico-
graphically smaller than 1/e¢g - (aro, k1, .- ., akn), that is, it is smaller in the first



component where the vectors differ; furthermore, these vectors are not equal since
B! is nonsingular. In that way, the leaving variable is uniquely determined by a
‘lexico-minimum ratio test’ (which is also known for the simplex algorithm; see, for
example, Chvatal 1983, p. 36). Thereby, ¢ can be treated as if it is ‘just vanishing’
(that is, zero), so that the computed solutions are not changed. Interpreted for
the perturbed system, the lexicographic rule preserves the invariant that all basic
variables are positive (which implies nondegeneracy), although some of them may
be vanishingly small.

4. Solving the LCP for the Sequence Form

We will apply Lemke’s algorithm to the LCP derived from the sequence form. In
order to show that the algorithm terminates with a solution in this case, we must
show that it cannot terminate with a secondary ray. This latter possibility can
be excluded when the vector and matrix defining the LCP have certain properties;
such ‘matrix classes’ have been widely researched in the literature on LCPs. In
our application, we use such a property stated in Theorem 4.4.13 by Cottle, Pang
and Stone (1992, p. 277); this theorem is also implicit in earlier work by Lemke
(1965) and Cottle and Dantzig (1968). We state this result in Theorem 4.1 below.
The proof is not new, but we present it here in a single piece as a convenience
to the reader; in the literature, various LCP matrix classes, ray termination, and
degeneracy are often studied separately and with their own terminology that is not
necessary here. Furthermore, we have slightly generalized the theorem to degenerate

LCPs.

For a degenerate LCP, cycling is avoided by the lexicographic method. How-
ever, the mentioned Theorem 4.4.13 could, at first glance, fail because its proof
considers a basic solution (the endpoint of a secondary ray) where z, is a basic
variable with positive value. In a degenerate problem, zy; may be zero, and the
conclusion of the theorem is invalid if degeneracy is ignored completely, as Exam-
ple 4.4.16 in Cottle, Pang and Stone (1992, p. 279) shows. This poses no difficulty
since in a basic solution where the variable zg is basic but zero, it can be chosen to
leave the basis (before invoking the lexicographic rule) and a solution to the LCP is
at hand. As a slight generalization of known results, we show that no harm is done
if the lexicographic rule is used alone; other than in this respect, the following proof
is not new.

Theorem 4.1. If (i) z7Mz > 0 for all = > 0, and (ii) = > 0, Mz > 0 and
2TMz =0 imply 27b > 0, then Lemke’s algorithm computes a solution of the LCP
(2.9) and does not terminate with a secondary ray.

Proof. Suppose M and b satisfy (i) and (ii), and assume to the contrary that Lemke’s
algorithm terminates with a secondary ray. Let (w, zo, z) denote the endpoint of the

7



ray. This is a basic solution of (3.1), where the vector vg of basic variables includes zq
since it would otherwise solve the LCP. We assume first that zy is positive.

Ray termination means that the entering column B~'% in equation (3.2) is
nonpositive. The elements of the secondary ray result if v; in that equation takes
any nonnegative value. They can be written as (w, zo, )+ A(wW, Zo, 2) for A > 0 (with
A = v;). The vector (w, Zg, 2) is nonnegative; its components are the components of
—B71h, a one in the place of the entering variable, and zero otherwise.

Since the elements of the secondary ray are solutions to (3.1), this equation for
A =0 and A =1 implies
w=dz+ M:2. (4.1)

Furthermore, it is easy to see that Z # 0 since the secondary ray is not the pri-
mary ray (Cottle, Pang and Stone 1992, p. 275). Because its elements are almost
complementary, one can infer

0=7:T0p=:3Tdso+ "Mz .

This equation has been stated by Lemke (1965, p. 687, equation (20) with Zy = wo,
Z = u), and by Cottle and Dantzig (1968, p. 116, equation (37)). It implies Zo = 0
since Z is nonnegative and nonzero and d > 0, and since the last term is nonnegative
by assumption (i). Thus, 2T Mz = 0, and by (4.1), @ = Mz > 0. Assumption (ii)
therefore implies 276 > 0. We derive a contradiction to this conclusion as follows,
where the inequality follows from (i):

0=(z+ A%)T(w + Aw)
= (2 4+ M) (b + dzo + M(2 4+ \2))
> (2 4+ AT (b + dz)
= ZT(b + dzo) + )\éT(b + dzp).

The last term is nonpositive for all A > 0 only if 27(b + dzp) < 0, or equivalently,
2Th < —27(dzo) < 0, contradicting (ii).

Permitting degeneracy, let the endpoint (w, zo, z) of the secondary ray be such
that zp 1s a basic variable but has value zero. Because this basic solution has
been computed using lexicographic degeneracy resolution, there is a perturbation
of (3.1) where b is replaced by b(c) = b+ (g,...,e")T for some small positive ¢,
and the same basis defines a (perturbed) solution that is nondegenerate so that
Zo 18 positive. For the perturbed system, there is still a secondary ray since the
nonpositive entering column B~'% in (3.2) does not depend on b. With the same
argument as before, we can now conclude 27b(¢) < 0, which is again a contradiction
to (ii) since 2Tb(c) = 2T+ zT(e,...,e™)T > 2Th. This shows that the theorem
holds even if Lemke’s algorithm encounters degenerate solutions, provided it uses
the lexicographic method. [



We apply this theorem to the LCP defined by (2.10) using the following two
lemmas, where the first is immediate from the structure of the constraint matrices,
as example (2.2) illustrates.

Lemma 4.2. The only nonnegative solutions = and y to Fx =0 and Fy = 0 are
x=0and y =0.

Lemma 4.3. If £7p > 0 and F'7¢ > 0 then ep >0 and f7¢g > 0.

Proof. Consider the following LP: maximize 0 subject to Kz = e, x > 0. It is
feasible, so the value 0 of its objective function is a lower bound for the objective
function of the dual LP: minimize e’ p subject to ETp > 0. Hence, if ETp > 0 then
el'p > 0. Similarly, F7q > 0 implies fT¢ > 0. L]

Theorem 4.4. If A <0 and B <0, then M and b in (2.10) satisfy all assumptions
of Theorem 4.1.

Proof. Let z = (z,y,0,0",¢',¢")7 > 0 and p = p' —p", ¢ = ¢ — ¢" as above.
Then Mz = 2T(—A — B)y > 0, satisfying (i). For (ii), Mz > 0 is equivalent
to —Ay + ETp > 0, =BTz 4+ FTqg > 0, Fx = 0 and Fy = 0. This implies, by
Lemma 4.2, + = 0 and y = 0, and therefore ETp > 0 and FTq > 0, so that by
Lemma 4.3, efp > 0 and fTq > 0. We conclude that z7b = b"z = eTp + fTq > 0.
(Note that we did not use the assumption 2" Mz = 0.) [

The conditions A < 0 and B < 0 can be assumed without loss of generality,
by subtracting a constant from the payoffs to the players at the leaves of the tree so
that these become nonpositive. This transformation does not change the game. The
same assumption is made for the algorithm by Lemke and Howson (1964). Without
this condition, easy examples show that Lemke’s algorithm may terminate with a
secondary ray instead of an LCP solution.

5. Conclusions and Comparison with Related Work

We have shown that Lemke’s algorithm, applied to our LCP, terminates with a
solution. Since all solutions to the LCP are equilibria, this shows that our algorithm
finds some equilibrium of the game in extensive form. Our algorithm can also be
used to solve bimatrix (i.e., normal form) games. The game is represented as an
extensive game in the standard way, where each player has only one information set
and his choices are his strategies. The sequence form of that game has essentially the
same payoff matrices as the normal form. Clearly, there is a direct correspondence
between the equilibria in the two representations of the game, so that our algorithm,
applied to the sequence form, also constructs an equilibrium for the bimatrix game.
For such games, however, the algorithm by Lemke and Howson (1964) also finds an

9



equilibrium. It is known that certain equilibria of bimatrix games may be ‘elusive’
to the Lemke-Howson method (Aggarwal 1973). Since the two algorithms operate
similarly, we conclude that certain equilibria may be elusive to our method as well.

The size of the sequence form is linear in the size of the extensive game, whereas
the size of the normal form is generally exponential. Therefore, our algorithm is
exponentially faster than the standard Lemke-Howson method applied to the normal
form. Our method also needs exponentially less space if the entire normal form is
stored. There are two other algorithms for solving two-person extensive-form games
that avoid the conversion to normal form and the associated exponential blowup.
These are based not on the idea of sequences, but on the idea of mixed strategies with
small supports. The support of a mixed strategy is the number of pure strategies to
which it gives positive probability.

Wilson (1972) presented a variant of the Lemke-Howson algorithm for solving a
two-player game with perfect recall that uses the extensive form directly. There are
two important differences between Wilson’s variant and the original Lemke-Howson
algorithm. First, Wilson’s method never deals with the entire LCP. Rather, it
generates pivoting columns for the Lemke-Howson algorithm directly from the game
tree. These columns are best-response pure strategies, and can be found by backward
induction, using the perfect recall structure of the information sets. This leaves the
problem of storing an intermediate solution during the search for an equilibrium,
which still requires exponential space in the size of the game tree. In order to avoid
this problem, Wilson’s algorithm only maintains a subset of the basic variables at
each point, namely those variables corresponding to mixed-strategy probabilities.
The basic variables corresponding to the ‘slack variables’ are not stored explicitly,
but are recomputed as needed.

Wilson did not prove formally why his algorithm should provide significant sav-
ings. He just observed empirically that “the frequency of equilibria using only a very
few of the available pure strategies is very high.” Koller and Megiddo (1995) proved
that Wilson’s approach (or a slight variant of it) is efficient because it suffices to con-
sider mixed strategies with small support. They showed that two mixed strategies
with the same realization probabilities for the leaves are realization equivalent. This
implies that any mixed strategy has a realization equivalent mixed strategy whose
support is at most the number of possible sequences (and is hence linear in the size
of the game tree). In addition to showing that Wilson’s empirical observation was
justified, Koller and Megiddo constructed an algorithm for finding all equilibria of
an extensive two-person game that runs in exponential time in the size of the game
tree (and not in the large size of the normal form). Their algorithm enumerates all
small supports for both of the players, and attempts to construct an equilibrium
over that support pair. Unlike Wilson’s algorithm and the method presented here,
their algorithm constructs all equilibria, and works in exponential time even if the

10



game has imperfect recall. However, since it is based on complete enumeration, its
running time is exponential in all cases, not just in the worst case.

The sequence form can also be used in an algorithm that enumerates all equi-
libria. It can be shown that all equilibria of a game can be found by enumerating the
complementary basic solutions to (3.1) (where zg = 0). Thereby, each of the 2" sets
of variables containing one variable of each complementary pair z;,w; for 1 <2 <n
is tested for being a nonnegative basic solution to (3.1). If this is the case, it solves
the LCP (2.9). Mangasarian (1964) showed that in the case of bimatrix games this
suffices to derive all equilibria. It is possible to show that the same argument applies
also to the LCP defined by the sequence form.

The running time of our algorithm is also at worst exponential in the size of
the extensive game (this is known for Lemke’s algorithm even if applied to zero-
sum games). However, this seems to be a rare case, like the exponential worst-case
behavior of the simplex algorithm. In practice, it is likely that our method, like
the simplex method, will be much faster. The complexity of constructing some
equilibrium of a bimatrix game is currently unknown; this is a difficult open question.
Related problems, such as finding an equilibrium with maximum payoft for a player,
were shown to be NP-hard by Gilboa and Zemel (1989). The problems they discussed

can be solved by a process that enumerates all equilibria.

As a topic for further research, it may be interesting to study further the
computation by Lemke’s algorithm in terms of the extensive game. Wilson (1972)
interpreted the entering columns in the Lemke-Howson algorithm as best responses
against the current pair of mixed strategies. In the case of the sequence form, the
components of p and ¢ in (2.4) and (2.7) can be interpreted as payoff contributions
of optimal choices at information sets (von Stengel 1995, Section 6). It is therefore
quite possible that, as in Wilson’s algorithm, the entering columns can be inter-
preted as choices at information sets that are best responses against the current
pair of realization plans. This might allow us to use the sequence form to construct
equilibria satisfying certain local optimality conditions, such as subgame perfection.

Acknowledgements

We would like to thank Richard Cottle and Lloyd Shapley for stimulating dis-
cussions. Research supported in part by ONR Contracts N00014-91-C-0026 and
N00014-94-C-0007, by the Air Force Office of Scientific Research (AFSC) under
Contract F49620-91-C-0080, by a University of California President’s Postdoctoral
Fellowship, by the Volkswagen Foundation, and by the German-Israeli Foundation
for Scientific Research and Development (G.ILF.). The United States Government
is authorized to reproduce and distribute reprints for governmental purposes.

11



References

V. Aggarwal (1973), On the generation of all equilibrium points for bimatrix games through
the Lemke-Howson algorithm. Mathematical Programming 4, 233-234.

V. Chvatal (1983), Linear Programming. Freeman, New York.

R. W. Cottle and G. B. Dantzig (1968), Complementary pivot theory of mathematical
programming. Linear Algebra and Its Applications 1, 103-125.

R. W. Cottle, J.-S. Pang and R. E. Stone (1992), The Linear Complementarity Problem.
Academic Press, San Diego.

I. Gilboa and E. Zemel (1989), Nash and correlated equilibria: Some complexity consider-
ations. Games and Economic Behavior 1, 80-93.

D. Koller and N. Megiddo (1992), The complexity of two-person zero-sum games in ex-
tensive form. Games and Economic Behavior 4, 528-552.

D. Koller and N. Megiddo (1995), Finding mixed strategies with small supports in exten-
sive games. International Journal of Game Theory, to appear.

D. Koller, N. Megiddo, and B. von Stengel (1994), Fast algorithms for finding randomized
strategies in game trees. Proceedings of the 26th ACM Symposium on Theory of
Computing, 750-759.

C. E. Lemke (1965), Bimatrix equilibrium points and mathematical programming. Man-
agement Science 11, 681-689.

C. E. Lemke and J. T. Howson, Jr. (1964), Equilibrium points in bimatrix games. Journal
of the Society for Industrial and Applied Mathematics 12, 413-423.

0. L. Mangasarian (1964), Equilibrium points in bimatrix games. Journal of the Society
for Industrial and Applied Mathematics 12, 778-780.

K. G. Murty (1988), Linear Complementarity, Linear and Nonlinear Programming. Hel-
dermann Verlag, Berlin.

L. S. Shapley (1974), A note on the Lemke-Howson algorithm. Mathematical Programming
Study 1: Pivoting and Extensions, 175-1809.

B. von Stengel (1995), Efficient computation of behavior strategies. Games and Economic
Behavior, this issue.

R. Wilson (1972), Computing equilibria of two-person games from the extensive form.
Management Science 18, 448-460.

12



