
Ann. Rev. Compul. Sci. 1987. 2 : 11945
Copyright 0 1987 by Annual Reviews Inc. AN rights reserved

LINEAR PROGRAMMING (1 986)

Nimrod Megiddo

IBM Research, Almaden Research Center, San Jose, California 95120-
6099, and Statistics Department, Tel Aviv University, Tel Aviv, Israel

1. INTRODUCTION

Linear programming has enormous practical importance. Perhaps this is
why it is frequently the subject of news reports. Existing methods for
solving linear programming problems have been applied successfully in
many areas. Improvements by orders of magnitude in the efficiency of
solution methods would open up many new application areas with sub-
stantial economic gains.

The traditional and still most widely used tool for solving linear pro-
gramming problems is the simplex method of George Dantzig (1963). This
method is in fact a whole family of algorithms. Commercial software
packages for linear programming consist of auxiliary procedures for han-
dling particular types of problems. The efficiency of the simplex method can
be appreciated by anyone who tries to solve a linear programming problem
on any computer or even by hand. Thus the search for alternative algo-
rithms for linear programming is motivated not by frustration but by
theoretical considerations. It has been observed in practice that the number
of steps performed by several variants of the simplex method grew some-
what linearly with the number of rows in the matrix, and much more
slowly with the number of columns. In highly degenerate problems the
numbers of steps was larger, and "anti-degeneracy" features were
developed. Theoreticians attempted to prove nontrivial upper bounds on
the number of steps until Klee & Minty (1970) constructed a sequence
of problems where several variants of the simplex method required an
exponential number of steps. Following Klee & Minty, several additional
variants were shown by other people (see Megiddo 1986a for references)
to require exponential time in the worst case. The notion of a "variant of
the simplex method" is not well-defined, and it is still not known whether
every variant (in any reasonable sense of the word) requires exponential

120 MEGIDDO

time in the worst case. Anyway, practical experience suggests that the bad
cases are extremely rare.

Computational complexity theory is concerned mostly with the worst-
case performance of algorithms. The worst-case measure has theoretical
advantages, but its main deficiency is that it is one-sided: If an algorithm
works well in the worst case then it always works well; however,
proof that an algorithm is slow in the worst case does not tell against
its performance in practice. The simplex method is perhaps the best
counterexample. Nevertheless, it is interesting from a theoretical point
of view to classify problems according to their worst-case complexity.

It was not known until 1979 whether the linear programming problem
was in the class P of problems solvable in polynomial time in terms of the
input size. The size of the input for a problem with integer coefficients is
measured as the total number of bits in the binary representation of
the problem. Khachiyan (1979) proved that an algorithm by Yudin &
Nemirovsky (1976), originally proposed for nonlinear optimization, had
a polynomial upper bound. The algorithm has been tried without much
success on linear programming problems. It performs relatively better on
nonlinear optimization problems.

In the fall of 1984 the news media reported that a new algorithm for
linear programming by N. Karmarkar performed much better than the
simplex method. The reports stirred up a great interest in applying non-
linear methods for solving linear programming problems. Extensions and
variations on Karmarkar's algorithm have been proposed. The relation of
the new algorithms to the classical methods of nonlinear optimization is
still under investigation. Apparently, the idea of applying such methods
in linear programming has not been seriously pursued until recently. Most
of the development of nonlinear programming occurred before complexity
theory started to flourish. Because the functions involved lack well-defined
properties, it is usually hard to analyze algorithms for nonlinear opti-
mization. On the other hand, if all the functions are linear one has a nice
framework for such an analysis. The work of Khachiyan (1979) pioneered
in this direction. Karmarkar's work drew attention to methods of non-
linear programming.

At present it is not clear whether nonlinear methods will eventually
replace the simplex method as the standard tool for solving linear pro-
gramming problems in practice. However, for certain classes of problems,
with sparse matrices of favorable structures, such methods are superior.

This paper focuses on work in linear programming from a nonlinear
point of view. I do not discuss here other areas of linear programming in
which there has been active research in recent years. Probabilistic analysis
of simplex-type algorithms became popular with the work of Borgwardt

LINEAR PROGRAMMING 12 1

(1982a,b) and Smale (1983). Further work has also been done (Adler &
Megiddo 1985; Todd 1986; Adler et a1 1983a,b; Megiddo 1986c; see also
Megiddo 1986a). Another interesting area in linear programming is the
search for strongly polynomial algorithms (Tardos 1985; Frank & Tardos
1985; see also Megiddo 1986a).

The organization of this survey is as follows: In Section 2 I describe
Karmarkar's algorithm; in Section 3 discuss the linear rescaling algorithm
with observations on its induced vector field; in Section 4 review some
methods of nonlinear programming applied to linear programming; and
in Section 5 survey recent algorithms for linear programming that involve
Newton's method.

2. KARMARKAR'S ALGORITHM

The algorithm published by Karmarkar (1984), is stated with respect to
the linear programming problem given in form

Minimize cTx

subject to Ax = 0

eTx = 1

where A € R m X n (1 s m s n) ; x,c€Rn; and e = (l , . . . , n) T ~ R n . It is
assumed that Ae = 0 so the point x0 = (l/n)e is interior relative to the
linear subspace {Ax = 0). It is also assumed that the optimal value of the
objective function is zero. The idea of the algorithm is explained with a
projective transformation as follows. Denote

If x E Rn is such that Ax = 0, eTx = 1, and x > 0 then the algorithm would
move from x to a new point x' which is computed as a function of x as
follows. Denote by

D, = Diag (x,, . . . , x,)

a diagonal matrix whose diagonal entries are the components of x. Con-
sider a transformation of space

122 MEGIDDO

given by

Thus, Tx(x) = (l /n)e . The mapping Tx is a projective rescaling trans-
formation characterized by the property that it leaves all the vertices of the
unit simplex in their places and moves the point x to the center of the
simplex.

Karmarkar used a "potential function" in the design and analysis of his
algorithm. The function is the following:

n

$ (y) = n In cTy- 1 1n y,.
j= l

Given the transformation T,, the transformed potential function $.,-(z) is
the following:

The algorithm moves in the transformed space in a steepest descent direc-
tion relative to the transformed potential function. The gradient of $x(z)
at the point z = (l /n)e is equal to Dxc. In the transformed space, the
direction of movement, that is, the direction of the vector T,(x') - T,(x),
is opposite to the direction of the gradient of the potential function,
projected into the space of the problem. This direction is obtained by
projecting the vector - Dxc orthogonally into the nullspace of the matrix

The result of this projection is the following vector:

q = - (I -AT(AAT)- 5 4) ~ ~ .
Thus, the new point x' has the form

where y is a positive scalar. The size of the actual step in practice is subject
to variations. In theory, the choice

leads to a polynomial-time algorithm. Other results on the choice of y are
known (Blair 1986; Padberg 1985a,b; Todd & Burrell 1986).

The role of the potential function is crucial in the theoretical analysis of
the algorithm. It was shown that in each step the value of this function
decreases by at least some fixed amount 6 independent of the data. The
initial value of the potential function is O(nL) where L is bounded by
the length of the representation of the problem in binary encoding. The
algorithm can be terminated when the value of this function is less than
- O(nL) since then an optimal basis can be computed directly from the
current interior point. Thus, the algorithm terminates in O(nL) iterations.
Interestingly, the constant reduction of potential corresponds to linear
convergence, which is considered dissatisfactory in the traditional theory
but "good" from the point of view of contemporary complexity theory.

If the iterations are performed using standard methods of linear algebra
then each takes 0(n3) arithmetic operations. Thus, the total number of
arithmetic operations is 0(n4L). However, to determine the complexity of
the algorithm in bit operations, we still have to determine the precision in
which the arithmetic operations need to be performed. Karmarkar (1984)
claimed that precision of O(L) bits suffices. However, Renegar (1986)
pointed out the incompleteness of the argument in Karmarkar's paper,
suggesting that the required precision is actually O(nL). Of course, in
practice one only works with fixed precision. Karmarkar also showed how
to perform the iterations of his algorithm in an average of O (~ Z * . ~) arith-
metic operations per iteration. This theoretical improvement does not seem
to have a practical value since on medium-size problems this average is
not realized within the first few dozens of iterations (the typical number
of iterations required for solving practical problems).

3. THE LINEAR RESCALING ALGORITHM

After the publication of Karmarkar's algorithm many people indepen-
dently suggested the idea of using a linear rather than projective rescaling
transformation. We mention here only two papers (Barnes 1985 and
Vanderbei et a1 1986), where convergence proofs of the resulting algorithms
were provided. Consider the linear programming problem in the standard
form (SF):

Maximize cTx

(SF) subject to A x = b

Also, assume a point xo is known such that Axo = b and xo > 0. Given
X E Rn such that Ax = b and x > 0, consider the following linear trans-
formation

given by

Obviously, Tx(x) = e = (1,. . . , and Tx is actually characterized as a
linear transformation with this property. In the transformed space the
problem becomes

Maximize cTDxy

subject to AD,y = b

The algorithm moves in the transformed space in the direction of the
gradient projected into the space of the problem. The gradient is Dxc. The
projection of this vector on the nullspace of the matrix AD, is

The new point x' is of the form

where y(x) is a scalar.
The linear rescaling algorithm was stated by both Barnes (1985) and

Vanderbei et a1 (1986) with respect to problems in standard form. For
reasons discussed below, it seems that there is an advantage to work with
problems in the inequality form (the dual of the standard form):

Minimize cTx

(D) subject to Ax 2 b

where A E Rm "; b E Rm; and c, x E Rn (m 2 n). One can develop an anal-
ogous algorithm for (D) , based on the principle suggested by Barnes
(1985). Suppose x is an interior feasible point. Let

be an ellipsoid contained in the feasible domain. Note that

E = (y : IID;'(Ay-6)-ell I 11,

where

The algorithm picks a direction v of movement towards the minimum of
the function cry over E. The vector v can thus be found by solving the
following optimization problem:

Minimize cT(x + v)
subject to IID;'[A(x+v)-b]-ell = 1.

Since D; '(Ax-6) = e, it follows that this problem is equivalent to

Minimize cTv

subject to (1 D; 'Au l l = 1.

However, we are interested only in the direction of the vector u, so we can
write the following set of equations for the optimality conditions:

Thus

The latter looks simpler than the formula for the problem in standard
form, even though the effort involved in computing the direction is not
much different. The advantage of the inequality form is that it is numeri-
cally much easier to satisfy inequalities than equalities. Specifically, if x
satisfies Ax > b and we move in a direction O rather than v, then we
still maintain feasibility. On the other hand, in the standard form the
approximate direction has to satisfy AO = 0 with relatively high accuracy,
or else the point becomes infeasible.

It is interesting to observe that the same search direction can be obtained
for (D) by transforming it to standard form with surplus variables replacing
the original x variables (Megiddo & Shub 1986). Also, both in standard
form and the form (D), this direction corresponds to the choice of p = 0
in the logarithmic barrier technique (Gill et a1 1985; Megiddo & Shub
1986) (see Section 4).

Let us return to problems in standard form (SF). As pointed out in
(Vanderbei et a1 1986), one can associate dual values w = w(x) with any
feasible point x so that (under nondegeneracy assumptions) when x tends
to the optimal solution, w(x) tends to the dual optimal solution. Specifically,

It is worthwhile to note that this vector arises naturally as the vector of
Lagrange multipliers in the projection problem in the transformed space:

1
Minimize - 11 D,c - t,~ 1 1

2

subject to AD,q = 0.

If 12 is the vector of multipliers then

so, by eliminating q we get

The same vector is also used by Todd & Burrell (1986), who derive dual
variables in extensions of Karmarkar's algorithm.

It is not known whether the linear rescaling algorithm runs in polynomial
time. Although it was suggested as a variation on Karmarkar's algorithm,
it is not clear that it shares similar properties-e.g. a guaranteed amount
of progress in a certain precise sense in each iteration. Moreover, there are
indications that in certain cases the behavior of this algorithm is drastically
different from the projective rescaling algorithm. Megiddo & Shub (1986)
analyze the differences by considering trajectories in the vector fields cor-
responding to both algorithms. First, they show that there exist linear
rescaling trajectories that visit all the vertices of the Klee-Minty cube
within any prescribed e > 0. Suppose we let a point on a trajectory tend
to a boundary point. The limit of a linear rescaling trajectory may have
an exponential number of breakpoints. On the other hand, projective
rescaling trajectories may have only a linear number of such breakpoints
in the limit. Intuitively, the projective rescaling trajectories can in the worst
case behave as follows. Suppose the starting point x0 of a trajectory tends
to a point in the relative interior of a face @ of the feasible polyhedron. If
@ contains the optimum then the limit of the trajectory stays in @ and
converges to the optimal solution. If @ does not contain the optimum then
there exists a point a(@) in the relative interior of @ with the following
property: For every x interior to @ and every c: > 0, if the starting point
x0 is sufficiently close to x then the trajectory visits the &-neighborhood of
a(@). The only possible breakpoints in the limit of projective rescaling
trajectory are the points a(@). Moreover, if a(@,), . . . ,a(@,) are break-
points in the limit of one trajectory then necessarily

It follows that there can be no more than n such breakpoints on one
trajectory.

Current implementation efforts seem to concentrate on the linear rescal-
ing algorithm. Encouraging computational experiences with the linear
rescaling algorithm were reported recently (Chen 1986; Adler et a1 1986).
Adler et a1 implemented the algorithm in its dual version. Remarkable
results were also reported by Karmarkar & Sinha (1985), although it was
not clear exactly what algorithm they implemented.

4. APPLICATIONS OF TRADITIONAL METHODS
OF NONLINEAR PROGRAMMING

The notion of a potential function is of course well known in mathematical
physics. Many algorithms for nonlinear programming (Fiacco & McCor-
mick 1967) were developed with intuition drawn from physics. The use of
the function $(x) in Karmarkar's algorithm is very much related to barrier
function techniques in nonlinear programming. A formal equivalence to
the projected Newton method with a logarithmic barrier function was
pointed out by Gill et a1 (1985). When this technique is applied to the linear
programming problem, the following nonlinear optimization problem is
considered:

Minimize F,(x) = cTx - p 1 In xj
j

subject to Ax = b

x > 0

where p > 0 is a scalar. Given x (such that Ax = b and x > 0) and p, the
Newton direction is the direction of the vector

v = (V2~,(x))- lVF,(x).

This direction is projected orthogonally into the nullspace of the matrix A
to obtain a direction of movement from x along which the points stay in
the flat (Ax = b} . The parameter p is chosen either as the current element
in a predetermined sequence or as a function of x, tending to zero during
the execution of the algorithm. The method is attributed to Frisch (1955).
A related method, the "method of centers" proposed by Huard (1967),
chooses the "parameter" with respect to the current point as follows.
Suppose the problem is

Maximize f(x)

subject to gi(x) 2 0 (i = 1, . . . , m),

and assume a point x0 is available such that gi(xO) > 0 (i = 1, . . . , m).
Suppose the algorithm has reached the point <. It then attempts to max-
imize the function

Here the constraints are represented by logarithmic barriers and the objec-
tive function is represented through the logarithm of the improvement
relative to the current point. When the current point gets close to optimal,
the latter becomes the dominant term of Ft. When this idea is applied to
problems in the form (SF), the iterative step attempts to solve

Maximize In (cTx - cT<) + ln xj
i

subject to Ax = b.

In practice the method of local optimization can be chosen with respect
to the particular instance. Newton's method is usually mentioned in this
context (see Section 5 for recent applications of Newton's method). Rene-
gar (1986) recently developed a polynomial-time algorithm related to this
method of centers (see Section 5).

Betke & Gritzmann (1986) establish a formal relation between linear
programming and unconstrained convex optimization as follows. They
consider the linear programming problem in the feasibility form

where A€RmXd. For any x€Rd, the vector of "violations" at x is the
following:

F(x) = (XI, . . . ,x;, (A+--bJf , . . . , (A,x-b,)+)T

where 5+ = max {5,0) and 5- = max (- &0). For any p (p 2 2), a convex
function g(x) = g,(x) is then constructed in terms of the [,-norm of F(x):

General conditions on algorithms for minimizing convex functions are
stated which imply polynomial time when applied to the function g for
solving the linear programming problem. The proposed algorithms gen-
eralize the ellipsoid algorithm. They attempt to minimize g(x) by taking
gradient steps in a transformed space. I first explain the transformations
involved and their relation to the ellipsoid method. Consider a matrix

where uTu = 1 and 1 > - 1. Obviously, the linear transformation associ-
ated with M is a dilatation of space by a factor of 1 + A in the direction of
u. An iterate of the ellipsoid method consists of an infeasible point xk
together with an ellipsoid Ek centered at xk and guaranteed to contain all
the basic feasible solutions if any. By a suitable affine transformation, the
point xk is mapped to the origin and the ellipsoid Ek is transformed into a
ball. In the transformed space the algorithm then moves from the origin
in a direction u perpendicular to one of the violated constraints, and a new
ellipsoid is constructed. The new ellipsoid has one short axis in the direction
u whereas all the other axes are of equal length. Thus, to transform this
ellipsoid back into a ball, we first translate the new point to the origin and
then apply a dilatation transformation of the form I+ luuT. This implies
that the current ellipsoid in the original space of the problem can be
represented as the image of a ball (centered at the origin) under a chain
of "contractions" (that is, dilatations with negative Is) followed by a
translation.

The proposed generalization of Betke & Gritzmann is to move in the
transformed space (that is, where the current ellipsoid is represented by a
ball) in the direction of the gradient of g(x), construct a new ellipsoid,
apply a dilatation that maps it into a ball, and so on. The original ellipsoid
method is reproduced by choosing the norm to be 8,. The claim is that
for any p this method yields a polynomial-time algorithm. On the more
practical side, Betke & Gritzmann have applied the variable metric method
(Davidon 1959; Fletcher & Powell 1963) with exact line searches for
minimizing the function g,(x). The exact line searches are possible since
g,(x) is piecewise quadratic. The reported computational experience is
promising.

5. RECENT ALGORITHMS BASED ON NEWTON'S
METHOD

Newton's method is a classical tool for minimizing convex functions.
Essentially, to minimize a convex function f(x) (with no constraints)
one simply attempts to solve the equation g(x) - Vf(x) = 0. Newton's
iteration is based on first-order approximation of the function g(x), so the
next point is determined by the equation g (~ k) + Vg(xk) (xk+ - xk) = 0,
which is equivalent to

Intuitively, Newton's method of optimization is more powerful than the
gradient method since it takes into account information about the curva-
ture. Traditional methods of constrained nonlinear optimization apply

Newton's method to unconstrained functions that incorporate the con-
straints of the given problem. The barrier function technique is one such
way of incorporating constraints. Interestingly, when the current point
tends to the boundary of the feasible domain, the gradient direction of
the barrier function becomes, as desired, perpendicular to the boundary,
whereas Newton's direction becomes parallel to it (see Megiddo & Shub
1986).

The news reports about Karmarkar's algorithm suggested that his ideas
were revolutionary. Following these claims, a number of people wrote
papers suggesting that algorithms based on traditional principles should
yield similar results.

Iri & Imai (1986) use a barrier function

closely related to Karmarkar's potential function, for solving the problem

Minimize cTx

subject to Ax 2 b.

A nice property of Iri & Imai's function and Karmarkar's potential func-
tion is that both are free of parameters (such as ,u in the traditional barrier
method) that need to be updated by the algorithm. Assuming the optimal
value is zero, Iri & Imai simply minimize the function 6 using Newton's
search direction method. This approach is justified by the proven convexity
of the barrier function, since Newton's method has been known to work
well on such functions. The interesting feature in their work is that they
analyze the effect of performing line searches, rather than just taking
standard steps in the chosen direction. Although it is not clear that their
complete algorithm converges quadratically, the sequence of relative
minima (i.e. minima with respect to the search line) converges quadratically
to the optimum. Also, it is not known whether this algorithm runs in
polynomial time.

De Ghellinck &Vial (1985, 1986) describe another algorithm that can be
interpreted as a Newton method. They set the problem in a homogeneous
feasibility form:

(where A E RmX("+ I) and the columns are indexed O,l, . . . , n). The algo-

LINEAR PROGRAMMING 13 1

rithm works inside the positive orthant of R n f ', attempting to find a
feasible point by driving the following quantities to zero:

Aix .
$i(x) =- (z = 1, ..., m). eTx

Given any point X E R y ' (x > O) , one would ideally like to find a trans-
lation u E Rn+ ' defined by the following optimization problem:

Maximize eT(x + u)

subject to Au = 0

x + u 2 0

where the optimization is with respect to u. The difficulty of this problem
is in the nonnegativity constraints. Since x > 0, one can avoid violating the
nonnegativity constraints by considering the following problem instead:

n

Maximize n (xi + uj)
j= 0

subject to Au = 0.

Working in the interior of the positive orthant, the objective function can
be replaced by

which is concave. Newton's method is a natural choice as a tool for
optimizing the latter. Obviously,

and

V2Cp(0) = - 0; 2,

where D, = Diag(x). Thus, the Newton direction is determined by the
following problem

1
Maximize - - uTD; 2u + eTD; 'U

2

subject to Au = 0

or, equivalently,

subject to Au = 0.

The vector u is therefore determined together with a vector of multipliers
v by the following system:

The solution is

This can be interpreted as follows. Standing at a point x > 0, we would
like to move parallel to the nullspace of A so that eTx increases. The
direction of movement is determined by first transforming the space. Let
us transform the space by the linear rescaling transformation D; I . The
point x is mapped to the point e and the nullspace of A is transformed
into the nullspace of AD,. In the transformed space we move parallel to
the nullspace of AD,. We first project e orthogonally into the latter,
denoting this projection by e,. The movement in the transformed space is
from e to a point of the form e + me,, where a is a positive scalar. Of course,
the direction of movement in the original space is that of the vector D g p .
Although the de Ghellinck-Vial algorithm is described as an exterior-point
method, it does involve arguments similar to those used in Karmarkar's
algorithm, and its framework is suggested by the projective nature of the
latter. They also prove a polynomial-time bound.

Smale (1986) proposes to use Newton's method for solving linear pro-
gramming problems in a related way. It is well known that the problem

Maximize cTx

subject to Ax I b

can be set as a linear complementarity problem, namely, finding z such
that

where

LINEAR PROGRAMMING 1 3 3

and q = (- ~ , b) ~ . Equivalently, if we identify z with y' and
-(Mz+q) with y- (denoting q+ = max{q,O}, q- = min{q,O}, and
y' = (y:, . . . , y;,,)? then the problem is equivalent to finding y such that
Myf +y- = -9. As functions of q, the quantities q+ and q are piecewise
linear with a single breakpoint at the origin. They can be approximated,
respectively, by hyperbolas:

and

where p > 0 is a parameter. These hyperbolas converge uniformly to the
corresponding piecewise linear functions as p tends to zero. The approxi-
mate problem with a fixed value of p is to solve the equation

where

Given q one can apply Newton's method for solving this equation by
following the inverse image under @, of a line segment [qO, q] (starting at
any point q0 > 0). Lemke's algorithm (which is a generalization of Dantzig's
self-dual simplex method) follows the inverse image of such a line segment
under

Smale argues that the Newton path converges to Lemke's path as p tends
to zero.

If one prefers Newton's method to simplex-type methods then one may
apply the former with a fixed small value of p, but it is doubtful that this
idea will give rise to a more efficient algorithm. Another approach, more
in the spirit of traditional methods of nonlinear optimization, is to drive
p to zero during the execution of the algorithm. This is in a sense an
attempt to follow the path determined by @; '(-9) as p varies. Consider
the mapping @,(y). The Jacobian matrix is equal to MD: + D; where
D: and DL are the (diagonal) Jacobian matrices of @:(y) and cD,(y),

134 MEGIDDO

respectively. The Newton direction u at y (relative to a fixed value of p) is
obtained as the solution of the following system of linear equations:

The structure of the underlying matrix is very similar to the ones
encountered in the algorithms described previously in this paper. It is
worthwhile to note that the approximation by the hyperbolas can be
interpreted as a penalty function method. Suppose the problem is to solve
a system of linear inequalities Ax 2 b (A E R m x "). Then an approximation
to it is to minimize the function

In the remainder of this section I consider a recent algorithm proposed
by Renegar (1986). He applies Newton steps in an algorithm that is also
related to the logarithmic barrier technique of Frisch (1955) and to Huard's
(1967) method of centers (see Section 4). Renegar states his algorithm with
respect to the problem in the inequality form:

Maximize cTx

subject to Ax 2 b,

where A E Rm ". The following function (where z is a parameter) plays an
important role in the development of the algorithm:

(Renegar uses a coefficient 8 instead of rn and argues that the choice 8 = rn
is optimal in a certain sense.) The value of z is changed throughout the
execution of the algorithm.

Suppose the problem is formulated so that it has a feasible domain of
full dimension and an optimal solution. The function f(x; z) is well-defined
for x in

Since f(x, z) is strictly concave and P, is bounded, it follows that there
exists a unique maximizer x* = x*(z) of f(x; z). This point is characterized
as the solution of the following set of equations (equivalent to Vf(x; z) = 0):

where

LINEAR PROGRAMMING 135

D"(x) = Diag (A ,x - b ,, . . . , Amx - b,)

and

e = (1,. . . , l) T ~ R m .

When z varies we obtain a path through the interior of the feasible domain.
For any y such that Ay > 6, let

L(y) = (x : cTx = cTy, Ax > 6).

Obviously, x*(z) is the maximizer of f (x; z) in the set L(x*(z)) . Thus, x*(z)
is also the maximizer of Z b In (Aix - b,) over L(x*(z)) . Consider, on the
other hand, the function

m

g (x) = g(x; p) = cTx + p In (A,x - b,),
,= l

used in the barrier function technique. Here too we can define a path
x = x+(p) , where x + (p) is the maximizer of g(x; p) over the interior of the
feasible domain. Since x f (p) is obviously the maximizer of g(x; p) over
the set L (x f (p)) , we have that x + (p) is also the maximizer of
Cy= ln (Aix - b,) over L(x+(p)) . We thus have

Proposition 5.1 The functions x = x*(z) and x = x'(p) are just two
parameterizations of the same path.

Let us refer to the path discussed above as the centralpath. The central
path converges to an optimal solution. This path has been studied in the
context of nonlinear optimization by Fiacco & McCormick (1967). More
recently, in the context of linear programming, the path was studied by
Bayer & Lagarias (1986) and Megiddo (1986b). The barrier function
attempts to "follow" this path. However, the word "follow" may be
interpreted in various ways in this context. In general, a "path-following
technique" would run as follows. Given a value of p, assuming we are at
a point that is not so far from the point x f (p) , we run a certain number
of Newton iterations with this fixed value of p, to get closer to the point
xt(,u). When we get sufficiently close to the point xf(,u), we update the
value of the parameter p by some rule, and then the process is repeated.

Let us examine this procedure in a more general context. Let F(x; t) be
a mapping Rnil into R" (x c Rn, t E R) that implicitly defines a path
x = x(t) through the equation

F(x; t) = 0.

Suppose we are at a point x0 and we attempt to follow this path. Let to be
the current value of t , so that x0 is considered sufficiently close or even

136 MEGIDDO

equal to x(tO). We now update the value o f t to be to+At. The Newton
step is computed with respect to the equation F(x; to+At) = 0 (with the
current point xO). The step Ax is given by

Suppose, for a moment, that x0 is a point on the path-that is, x0 = x(to)
and F(xO; to) = 0. We later consider the tangent to the path x = x(t) at xo.
This tangent is the line

where

Consider the representation of the central path with x = x+(p). The
implicit function is

F(x; p) = Vg(x; p) = c + ~ A ~ D " - I(x)e.

In this case we have

Consider a point x0 on the path, x0 = x+(po). By definition,

Now, let p' = p - Ap be the updated value of the parameter. We have

Vg(xO; pO - Ap) = c+ (pO - A ~) A ~ D " - ' (xO)e = - dpAT& I(xO)e.

We thus have

Proposition 5.2. I f x O = x+(po) then for any update Ap of the parameter
p, the Newton step with respect to the logarithmic barrier parameterization
x+(p) is in the direction of the tangent of the path.

Proof: Since

and

LINEAR PROGRAMMING 137

it follows that the common direction is the direction of the vector

- (A ~ ~ - ~ (x ') A) - 'AT& ' (xO)e .

The situation with Renegar's algorithm is the same:

Proposition 5.3. l f x O = x*(zo) then for any update AT of the parameter z ,
the Newton step with respect to Renegar's parameterization x*(z) is in the
direction of the tangent of the path.

Proof: Here the implicit function is

In this case we have

Consider a point x0 on the path, x0 = x*(zo). By definition,

Vf(xO; 7 ,) = 0.

Let z' = z + Az be the updated value of z . Thus,

On the other hand,

Notice that, in general, for any matrix ME Rn and scalars a, b, the solution
v of the system

satisfies

v = M - ' (p - acTv)c

and hence v and M ' c lie on the same line. This implies that in our case,
if xo is on the central path, then Renegar's step is in the direction of the
tangent-that is, the direction of the vector

(A ~ D " 2 (~) ~) - Ic.

Notice that this is the same direction as Proposition 5.2 since

- A ~ D " ' (xo)e = c

when xo is on the central path.
We have seen that at points on the central path both algorithms assign

the same direction of movement-namely, the direction tangent to the
path. Let us now consider points x off the central path. Let p = p(x) be
the value of the parameter associated with the point x (under a certain
variant of the logarithmic barrier technique). The direction assigned by
the barrier technique is given by a vector u satisfying

On the other hand, Renegar's direction is given by a vector v satisfying

In order for u = u(x) and v = v(x) to have the same direction it suffices
that

The latter is equivalent to

We thus have

Proposition 5.4. The direction assigned by Renegar's algorithm at a point
x, when the updated value of the parameter is z, is the same as the one
assigned by the logarithmic barrier technique where the parameter p is given
by

LINEAR PROGRAMMING 139

where

Interestingly, Gill et a1 (1985) showed that a certain choice of p(x) in
the projected Newton logarithmic barrier algorithm (stated for problems
in standard form) assigns the same direction as Karmarkar's algorithm.

The actual algorithm proposed by Renegar is as follows. Two par-
ameters must be fixed. First, there is constant 6 whose value is chosen as

for obtaining a valid algorithm. Second, one must fix the number N of
Newton iterations to be performed per step of the algorithm. The main
result is proven with N = 1. The algorithm generates a sequence of interior
points (xk} and a sequence of lower bounds (zk) on the optimal value of
the objective function. The algorithm starts with an interior point x0 and
a lower bound z0 < cTxO. The iterative step is as follows. Given xk and zk
(zk < cTxk+ I) , perform N Newton iterations starting at xk, to maximize the
function f(x) = f(x; zk). Note that here a Newton iteration does not involve
a line search. The sequence of points generated during a step,

is determined by the equation:

~2f(yJ; zk) (yJ+l-Yj) = -VfbJ; zk) (j = 0,. . . , N) .

However, to make sure that these points stay in the feasible domain, one
has to choose N = 1 and 6 as above. The constant 6 determines the new
value of z:

and it is chosen sufficiently small that the first Newton step at xk+ does
not generate an exterior point.

Suppose x* is an optimal solution. Renegar proves that objective func-
tion values cTxk converge to cTx* at least as fast as implied by the following
inequality:

cTx* - cTxk 5 1 - - (cTx* - z". i 2 8 k J

140 MEGIDDO

This means that the number of steps it takes the algorithm to reach a point
where the termination criterion holds is o (, / ~ L) whereas for Kar-
markar's algorithm the known bound on the number of steps is
O((m + n)L).

6 . PRACTICAL IMPROVEMENTS

The emphasis in Karmarkar's paper (1984) is on the asymptotic worst-
case complexity, and therefore some of the assumptions he makes (for the
ease of presentation) sound unreasonable from a practitioner's point of
view. For example, the hypothesis that the optimal objective function
value is zero is justified by setting the problem in the combined primal-
dual form. Other people (Todd & Burrell 1986; Anstreicher 1986a,b,c;
Gay 1985; Gonzaga 1985; Goldfarb & Mehrotra 1986) later proposed
various algorithms of the same type where this hypothesis can be relaxed.
Although these improvements do not improve the order of magnitude of
the known upper bound, they are believed to have a significant practical
value. The paper by Todd & Burrell was also the first to show how dual
variables arise naturally in this algorithm.

Another direction, pursued by Goldfarb & Mehrotra (1985, 1986) and
Kojima & Tone (1986), is to make the algorithm more efficient by com-
puting projections only approximately. Polynomial time bounds still hold
for these relaxed versions. It seems that such an approach would be even
more advantageous if the problem is set in the inequality form. Notice
that in standard form, although the direction does not have to be the exact
projection, it still has to be in the appropriate nullspace or else the new
point will not be feasible. In the inequality form, starting from an interior
point, one always remains in the feasible domain provided the step size is
not too large.

Karmarkar did not provide a practical stopping rule for his algorithm.
In practice one must stop the algorithm at a certain point (earlier than the
theoretical one) and attempt to guess what the optimal solution is. Kojima
(1986) developed such rules for deducing at a relatively early stage which
variables must be basic in the optimal solution.

The standard form of a linear programming problem distinguishes the
nonnegativity constraints from the equality constraints. Thus, upper
bound constraints (that is, inequalities of the form xi I ui) that may exist
in the original problem are "lost" during the transformation to standard
form. It is known that the simplex method can be stated with respect to
problems in a more general form where 0 5 xi I ui (and ui may be infinite)
so as to take advantage of such constraints. In fact, commercial codes of
the simplex method are set to deal with problems in this form. The question

of how to deal with upper bounds in the context of Karmarkar's algorithm
is very natural. Rinaldi (1986) developed a theory for dealing with such
upper bounds in this context.

7. CONCLUSION

Encouraging experiences with different methods were recently reported
also by Kojima & Tone (1986) and Kojima (1986). From a theoretician's
point of view it is interesting to confirm the surprisingly low number of
iterations that different nonlinear methods perform on linear programming
problems. The upper bounds proven for various algorithms are not known
to be tight. The analysis so far is typically based on estimating the worst
that can happen during a single step of the algorithm. It is conceivable
that one will be able to prove that such bad performance cannot occur
during many steps. In a certain sense Karmarkar's potential function
captures such a phenomenon. More precisely, he proves that if the
improvement in terms of the objective function is small during a certain
step then progress is made during that step in another sense-namely, the
barrier part improves since the potential function does. However, it is not
known whether a small improvement in terms of the potential function
during one step implies larger improvements during other steps.

A theory is desired that would explain the differences among various
algorithms and identify features that probably make one algorithm better
than another one.

An interesting feature of the new algorithms is that they are invariant
under certain transformations of the problem or, in other words, they are
"unit free." Some variants of the simplex method are not unit free, but it
is easy to design ones that are. It is interesting to pursue the connection
between invariance and efficiency of an algorithm. Let us first examine this
question in a rather abstract setting. More concrete examples will be given
later.

By a problem we mean a set P of pairs (I,?) where I is an instance or an
input and S E S(I) is one of its solutions. Let us further assume that there
is some fixed equivalence relation - over instances such that I , - I, only
if S(I ,) = S(1,). Now, let us fix the model of computation so that we have
a well-defined notion of an algorithm. Roughly, an algorithm receives an
input, operates on it under the model of computation, and returns an
output. By an algorithm for P we mean an algorithm that receives an input
Z and returns an output s E S(Z), or else recognizes that there is no s such
that (I , s) E P. A computation is a sequence that describes the operation of
an algorithm on a particular input. Thus a computation C can be specified
by an algorithm A together with an input I where C = C (A , I) . Let g

denote an equivalence relation over computations. An algorithm A is
invariant with respect to and E if for every Zl I,,
C(A, I,) E C(A, I,)-that is, its computations on equivalent problems are
equivalent. The invariance of an algorithm depends on the definition of
equivalence of instances and computations. Here we are of course inter-
ested in the linear programming problem. Consider, as an example, the
role of the center of gravity of a polytope. We do not know of useful ways
of computing the center of gravity of a polytope, so we do not expect to
produce good algorithms for linear programming that rely on this point.
However, we can still examine the issue from the point of view of invariance
and complexity. The center of gravity is not invariant under convex pro-
jective transformations-that is, the image of the center of gravity is not
necessarily equal to the center of gravity of the image of the polytope.
However, despite its not being invariant, the center of gravity is a very
useful point to know. The "only7' problem is that we do not know how to
compute it efficiently. Suppose we had an oracle that could tell us the
center of any polytope (given by a set of linear inequalities). We could
then design a linear programming algorithm as follows. Given a (bounded)
polytope, produce a second polytope by cutting the first one through its
center of gravity with a hyperplane on which the objective function is
constant, picking the half that contains the optimum. This step gives rise
to a very good iterative algorithm since the volume of the remaining
polytope is reduced by a factor of at least l /e in each step. Now, consider
the rationale of the invariance postulate. The representation of an instance
may be chosen by an adversary. Thus, if an algorithm is not invariant, the
adversary will choose a bad representation for the algorithm. On the other
hand, if the algorithm is invariant (and the definition of equivalence of
computations is right) then the choice of the representation has no effect
and the adversary is neutralized. Given the real world instance that we
need to solve, the adversary may choose a representation in which the
center of gravity corresponds to an interior point close to the "anti-
optimum" so that a cut through that point will not reduce the volume
significantly. However, this argument holds only for the first iteration.
Once the representation has been fixed, the repeated choice of the center
of gravity guarantees steady progress towards the optimum, at least in the
metric of the representation.

A simplification of the preceding paragraph can be made by considering
the more familiar binary search. Suppose f(x) is continuous over the unit
interval such that f(0) < 0 < f(1) and we need to approximate a point x
such that f(x) =O. The only information we can obtain is in the form of
values o f f at points of our choice. A natural equivalence relation over
inputs in this problem is derived from monotone transformations: f and

g are equivalent if there is a strictly monotone function m such that
g(x) = m(f(x)). We may further restrict the equivalence relation to cases
where m is a projective transformation of the form

which implies that m(0) = 0 and m(1) = 1. Even under the weaker relation,
binary search is not invariant. Indeed, with binary search we believe we
are chopping the interval by the maximum amount possible in the worst
case, in each step. An adversary can distort the picture in such a way that
our binary search probes, at least in the first step, very close to one of the
endpoints. But, since the adversary cannot change the metric from step to
step, we do make progress relative to the metric he had to choose before
the process started.

Invariance does look like a nice theoretical requirement. However, the
level of equivalence of inputs should be decided with caution. For example,
in the context of graphs it seems natural to consider isomorphic graphs as
equivalent from the point of view of computing graph-theoretic invariants.
Taking such a point of view eliminates any interest in the graph iso-
morphism problem. Also, in the context of recognizing Hamiltonian
graphs, suppose an adversary could choose the particular assignment of
labels to nodes. Knowing that our algorithm is invariant, the adversary
does not compromise anything by assigning the labels 1,2, . . . , around a
Hamiltonian circuit if one exists. Thus an invariant algorithm cannot take
advantage of such transparent facts.

A somewhat less trivial observation applies to the linear programming
problem. Instead of invariance under convex projective transformations
let us consider a weaker notion-namely, invariance under linear trans-
formations. It may seem natural to consider two linear programming
problems equivalent if there is a linear transformation that maps one to
the other. However, for every linear programming problem there is a linear
transformation that reveals the solution. In fact, the simplex algorithms
compute such transformations and use them as certifications for the sol-
ution.

A weaker notion of equivalence that seems more appropriate is derived
from scaling: Two problems are equivalent if they differ only in the choice
of units of measurement. Thus, an invariant algorithm is one that does
not depend on these choices. Indeed, many variants of the simplex algo-
rithm are invariant under scaling transformations.

Interior point algorithms can also be studied through the vector fields
they define over the feasible domain. Such an approach is used by Bayer &

144 MEGIDDO

Lagarias (1986), Megiddo & Shub (1986), and Megiddo (1986b). Nazareth
(1986) points out the relation to homotopy methods previously used in
nonlinear optimization.

The new methods would probably extend to problems close to linear
programming, such as convex quadratic programming. An extension of
Karmarkar's algorithm to this domain has already been developed by
Kapoor & Vaidya (1986). Megiddo (1986b) discusses extensions to various
types of linear complementarity problems.

Literature Cited

Adler, I., Karp, R. M., Shamir, R. 1983a. A
family of simplex variants solving an m x d
linear program in expec tednumber ofpivots
depending on d only. Rep. UCB CSD
831157, Comp. Sci. Div., Univ. Calif.,
Berkeley

Adler, I., Karp, R. M., Shamir, R. 1983b. A
family of simplex variants solving an m x d
linear program in 0(min(m2, d2)) expected
number of pivot steps. Rep. UCB CSD
831158, Comp. Sci. Div., Univ. Calif.,
Berkeley

Adler, I., Meaiddo. N. 1985. A simplex
algorithm wfiose average number of sieps
is bounded between two auadratic func-
tions of the smaller dimeision. J. ACM
32: 871-95

Adler, I., Resende, M. G. C., Veiga, G. 1986.
An implementation of Karmarkar's algo-
rithm for linear programming. Rep. ORC
86-8, Oper. Res. Ctr., Univ. Calif., Berkeley

Anstreicher, K. M. 1986a. Analysis of a
modijied Karmarkar algorithm for linear
programming. See Megiddo 1986c

Anstreicher, K. M. 1986b. A strengthened
acceptance criterion for approximate
projections in Karmarkar's algorithm.
Tech. Rep., Yale Sch. Organization and
Management, Yale Univ.

Barnes, E. R. 1985. A variation on Kar-
markar's algorithm for solving linear pro-
gramming problems. Res. Rep. RC I1 136,
IBM T. J. Watson Res. Ctr., Yorktown
Heights, NY

Bayer, D. A,, Lagarias, J. C. 1986. The non-
linear geometry of linear programming I:
afine and projective rescaling trajectories.
Murray Hill, NJ: AT&T

Betke, U., Gritzmann, P. 1986. Projection
algorithms for linear programming. Pre-
sented at the 1986 AMS-IMS-SIAM Sum-
mer Res. Conf. on Discrete and Com-
putational Geometry, Santa Cruz, Calif.

Blair, C. E. 1986. The iterative step in the

linear programming algorithm of N. Kar-
markar. See Megiddo 1986d

Borgwardt, K.-H. 1982a. Some distribution-
independent results about the asymptotic
order of the average number of pivot steps
of the simplex method. Math. Oper. Res.
7: 44142

Borgwardt, K.-H. 1982b. The average num-
ber of steps required by the simplex
method is polynomial. Z. Oper. Res. 26:
157-77

c&, S. 1986. Computational experience
with the Karmarkar algorithm. Presented
at TIMSIORSA Meet., Los Angeles

Dantzig, G. B. 1963. Linear Programming
and Extensions. Princeton, NJ: Princeton
Univ. Press

Davidon, W. C. 1959. Variable metric
methodfor minimization, Rep. ANL-5990,
Argonne Natl. Lab.

de Ghellinck, G., Vial, J.-Ph. 1985. An exten-
sion of Karmarkar's algorithm for solving
a system of linear homogenous equations
on the simplex. Disc. Pap. 8538, C.O.R.E.,
Catholic Univ. Louvain, Belgium

de Ghellinck, G., Vial, J.-Ph. 1986. A poly-
nomial Newton method for linear pro-
gramming. See Megiddo 1986d

Fiacco, A. V., McCormick, G. P. 1967. Non-
linear Programming: Sequential Uncon-
strained Minimization Techniques. New
York/Toronto: Wiley

Fletcher, R., Powell, M. J. D. 1963. Arapidly
convergent descent method for mini-
mization. Comput. J. 6: 163-68

Frank, A., Tardos, E. 1985. An applica-
tion of simultaneous approximation
in combinatorial optimization. Proc.
IEEE Symp. Found. Comput. Sci., 26th,
Portland, pp. 45943

Frisch, K. R. 1955. The logarithmic potential
method of convex programming. Unpub-
lished manuscript, Univ. Inst. Econ., Oslo,
Norway

LINEAR PROGRAMMING 145

Gay, D. M. 1985. A variant of Karmarkar's
linear programming algorithm for problems
in standard form. Numer. Anal. Manusc.
85-10. Murray Hill, NJ: AT&T

Gill, P. E.; Murray, W., Saunders, M. A.,
Tomlin, J. A,, Wright, M. H. 1985. On
projected Newton barrier methods for linear
programming and an equivalence to Kar-
markar's projective method. Tech. Rep.
SOL 85-11, Dept. Operations Res., Stan-
ford Univ.

Goldfarb, D., Mehrotra, S. 1985. A relaxed
version of Karmarkar's method. Tech.
Rep., Dept. Indust. Eng. Operations Res.,
Columbia Univ.

Goldfarb, D., Mehrotra, S. 1986. Relaxed
variants of Karmarkar's algorithm for lin-
ear programs with unknown objective value.
Tech. Rep., Dept. Indust. Eng. Operations
Res., Columbia Univ.

Gonzaga, C. 1985. A conicalprojection algo-
rithm for linear programming. Tech. Rep.,
Dept. Elect. Eng. Comput. Sci., Univ.
Calif., Berkeley

Huard, P. 1967. Resolution of mathematical
programming with nonlinear constraints
by the method of centers. In Nonlinear
Programming, ed. J . Abadie, pp. 207-19.
Amsterdam: North-Holland

Iri, M., Imai, H. 1986. A multiplicative bar-
rier function method for linear pro-
gramming. See Megiddo 1986d

Kapoor, S., Vaidya, P. M. 1986. Fast algo-
rithms for convex quadratic programming
and multicommodity flows. Proc. ACM
Symp. Theory Comput., 18th, Berkeley,
pp. 147-59

Karmarkar, N. 1984. A new polynomial-
time algorithm for linear programming.
Combinatorica 4: 373-95

Karmarkar, N. K., Sinha, L. P. 1985. Appli-
cation of Karmarkar's algorithm to over-
seas telecommunications facilitiesplanning.
Presented at 12th Symp. Math. Program.,
Cambridge, Mass.

Khachiyan, L. G. 1979. A polynomial algo-
rithm in linear programming. Sou. Math.
Dokl. 20: 191-94

Kojima, M. 1986. Determining basic vari-
ables of optimum solutions in Kar-
markar's new LP algorithm. See Megiddo
1986d

Kojima, M., Tone, K. 1986. An eficient
implementation of Karmarkar3 new LP
algorithm. Res. Rep. B-180, Dept. Info.
Sci., Tokyo Inst. Tech.

Megiddo, N. 1986a. On the complexity of
linear programming. In Advances in Econ-

omic Theory, ed. T. Bewley. New York:
Cambridge Univ. Press

Megiddo, N. 1986b. Pathways to the optimal
set in linear programming. IBM Res. Rep.
RJ 5295 - - - - - -

Megiddo, N. 1986c. Improved asymptotic
analysis of the average number of steps
performed by the self-dual simplex algo-
rithm. Math. Program. 35: 140-72

Megiddo, N., ed. 1986d. Special issue: New
Approaches to Linear Programming.
Algorithmica 1: 4

Megiddo, N., Shub, M. 1986. Boundary
behavior of inferior point algorithms for
linear programming. IBM Res. Rep. RJ
5'419

&,

Nazareth, J. L. 1986. Homotopies in linear
programming. See Megiddo 1986d

Padberg, M. W. 1985a. A dgerent con-
vergence proof of the projective method
for linear programming. Tech. Rep., New
York Univ.

Padberg, M. W. 1985b. Solution of a non-
linear programming problem arising in the
projective method for linear programming.
Tech. Rep., New York Univ.

Renegar, J. 1986. A polynomial-time algo-
rithm, based on Newton's method,for linear
programming. Rep. MSRI 071 18-86,
Math. Sci. Res. Inst., Berkeley, Calif.

Rinaldi, G. 1986. The projective method for
linear programming with box-type con-
straints. See Megiddo 1986d

Smale, S. 1983. On the average number of
steps of the simplex method of linear pro-
gramming. Math. Program. 27: 241-62

Smale, S. 1986. Algorithms for solving equa-
tions. Presented at the Int. Congr. Math.,
Berkeley, Calif.

Tardos, E. 1985. A stronglypolynomialalgo-
rithm to solve combinatorial linear
programs. Rep. 84360-OR, Inst. Econ.
Oper. Res., Univ. Bonn

Todd, M. J. 1986. Polynomial expected
behavior of a pivoting algorithm for linear
complementaiity andlinear programming
problems. Math. Program. 35: 173-92

Todd, M. J., Burrell, B. P. 1986. An exten-
sion of Karmarkar's algorithm for linear
programming using dual variables. See
Megiddo 1986d

Vanderbei, R. J., Meketon, M. J., Freedman,
B. A. 1986. A modification of Kar-
markar's linear programming algorithm.
See Megiddo 1986d

Yudin, D. B., Nemirovsky, A. S. 1976. Infor-
mational complexity and effective
methods for solving convex extremum
problems. Economica i Mat. Metody 12

