A GOOD ALGORITHM FOR LEXICOGRAPHICALLY OPTIMAL FLOWS IN MULTI-TERMINAL NETWORKS

BY NIMROD MEGIDDO

Communicated by Alston S. Householder, December 27, 1976

ABSTRACT. Let a network have several sources and sinks. For any flow f let σ^f and τ^f denote the vectors of net flows out of the sources and into the sinks, respectively, arranged in order of increasing magnitude. Our algorithm computes an f for which both σ^f and τ^f are lexicographic maxima. For a network with n nodes this algorithm terminates within $O(n^5)$ operations.

1. The problem. A network (N, c) consists of a set of nodes $N = \{1, \ldots, n\}$ $(n \ge 1)$ and an $n \times n$ nonnegative matrix c of capacities. $S \subset N$ is a nonempty set of sources and $T \subset N$ $(T \cap S = \emptyset)$ is the set of sinks. A flow f is an $n \times n$ matrix such that $0 \le f_{ij} \le c_{ij}$ $(i, j \in N)$ and $\sum_{j=1}^{n} (f_{ij} - f_{ji}) = 0$ for $i \notin S \cup T$. Denote s = |S|, t = |T|.

Let $\sigma^f[\tau^f]$ denote the s-tuple [t-tuple] of the numbers $\Sigma_{j=1}^n(f_{ij}-f_{ji})$, $i \in S[\Sigma_{j=1}^n(f_{ji}-f_{ij}), i \in T]$ arranged in order of increasing magnitude. f is called *optimal* if it maximizes both σ^f and τ^f in the lexicographic orders on R^s and R^t , respectively.

Optimal flows reduce to maximum flows (see [5]) when s = t = 1. Existence of optimal flows is proved in [7]. The goal of this note is to present a good algorithm (in the sense of [2]) for finding an optimal flow.

- 2. The algorithm. The algorithm has two phases. In Phase I the network is decomposed to two networks, one with a single source and t sinks, and the other with s sources and a single sink. In Phase II optimal flows are found in these two networks.
- Phase I. Find a flow f which maximizes $\sum_{i \in S} \sum_{j=1}^{n} (f_{ij} f_{ji})$. Any of the following algorithms may be utilized: Karzanov [6] terminates within $O(n^3)$ operations, Dinic [1] and Even and Tarjan [4] $O(n^4)$, and Edmonds and Karp [3] $O(n^5)$. During the computation of f a set X, $S \subset X \subset N \setminus T$, is generated such that for $i \in X$ and $j \notin X$, $f_{ij} = c_{ij}$ and $f_{ji} = 0$. Next, construct the X-condensed and the $(N \setminus X)$ -condensed networks (see [7]).

PHASE II. Find optimal flows in the X-condensed and the (NX)-condensed networks independently. These two are treated symmetrically and, hence, without loss of generality assume that $S = \{1\}$.

AMS (MOS) subject classifications (1970). Primary 90B10, 90C35; Secondary 05C35, 94A20, 68A10.

Key words and phrases. Optimal flow, multi-terminal network, tree, polynomial-time algorithm.

The following terminology is used throughout Phase II. The flow is the current flow through the network. An active sink is a sink i such that it is possible to increase the net flow into i without decreasing the net flows into other sinks. The graph is a directed graph whose set of nodes is N and (i, j) is an arc if and only if $f_{ij} - f_{ji} < c_{ij}$. The manual is the subgraph consisting of all nodes and arcs of the graph that lie on a shortest chain from the source to some active sink. The tree is a directed subtree of the manual satisfying: a. The source is the root of the tree. b. Every active sink is a node of the tree. c. Every tip of the tree is an active sink.

A rough description of Phase II follows. We start with the zero flow. The manual is constructed and a tree is chosen. Next, using tree-arcs only, we increase the net flows into active sinks equally until one of the tree-arcs leaves the graph. Then, if all the active sinks remain active, another tree is chosen and another maximum equal increase is employed as before; otherwise, the new manual is determined and again a tree is chosen. The algorithm terminates when the new manual is empty, or equivalently, when no sink is active. Specifically, Phase II is processed as follows.

- Step 1. Construction of the manual. The set M of the nodes of the manual is partitioned into layers M_0, M_1, \ldots, M_r . These are constructed as follows. First, set $M_0 = S$. Then, set M_{ν} ($\nu > 0$) to consist of all graph-nodes adjacent to nodes in $M_{\nu-1}$ but do not belong to $\bigcup_{\lambda=0}^{\nu-1} M_{\lambda}$. Let M_r be the first layer such that either $\bigcup_{\lambda=0}^{r} M_{\lambda}$ contains all the active sinks, or $M_{r+1} = \emptyset$. In the latter case every sink $i \notin \bigcup_{\lambda=0}^{r} M_{\lambda}$ becomes inactive. If every sink is inactive, terminate. Next, every $i \in M_r$ which is not an active sink is deleted from M_r and, recursively, every $i \in M_{\nu-1}$ which is neither an active sink nor adjacent to a node in M_{ν} , is deleted from $M_{\nu-1}$. During the computation we maintain, for each $i \in M_{\nu}$, lists of the nodes in $M_{\nu-1}$ and $M_{\nu+1}$ which are adjacent to i.
- Step 2. Construction of a tree. Every $i \in M_r$ is a node of the tree. Suppose that the part of the tree that connects the layers M_{ν}, \ldots, M_r ($\nu \le r$) has been specified. For each $i \in M$ which either belongs to the tree or is an active sink, let j be the first node in $M_{\nu-1}$ adjacent to i. Then (j,i) also belongs to the tree. During the construction keep track of the numbers ν^i of active sinks j such that i lies on the unique chain of the tree that leads from the source to j.
- Step 3. Flow change. Let ϵ be the minimum, taken over tree-arcs, of the numbers $(c_{ij} f_{ij} + f_{ji})/v^j$. For each tree-arc (i, j), if $\epsilon v^j \leq f_{ji}$ set $f_{ji} = f_{ji} \epsilon v^j$; otherwise, set $f_{ij} = f_{ij} f_{ji} + \epsilon v^j$ and $f_{ji} = 0$.
- Step 4. Manual change. During this step we maintain a list L of manual-arcs which are successively deleted. Initially, L consists of those arcs of the last tree such that $f_{ij} f_{ji} = c_{ij}$. Let (i, j) be the first in L which has not been deleted yet. If there is no $k \neq i$ such that (k, j) is a manual-arc then add all manual-arcs of the form (j, k) to the end of L. Similarly, all manual-arcs of the form (k, i) are added to the end of L if there is no manual-arc (i, k) with $k \neq j$.

- Then (i, j) is deleted and the next in L is treated. Once $L = \emptyset$, if none of the active sinks has been deleted go to Step 2; otherwise, go to Step 1.
- 3. Discussion. Let v^i be the index of that layer of the manual to which the active sink i belongs currently $(0 < v^i < n)$. Throughout the computation, v^i does not decrease and at least one of the $v^i s$ increases when a new manual is constructed. Thus, no more than n^2 manuals are constructed. A tree is constructed within O(n) operations. A flow change results in a deletion of at least one manual-arc. A deletion of a manual-arc requires no more than O(n) operations for updating L. Thus, since a manual has n^2 arcs at most, it will be deleted completely within $O(n^3)$ operations. This implies that the algorithm terminates within $O(n^5)$ operations. Optimality of the final flow follows from the standard theorem on max-flow and augmenting paths (see [5]).

REFERENCES

- 1. E. A. Dinic, Algorithm for solution of a problem of maximum flow in a network with power estimation, Dokl. Akad. Nauk SSSR 194 (1970), 754-757 = Soviet Math. Dokl. 11 (1970), 1277-1280. MR 44 #5178.
- J. Edmonds, Paths, trees, and flowers, Canad. J. Math. 17 (1965), 449-467. MR
 #2165.
- 3. J. Edmonds and R. M. Karp, Theoretical improvements in algorithm efficiency for network flow problems, J. Assoc. Comput. Mach. 19 (1972), 248-264.
- 4. S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAM J. Comput. 4 (1975), 507-518.
- 5. L. R. Ford, Jr. and D. R. Fulkerson, Flows in networks, Princeton Univ. Press, Princeton, N. J., 1962. MR 28 #2917.
- 6. A. V. Karzanov, Determining the maximal flow in a network by the method of preflows, Dokl. Akad. Nauk SSSR 215 (1974), 49-52 = Soviet Math. Dokl. 15 (1974), 434-437.
- 7. N. Megiddo, Optimal flows in networks with multiple sources and sinks, Math. Programming 7 (1974), 97-107. MR 50 #15878.

DEPARTMENT OF STATISTICS, TEL AVIV UNIVERSITY, TEL AVIV, ISRAEL