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1. INTRODUCTION 

Linear programming has enormous practical importance. Perhaps this is 
why it is frequently the subject of news reports. Existing methods for 
solving linear programming problems have been applied successfully in 
many areas. Improvements by orders of magnitude in the efficiency of 
solution methods would open up many new application areas with sub- 
stantial economic gains. 

The traditional and still most widely used tool for solving linear pro- 
gramming problems is the simplex method of George Dantzig (1963). This 
method is in fact a whole family of algorithms. Commercial software 
packages for linear programming consist of auxiliary procedures for han- 
dling particular types of problems. The efficiency of the simplex method can 
be appreciated by anyone who tries to solve a linear programming problem 
on any computer or even by hand. Thus the search for alternative algo- 
rithms for linear programming is motivated not by frustration but by 
theoretical considerations. It has been observed in practice that the number 
of steps performed by several variants of the simplex method grew some- 
what linearly with the number of rows in the matrix, and much more 
slowly with the number of columns. In highly degenerate problems the 
numbers of steps was larger, and "anti-degeneracy" features were 
developed. Theoreticians attempted to prove nontrivial upper bounds on 
the number of steps until Klee & Minty (1970) constructed a sequence 
of problems where several variants of the simplex method required an 
exponential number of steps. Following Klee & Minty, several additional 
variants were shown by other people (see Megiddo 1986a for references) 
to require exponential time in the worst case. The notion of a "variant of 
the simplex method" is not well-defined, and it is still not known whether 
every variant (in any reasonable sense of the word) requires exponential 
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time in the worst case. Anyway, practical experience suggests that the bad 
cases are extremely rare. 

Computational complexity theory is concerned mostly with the worst- 
case performance of algorithms. The worst-case measure has theoretical 
advantages, but its main deficiency is that it is one-sided: If an algorithm 
works well in the worst case then it always works well; however, 
proof that an algorithm is slow in the worst case does not tell against 
its performance in practice. The simplex method is perhaps the best 
counterexample. Nevertheless, it is interesting from a theoretical point 
of view to classify problems according to their worst-case complexity. 

It was not known until 1979 whether the linear programming problem 
was in the class P of problems solvable in polynomial time in terms of the 
input size. The size of the input for a problem with integer coefficients is 
measured as the total number of bits in the binary representation of 
the problem. Khachiyan (1979) proved that an algorithm by Yudin & 
Nemirovsky (1976), originally proposed for nonlinear optimization, had 
a polynomial upper bound. The algorithm has been tried without much 
success on linear programming problems. It performs relatively better on 
nonlinear optimization problems. 

In the fall of 1984 the news media reported that a new algorithm for 
linear programming by N. Karmarkar performed much better than the 
simplex method. The reports stirred up a great interest in applying non- 
linear methods for solving linear programming problems. Extensions and 
variations on Karmarkar's algorithm have been proposed. The relation of 
the new algorithms to the classical methods of nonlinear optimization is 
still under investigation. Apparently, the idea of applying such methods 
in linear programming has not been seriously pursued until recently. Most 
of the development of nonlinear programming occurred before complexity 
theory started to flourish. Because the functions involved lack well-defined 
properties, it is usually hard to analyze algorithms for nonlinear opti- 
mization. On the other hand, if all the functions are linear one has a nice 
framework for such an analysis. The work of Khachiyan (1979) pioneered 
in this direction. Karmarkar's work drew attention to methods of non- 
linear programming. 

At present it is not clear whether nonlinear methods will eventually 
replace the simplex method as the standard tool for solving linear pro- 
gramming problems in practice. However, for certain classes of problems, 
with sparse matrices of favorable structures, such methods are superior. 

This paper focuses on work in linear programming from a nonlinear 
point of view. I do not discuss here other areas of linear programming in 
which there has been active research in recent years. Probabilistic analysis 
of simplex-type algorithms became popular with the work of Borgwardt 
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(1982a,b) and Smale (1983). Further work has also been done (Adler & 
Megiddo 1985; Todd 1986; Adler et a1 1983a,b; Megiddo 1986c; see also 
Megiddo 1986a). Another interesting area in linear programming is the 
search for strongly polynomial algorithms (Tardos 1985; Frank & Tardos 
1985; see also Megiddo 1986a). 

The organization of this survey is as follows: In Section 2 I describe 
Karmarkar's algorithm; in Section 3 discuss the linear rescaling algorithm 
with observations on its induced vector field; in Section 4 review some 
methods of nonlinear programming applied to linear programming; and 
in Section 5 survey recent algorithms for linear programming that involve 
Newton's method. 

2. KARMARKAR'S ALGORITHM 

The algorithm published by Karmarkar (1984), is stated with respect to 
the linear programming problem given in form 

Minimize cTx 

subject to Ax = 0 

eTx = 1 

where A € R m X n  (1 s m s n ) ;  x,c€Rn; and e = ( l , . . . , n ) T ~ R n .  It is 
assumed that Ae = 0 so the point x0 = (l/n)e is interior relative to the 
linear subspace {Ax = 0). It is also assumed that the optimal value of the 
objective function is zero. The idea of the algorithm is explained with a 
projective transformation as follows. Denote 

If x E Rn is such that Ax = 0, eTx = 1, and x > 0 then the algorithm would 
move from x to a new point x' which is computed as a function of x as 
follows. Denote by 

D, = Diag (x,, . . . , x,) 

a diagonal matrix whose diagonal entries are the components of x. Con- 
sider a transformation of space 
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given by 

Thus, Tx(x) = ( l /n )e .  The mapping Tx is a projective rescaling trans- 
formation characterized by the property that it leaves all the vertices of the 
unit simplex in their places and moves the point x to the center of the 
simplex. 

Karmarkar used a "potential function" in the design and analysis of his 
algorithm. The function is the following: 

n 

$ ( y )  = n In cTy-  1 1n y,. 
j= l 

Given the transformation T,, the transformed potential function $.,-(z) is 
the following: 

The algorithm moves in the transformed space in a steepest descent direc- 
tion relative to the transformed potential function. The gradient of $x(z) 
at the point z = ( l /n )e  is equal to Dxc. In the transformed space, the 
direction of movement, that is, the direction of the vector T,(x') - T,(x), 
is opposite to the direction of the gradient of the potential function, 
projected into the space of the problem. This direction is obtained by 
projecting the vector - Dxc orthogonally into the nullspace of the matrix 

The result of this projection is the following vector: 

q = - ( I -AT(AAT)-  5 4 ) ~ ~ .  
Thus, the new point x' has the form 

where y is a positive scalar. The size of the actual step in practice is subject 
to variations. In theory, the choice 



leads to a polynomial-time algorithm. Other results on the choice of y are 
known (Blair 1986; Padberg 1985a,b; Todd & Burrell 1986). 

The role of the potential function is crucial in the theoretical analysis of 
the algorithm. It was shown that in each step the value of this function 
decreases by at least some fixed amount 6 independent of the data. The 
initial value of the potential function is O(nL) where L is bounded by 
the length of the representation of the problem in binary encoding. The 
algorithm can be terminated when the value of this function is less than 
- O(nL) since then an optimal basis can be computed directly from the 
current interior point. Thus, the algorithm terminates in O(nL) iterations. 
Interestingly, the constant reduction of potential corresponds to linear 
convergence, which is considered dissatisfactory in the traditional theory 
but "good" from the point of view of contemporary complexity theory. 

If the iterations are performed using standard methods of linear algebra 
then each takes 0(n3) arithmetic operations. Thus, the total number of 
arithmetic operations is 0(n4L). However, to determine the complexity of 
the algorithm in bit operations, we still have to determine the precision in 
which the arithmetic operations need to be performed. Karmarkar (1984) 
claimed that precision of O(L) bits suffices. However, Renegar (1986) 
pointed out the incompleteness of the argument in Karmarkar's paper, 
suggesting that the required precision is actually O(nL). Of course, in 
practice one only works with fixed precision. Karmarkar also showed how 
to perform the iterations of his algorithm in an average of O ( ~ Z * . ~ )  arith- 
metic operations per iteration. This theoretical improvement does not seem 
to have a practical value since on medium-size problems this average is 
not realized within the first few dozens of iterations (the typical number 
of iterations required for solving practical problems). 

3. THE LINEAR RESCALING ALGORITHM 

After the publication of Karmarkar's algorithm many people indepen- 
dently suggested the idea of using a linear rather than projective rescaling 
transformation. We mention here only two papers (Barnes 1985 and 
Vanderbei et a1 1986), where convergence proofs of the resulting algorithms 
were provided. Consider the linear programming problem in the standard 
form (SF): 

Maximize cTx 

(SF) subject to A x  = b 



Also, assume a point xo is known such that Axo = b and xo > 0. Given 
X E  Rn such that Ax = b and x > 0, consider the following linear trans- 
formation 

given by 

Obviously, Tx(x) = e = (1,. . . , and Tx is actually characterized as a 
linear transformation with this property. In the transformed space the 
problem becomes 

Maximize cTDxy 

subject to AD,y = b 

The algorithm moves in the transformed space in the direction of the 
gradient projected into the space of the problem. The gradient is Dxc. The 
projection of this vector on the nullspace of the matrix AD, is 

The new point x' is of the form 

where y(x) is a scalar. 
The linear rescaling algorithm was stated by both Barnes (1985) and 

Vanderbei et a1 (1986) with respect to problems in standard form. For 
reasons discussed below, it seems that there is an advantage to work with 
problems in the inequality form (the dual of the standard form): 

Minimize cTx 

( D )  subject to Ax 2 b 

where A E Rm "; b E Rm; and c, x E Rn (m 2 n). One can develop an anal- 
ogous algorithm for (D) ,  based on the principle suggested by Barnes 
(1985). Suppose x is an interior feasible point. Let 

be an ellipsoid contained in the feasible domain. Note that 



E =  ( y :  IID;'(Ay-6)-ell I 11, 

where 

The algorithm picks a direction v of movement towards the minimum of 
the function cry over E. The vector v can thus be found by solving the 
following optimization problem: 

Minimize cT(x + v) 
subject to IID;'[A(x+v)-b]-ell = 1. 

Since D; '(Ax-6) = e, it follows that this problem is equivalent to 

Minimize cTv 

subject to ( 1  D; 'Au l l  = 1. 

However, we are interested only in the direction of the vector u, so we can 
write the following set of equations for the optimality conditions: 

Thus 

The latter looks simpler than the formula for the problem in standard 
form, even though the effort involved in computing the direction is not 
much different. The advantage of the inequality form is that it is numeri- 
cally much easier to satisfy inequalities than equalities. Specifically, if x 
satisfies Ax > b and we move in a direction O rather than v, then we 
still maintain feasibility. On the other hand, in the standard form the 
approximate direction has to satisfy AO = 0 with relatively high accuracy, 
or else the point becomes infeasible. 

It is interesting to observe that the same search direction can be obtained 
for (D) by transforming it to standard form with surplus variables replacing 
the original x variables (Megiddo & Shub 1986). Also, both in standard 
form and the form (D), this direction corresponds to the choice of p = 0 
in the logarithmic barrier technique (Gill et a1 1985; Megiddo & Shub 
1986) (see Section 4). 

Let us return to problems in standard form (SF). As pointed out in 
(Vanderbei et a1 1986), one can associate dual values w = w(x) with any 
feasible point x so that (under nondegeneracy assumptions) when x tends 
to the optimal solution, w(x) tends to the dual optimal solution. Specifically, 



It is worthwhile to note that this vector arises naturally as the vector of 
Lagrange multipliers in the projection problem in the transformed space: 

1 
Minimize - 11 D,c - t,~ 1 1  

2 

subject to AD,q = 0. 

If 12 is the vector of multipliers then 

so, by eliminating q we get 

The same vector is also used by Todd & Burrell (1986), who derive dual 
variables in extensions of Karmarkar's algorithm. 

It is not known whether the linear rescaling algorithm runs in polynomial 
time. Although it was suggested as a variation on Karmarkar's algorithm, 
it is not clear that it shares similar properties-e.g. a guaranteed amount 
of progress in a certain precise sense in each iteration. Moreover, there are 
indications that in certain cases the behavior of this algorithm is drastically 
different from the projective rescaling algorithm. Megiddo & Shub (1986) 
analyze the differences by considering trajectories in the vector fields cor- 
responding to both algorithms. First, they show that there exist linear 
rescaling trajectories that visit all the vertices of the Klee-Minty cube 
within any prescribed e > 0. Suppose we let a point on a trajectory tend 
to a boundary point. The limit of a linear rescaling trajectory may have 
an exponential number of breakpoints. On the other hand, projective 
rescaling trajectories may have only a linear number of such breakpoints 
in the limit. Intuitively, the projective rescaling trajectories can in the worst 
case behave as follows. Suppose the starting point x0 of a trajectory tends 
to a point in the relative interior of a face @ of the feasible polyhedron. If 
@ contains the optimum then the limit of the trajectory stays in @ and 
converges to the optimal solution. If @ does not contain the optimum then 
there exists a point a(@) in the relative interior of @ with the following 
property: For every x interior to @ and every c: > 0, if the starting point 
x0 is sufficiently close to x then the trajectory visits the &-neighborhood of 
a(@). The only possible breakpoints in the limit of projective rescaling 
trajectory are the points a(@). Moreover, if a(@,),  . . . ,a(@,) are break- 
points in the limit of one trajectory then necessarily 



It follows that there can be no more than n such breakpoints on one 
trajectory. 

Current implementation efforts seem to concentrate on the linear rescal- 
ing algorithm. Encouraging computational experiences with the linear 
rescaling algorithm were reported recently (Chen 1986; Adler et a1 1986). 
Adler et a1 implemented the algorithm in its dual version. Remarkable 
results were also reported by Karmarkar & Sinha (1985), although it was 
not clear exactly what algorithm they implemented. 

4. APPLICATIONS OF TRADITIONAL METHODS 
OF NONLINEAR PROGRAMMING 

The notion of a potential function is of course well known in mathematical 
physics. Many algorithms for nonlinear programming (Fiacco & McCor- 
mick 1967) were developed with intuition drawn from physics. The use of 
the function $(x) in Karmarkar's algorithm is very much related to barrier 
function techniques in nonlinear programming. A formal equivalence to 
the projected Newton method with a logarithmic barrier function was 
pointed out by Gill et a1 (1985). When this technique is applied to the linear 
programming problem, the following nonlinear optimization problem is 
considered: 

Minimize F,(x) = cTx - p 1 In xj 
j 

subject to Ax = b 

x > 0 

where p > 0 is a scalar. Given x (such that Ax = b and x > 0) and p, the 
Newton direction is the direction of the vector 

v = (V2~,(x))- lVF,(x). 

This direction is projected orthogonally into the nullspace of the matrix A 
to obtain a direction of movement from x along which the points stay in 
the flat (Ax = b} .  The parameter p is chosen either as the current element 
in a predetermined sequence or as a function of x, tending to zero during 
the execution of the algorithm. The method is attributed to Frisch (1955). 
A related method, the "method of centers" proposed by Huard (1967), 
chooses the "parameter" with respect to the current point as follows. 
Suppose the problem is 

Maximize f(x) 

subject to gi(x) 2 0 (i = 1, . . . , m), 



and assume a point x0 is available such that gi(xO) > 0 (i = 1, . . . , m). 
Suppose the algorithm has reached the point <. It then attempts to max- 
imize the function 

Here the constraints are represented by logarithmic barriers and the objec- 
tive function is represented through the logarithm of the improvement 
relative to the current point. When the current point gets close to optimal, 
the latter becomes the dominant term of Ft. When this idea is applied to 
problems in the form (SF), the iterative step attempts to solve 

Maximize In (cTx - cT<) + ln xj 
i 

subject to Ax = b. 

In practice the method of local optimization can be chosen with respect 
to the particular instance. Newton's method is usually mentioned in this 
context (see Section 5 for recent applications of Newton's method). Rene- 
gar (1986) recently developed a polynomial-time algorithm related to this 
method of centers (see Section 5). 

Betke & Gritzmann (1986) establish a formal relation between linear 
programming and unconstrained convex optimization as follows. They 
consider the linear programming problem in the feasibility form 

where A€RmXd. For any x€Rd,  the vector of "violations" at x is the 
following: 

F(x) = (XI, .  . . ,x;, (A+--bJf , .  . . , (A,x-b,)+)T 

where 5+ = max {5,0) and 5- = max ( - &0).  For any p (p 2 2), a convex 
function g(x) = g,(x) is then constructed in terms of the [,-norm of F(x): 

General conditions on algorithms for minimizing convex functions are 
stated which imply polynomial time when applied to the function g for 
solving the linear programming problem. The proposed algorithms gen- 
eralize the ellipsoid algorithm. They attempt to minimize g(x) by taking 
gradient steps in a transformed space. I first explain the transformations 
involved and their relation to the ellipsoid method. Consider a matrix 



where uTu = 1 and 1 > - 1. Obviously, the linear transformation associ- 
ated with M is a dilatation of space by a factor of 1 + A  in the direction of 
u. An iterate of the ellipsoid method consists of an infeasible point xk 
together with an ellipsoid Ek centered at xk and guaranteed to contain all 
the basic feasible solutions if any. By a suitable affine transformation, the 
point xk is mapped to the origin and the ellipsoid Ek is transformed into a 
ball. In the transformed space the algorithm then moves from the origin 
in a direction u perpendicular to one of the violated constraints, and a new 
ellipsoid is constructed. The new ellipsoid has one short axis in the direction 
u whereas all the other axes are of equal length. Thus, to transform this 
ellipsoid back into a ball, we first translate the new point to the origin and 
then apply a dilatation transformation of the form I+ luuT. This implies 
that the current ellipsoid in the original space of the problem can be 
represented as the image of a ball (centered at the origin) under a chain 
of "contractions" (that is, dilatations with negative Is) followed by a 
translation. 

The proposed generalization of Betke & Gritzmann is to move in the 
transformed space (that is, where the current ellipsoid is represented by a 
ball) in the direction of the gradient of g(x), construct a new ellipsoid, 
apply a dilatation that maps it into a ball, and so on. The original ellipsoid 
method is reproduced by choosing the norm to be 8,. The claim is that 
for any p this method yields a polynomial-time algorithm. On the more 
practical side, Betke & Gritzmann have applied the variable metric method 
(Davidon 1959; Fletcher & Powell 1963) with exact line searches for 
minimizing the function g,(x). The exact line searches are possible since 
g,(x) is piecewise quadratic. The reported computational experience is 
promising. 

5. RECENT ALGORITHMS BASED ON NEWTON'S 
METHOD 

Newton's method is a classical tool for minimizing convex functions. 
Essentially, to minimize a convex function f(x) (with no constraints) 
one simply attempts to solve the equation g(x) - Vf(x) = 0. Newton's 
iteration is based on first-order approximation of the function g(x), so the 
next point is determined by the equation g ( ~ k )  + Vg(xk) (xk+ - xk) = 0, 
which is equivalent to 

Intuitively, Newton's method of optimization is more powerful than the 
gradient method since it takes into account information about the curva- 
ture. Traditional methods of constrained nonlinear optimization apply 



Newton's method to unconstrained functions that incorporate the con- 
straints of the given problem. The barrier function technique is one such 
way of incorporating constraints. Interestingly, when the current point 
tends to the boundary of the feasible domain, the gradient direction of 
the barrier function becomes, as desired, perpendicular to the boundary, 
whereas Newton's direction becomes parallel to it (see Megiddo & Shub 
1986). 

The news reports about Karmarkar's algorithm suggested that his ideas 
were revolutionary. Following these claims, a number of people wrote 
papers suggesting that algorithms based on traditional principles should 
yield similar results. 

Iri & Imai (1986) use a barrier function 

closely related to Karmarkar's potential function, for solving the problem 

Minimize cTx 

subject to Ax 2 b. 

A nice property of Iri & Imai's function and Karmarkar's potential func- 
tion is that both are free of parameters (such as ,u in the traditional barrier 
method) that need to be updated by the algorithm. Assuming the optimal 
value is zero, Iri & Imai simply minimize the function 6 using Newton's 
search direction method. This approach is justified by the proven convexity 
of the barrier function, since Newton's method has been known to work 
well on such functions. The interesting feature in their work is that they 
analyze the effect of performing line searches, rather than just taking 
standard steps in the chosen direction. Although it is not clear that their 
complete algorithm converges quadratically, the sequence of relative 
minima (i.e. minima with respect to the search line) converges quadratically 
to the optimum. Also, it is not known whether this algorithm runs in 
polynomial time. 

De Ghellinck &Vial (1985, 1986) describe another algorithm that can be 
interpreted as a Newton method. They set the problem in a homogeneous 
feasibility form: 

(where A E RmX("+ I )  and the columns are indexed O,l, .  . . , n). The algo- 
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rithm works inside the positive orthant of R n f  ', attempting to find a 
feasible point by driving the following quantities to zero: 

Aix . 
$i(x) =- (z = 1, ..., m). eTx 

Given any point X E  R y  ' (x > O ) ,  one would ideally like to find a trans- 
lation u E Rn+ ' defined by the following optimization problem: 

Maximize eT(x + u) 

subject to Au = 0 

x + u  2 0 

where the optimization is with respect to u. The difficulty of this problem 
is in the nonnegativity constraints. Since x > 0, one can avoid violating the 
nonnegativity constraints by considering the following problem instead: 

n 

Maximize n (xi + uj) 
j= 0 

subject to Au = 0. 

Working in the interior of the positive orthant, the objective function can 
be replaced by 

which is concave. Newton's method is a natural choice as a tool for 
optimizing the latter. Obviously, 

and 

V2Cp(0) = - 0; 2, 

where D, = Diag(x). Thus, the Newton direction is determined by the 
following problem 

1 
Maximize - - uTD; 2u + eTD; 'U 

2 

subject to Au = 0 

or, equivalently, 



subject to Au = 0. 

The vector u is therefore determined together with a vector of multipliers 
v by the following system: 

The solution is 

This can be interpreted as follows. Standing at a point x > 0, we would 
like to move parallel to the nullspace of A so that eTx increases. The 
direction of movement is determined by first transforming the space. Let 
us transform the space by the linear rescaling transformation D; I .  The 
point x is mapped to the point e and the nullspace of A is transformed 
into the nullspace of AD,. In the transformed space we move parallel to 
the nullspace of AD,. We first project e orthogonally into the latter, 
denoting this projection by e,. The movement in the transformed space is 
from e to a point of the form e + me,, where a is a positive scalar. Of course, 
the direction of movement in the original space is that of the vector D g p .  
Although the de Ghellinck-Vial algorithm is described as an exterior-point 
method, it does involve arguments similar to those used in Karmarkar's 
algorithm, and its framework is suggested by the projective nature of the 
latter. They also prove a polynomial-time bound. 

Smale (1986) proposes to use Newton's method for solving linear pro- 
gramming problems in a related way. It is well known that the problem 

Maximize cTx 

subject to Ax I b 

can be set as a linear complementarity problem, namely, finding z such 
that 

where 
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and q = ( - ~ , b ) ~ .  Equivalently, if we identify z with y' and 
-(Mz+q) with y- (denoting q+ = max{q,O}, q- = min{q,O}, and 
y' = ( y:, . . . , y;,,)? then the problem is equivalent to finding y such that 
Myf +y- = -9. As functions of q, the quantities q+ and q are piecewise 
linear with a single breakpoint at the origin. They can be approximated, 
respectively, by hyperbolas: 

and 

where p > 0 is a parameter. These hyperbolas converge uniformly to the 
corresponding piecewise linear functions as p tends to zero. The approxi- 
mate problem with a fixed value of p is to solve the equation 

where 

Given q one can apply Newton's method for solving this equation by 
following the inverse image under @, of a line segment [qO, q] (starting at 
any point q0 > 0). Lemke's algorithm (which is a generalization of Dantzig's 
self-dual simplex method) follows the inverse image of such a line segment 
under 

Smale argues that the Newton path converges to Lemke's path as p tends 
to zero. 

If one prefers Newton's method to simplex-type methods then one may 
apply the former with a fixed small value of p, but it is doubtful that this 
idea will give rise to a more efficient algorithm. Another approach, more 
in the spirit of traditional methods of nonlinear optimization, is to drive 
p to zero during the execution of the algorithm. This is in a sense an 
attempt to follow the path determined by @; '(-9) as p varies. Consider 
the mapping @,(y). The Jacobian matrix is equal to MD: + D; where 
D: and DL are the (diagonal) Jacobian matrices of @:(y) and cD,(y), 
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respectively. The Newton direction u at y (relative to a fixed value of p) is 
obtained as the solution of the following system of linear equations: 

The structure of the underlying matrix is very similar to the ones 
encountered in the algorithms described previously in this paper. It is 
worthwhile to note that the approximation by the hyperbolas can be 
interpreted as a penalty function method. Suppose the problem is to solve 
a system of linear inequalities Ax 2 b (A E R m x  "). Then an approximation 
to it is to minimize the function 

In the remainder of this section I consider a recent algorithm proposed 
by Renegar (1986). He applies Newton steps in an algorithm that is also 
related to the logarithmic barrier technique of Frisch (1955) and to Huard's 
(1967) method of centers (see Section 4). Renegar states his algorithm with 
respect to the problem in the inequality form: 

Maximize cTx 

subject to Ax 2 b, 

where A E Rm ". The following function (where z is a parameter) plays an 
important role in the development of the algorithm: 

(Renegar uses a coefficient 8 instead of rn and argues that the choice 8 = rn 
is optimal in a certain sense.) The value of z is changed throughout the 
execution of the algorithm. 

Suppose the problem is formulated so that it has a feasible domain of 
full dimension and an optimal solution. The function f(x; z) is well-defined 
for x in 

Since f(x, z) is strictly concave and P, is bounded, it follows that there 
exists a unique maximizer x* = x*(z) of f(x; z). This point is characterized 
as the solution of the following set of equations (equivalent to Vf(x; z) = 0): 

where 
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D"(x) = Diag ( A  ,x  - b ,, . . . , Amx - b,) 

and 

e = (1,. . . , l ) T ~ R m .  

When z varies we obtain a path through the interior of the feasible domain. 
For any y such that Ay > 6,  let 

L(y)  = ( x  : cTx = cTy, Ax > 6). 

Obviously, x*(z) is the maximizer of f (x;  z )  in the set L(x*(z)) .  Thus, x*(z)  
is also the maximizer of Z b  In (Aix - b,) over L(x*(z)) .  Consider, on the 
other hand, the function 

m 

g (x )  = g(x;  p) = cTx + p In (A,x - b,), 
,= l 

used in the barrier function technique. Here too we can define a path 
x = x+(p ) ,  where x + ( p )  is the maximizer of g(x; p) over the interior of the 
feasible domain. Since x f  ( p )  is obviously the maximizer of g(x;  p) over 
the set L ( x f ( p ) ) ,  we have that x + ( p )  is also the maximizer of 
Cy= ln (Aix - b,) over L(x+(p ) ) .  We thus have 

Proposition 5.1 The functions x = x*(z) and x = x'(p) are just two 
parameterizations of the same path. 

Let us refer to the path discussed above as the centralpath. The central 
path converges to an optimal solution. This path has been studied in the 
context of nonlinear optimization by Fiacco & McCormick (1967). More 
recently, in the context of linear programming, the path was studied by 
Bayer & Lagarias (1986) and Megiddo (1986b). The barrier function 
attempts to "follow" this path. However, the word "follow" may be 
interpreted in various ways in this context. In general, a "path-following 
technique" would run as follows. Given a value of p, assuming we are at 
a point that is not so far from the point x f ( p ) ,  we run a certain number 
of Newton iterations with this fixed value of p, to get closer to the point 
xt(,u). When we get sufficiently close to the point xf( ,u),  we update the 
value of the parameter p by some rule, and then the process is repeated. 

Let us examine this procedure in a more general context. Let F(x; t )  be 
a mapping Rnil into R" ( x c  Rn, t E R )  that implicitly defines a path 
x = x( t )  through the equation 

F(x; t )  = 0. 

Suppose we are at a point x0 and we attempt to follow this path. Let to  be 
the current value of t ,  so that x0 is considered sufficiently close or even 
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equal to x(tO). We now update the value o f t  to be to+At. The Newton 
step is computed with respect to the equation F(x; to+At) = 0 (with the 
current point xO). The step Ax is given by 

Suppose, for a moment, that x0 is a point on the path-that is, x0 = x(to)  
and F(xO; to) = 0. We later consider the tangent to the path x = x( t )  at xo. 
This tangent is the line 

where 

Consider the representation of the central path with x = x+(p). The 
implicit function is 

F(x; p)  = Vg(x;  p) = c + ~ A ~ D " -  I(x)e. 

In this case we have 

Consider a point x0 on the path, x0 = x+(po). By  definition, 

Now, let p' = p - Ap be the updated value of the parameter. We have 

Vg(xO; pO - Ap) = c+ (pO - A ~ ) A ~ D " -  ' (xO)e = - dpAT& I(xO)e. 

We thus have 

Proposition 5.2. I f x O  = x+(po) then for any update Ap of the parameter 
p, the Newton step with respect to the logarithmic barrier parameterization 
x+(p) is in the direction of the tangent of the path. 

Proof: Since 

and 
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it follows that the common direction is the direction of the vector 

- ( A ~ ~ - ~ ( x ' ) A ) -  'AT& ' (xO)e .  

The situation with Renegar's algorithm is the same: 

Proposition 5.3. l f x O  = x*(zo) then for any update AT of the parameter z ,  
the Newton step with respect to Renegar's parameterization x*(z) is in the 
direction of the tangent of the path. 

Proof: Here the implicit function is 

In this case we have 

Consider a point x0 on the path, x0 = x*(zo). By definition, 

Vf(xO; 7 , )  = 0. 

Let z' = z + Az be the updated value of z .  Thus, 

On the other hand, 

Notice that, in general, for any matrix ME Rn and scalars a, b, the solution 
v of the system 



satisfies 

v  = M -  ' ( p  - acTv)c 

and hence v  and M ' c  lie on the same line. This implies that in our case, 
if xo is on the central path, then Renegar's step is in the direction of the 
tangent-that is, the direction of the vector 

( A ~ D "  2 ( ~ ) ~ ) -  Ic. 

Notice that this is the same direction as Proposition 5.2 since 

- A ~ D "  ' (xo)e  = c  

when xo is on the central path. 
We have seen that at points on the central path both algorithms assign 

the same direction of movement-namely, the direction tangent to the 
path. Let us now consider points x off the central path. Let p = p(x) be 
the value of the parameter associated with the point x (under a certain 
variant of the logarithmic barrier technique). The direction assigned by 
the barrier technique is given by a vector u satisfying 

On the other hand, Renegar's direction is given by a vector v satisfying 

In order for u = u(x) and v  = v(x )  to have the same direction it suffices 
that 

The latter is equivalent to 

We thus have 

Proposition 5.4. The direction assigned by Renegar's algorithm at a point 
x, when the updated value of the parameter is z, is the same as the one 
assigned by the logarithmic barrier technique where the parameter p is given 
by 
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where 

Interestingly, Gill et a1 (1985) showed that a certain choice of p(x) in 
the projected Newton logarithmic barrier algorithm (stated for problems 
in standard form) assigns the same direction as Karmarkar's algorithm. 

The actual algorithm proposed by Renegar is as follows. Two par- 
ameters must be fixed. First, there is constant 6 whose value is chosen as 

for obtaining a valid algorithm. Second, one must fix the number N of 
Newton iterations to be performed per step of the algorithm. The main 
result is proven with N = 1. The algorithm generates a sequence of interior 
points (xk} and a sequence of lower bounds (zk) on the optimal value of 
the objective function. The algorithm starts with an interior point x0 and 
a lower bound z0 < cTxO. The iterative step is as follows. Given xk and zk 
(zk < cTxk+ I ) ,  perform N Newton iterations starting at xk, to maximize the 
function f(x) = f(x; zk). Note that here a Newton iteration does not involve 
a line search. The sequence of points generated during a step, 

is determined by the equation: 

~2f(yJ;  zk) (yJ+l-Yj) = -VfbJ; zk) ( j  = 0,. . . , N ) .  

However, to make sure that these points stay in the feasible domain, one 
has to choose N = 1 and 6 as above. The constant 6 determines the new 
value of z: 

and it is chosen sufficiently small that the first Newton step at xk+ does 
not generate an exterior point. 

Suppose x* is an optimal solution. Renegar proves that objective func- 
tion values cTxk converge to cTx* at least as fast as implied by the following 
inequality: 

cTx* - cTxk 5 1 - - (cTx* - z". i 2 8 k J  
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This means that the number of steps it takes the algorithm to reach a point 
where the termination criterion holds is o ( , / ~ L )  whereas for Kar- 
markar's algorithm the known bound on the number of steps is 
O((m + n)L). 

6 .  PRACTICAL IMPROVEMENTS 

The emphasis in Karmarkar's paper (1984) is on the asymptotic worst- 
case complexity, and therefore some of the assumptions he makes (for the 
ease of presentation) sound unreasonable from a practitioner's point of 
view. For example, the hypothesis that the optimal objective function 
value is zero is justified by setting the problem in the combined primal- 
dual form. Other people (Todd & Burrell 1986; Anstreicher 1986a,b,c; 
Gay 1985; Gonzaga 1985; Goldfarb & Mehrotra 1986) later proposed 
various algorithms of the same type where this hypothesis can be relaxed. 
Although these improvements do not improve the order of magnitude of 
the known upper bound, they are believed to have a significant practical 
value. The paper by Todd & Burrell was also the first to show how dual 
variables arise naturally in this algorithm. 

Another direction, pursued by Goldfarb & Mehrotra (1985, 1986) and 
Kojima & Tone (1986), is to make the algorithm more efficient by com- 
puting projections only approximately. Polynomial time bounds still hold 
for these relaxed versions. It seems that such an approach would be even 
more advantageous if the problem is set in the inequality form. Notice 
that in standard form, although the direction does not have to be the exact 
projection, it still has to be in the appropriate nullspace or else the new 
point will not be feasible. In the inequality form, starting from an interior 
point, one always remains in the feasible domain provided the step size is 
not too large. 

Karmarkar did not provide a practical stopping rule for his algorithm. 
In practice one must stop the algorithm at a certain point (earlier than the 
theoretical one) and attempt to guess what the optimal solution is. Kojima 
(1986) developed such rules for deducing at a relatively early stage which 
variables must be basic in the optimal solution. 

The standard form of a linear programming problem distinguishes the 
nonnegativity constraints from the equality constraints. Thus, upper 
bound constraints (that is, inequalities of the form xi I ui) that may exist 
in the original problem are "lost" during the transformation to standard 
form. It is known that the simplex method can be stated with respect to 
problems in a more general form where 0 5 xi I ui (and ui may be infinite) 
so as to take advantage of such constraints. In fact, commercial codes of 
the simplex method are set to deal with problems in this form. The question 



of how to deal with upper bounds in the context of Karmarkar's algorithm 
is very natural. Rinaldi (1986) developed a theory for dealing with such 
upper bounds in this context. 

7. CONCLUSION 

Encouraging experiences with different methods were recently reported 
also by Kojima & Tone (1986) and Kojima (1986). From a theoretician's 
point of view it is interesting to confirm the surprisingly low number of 
iterations that different nonlinear methods perform on linear programming 
problems. The upper bounds proven for various algorithms are not known 
to be tight. The analysis so far is typically based on estimating the worst 
that can happen during a single step of the algorithm. It is conceivable 
that one will be able to prove that such bad performance cannot occur 
during many steps. In a certain sense Karmarkar's potential function 
captures such a phenomenon. More precisely, he proves that if the 
improvement in terms of the objective function is small during a certain 
step then progress is made during that step in another sense-namely, the 
barrier part improves since the potential function does. However, it is not 
known whether a small improvement in terms of the potential function 
during one step implies larger improvements during other steps. 

A theory is desired that would explain the differences among various 
algorithms and identify features that probably make one algorithm better 
than another one. 

An interesting feature of the new algorithms is that they are invariant 
under certain transformations of the problem or, in other words, they are 
"unit free." Some variants of the simplex method are not unit free, but it 
is easy to design ones that are. It is interesting to pursue the connection 
between invariance and efficiency of an algorithm. Let us first examine this 
question in a rather abstract setting. More concrete examples will be given 
later. 

By a problem we mean a set P of pairs (I,?) where I is an instance or an 
input and S E  S(I)  is one of its solutions. Let us further assume that there 
is some fixed equivalence relation - over instances such that I ,  - I,  only 
if S(I , )  = S(1,). Now, let us fix the model of computation so that we have 
a well-defined notion of an algorithm. Roughly, an algorithm receives an 
input, operates on it under the model of computation, and returns an 
output. By an algorithm for P we mean an algorithm that receives an input 
Z and returns an output s E S(Z), or else recognizes that there is no s such 
that (I ,  s )  E P. A computation is a sequence that describes the operation of 
an algorithm on a particular input. Thus a computation C can be specified 
by an algorithm A together with an input I where C = C ( A ,  I ) .  Let g 



denote an equivalence relation over computations. An algorithm A is 
invariant with respect to and E if for every Zl I,, 
C(A, I,) E C(A, I,)-that is, its computations on equivalent problems are 
equivalent. The invariance of an algorithm depends on the definition of 
equivalence of instances and computations. Here we are of course inter- 
ested in the linear programming problem. Consider, as an example, the 
role of the center of gravity of a polytope. We do not know of useful ways 
of computing the center of gravity of a polytope, so we do not expect to 
produce good algorithms for linear programming that rely on this point. 
However, we can still examine the issue from the point of view of invariance 
and complexity. The center of gravity is not invariant under convex pro- 
jective transformations-that is, the image of the center of gravity is not 
necessarily equal to the center of gravity of the image of the polytope. 
However, despite its not being invariant, the center of gravity is a very 
useful point to know. The "only7' problem is that we do not know how to 
compute it efficiently. Suppose we had an oracle that could tell us the 
center of any polytope (given by a set of linear inequalities). We could 
then design a linear programming algorithm as follows. Given a (bounded) 
polytope, produce a second polytope by cutting the first one through its 
center of gravity with a hyperplane on which the objective function is 
constant, picking the half that contains the optimum. This step gives rise 
to a very good iterative algorithm since the volume of the remaining 
polytope is reduced by a factor of at least l /e in each step. Now, consider 
the rationale of the invariance postulate. The representation of an instance 
may be chosen by an adversary. Thus, if an algorithm is not invariant, the 
adversary will choose a bad representation for the algorithm. On the other 
hand, if the algorithm is invariant (and the definition of equivalence of 
computations is right) then the choice of the representation has no effect 
and the adversary is neutralized. Given the real world instance that we 
need to solve, the adversary may choose a representation in which the 
center of gravity corresponds to an interior point close to the "anti- 
optimum" so that a cut through that point will not reduce the volume 
significantly. However, this argument holds only for the first iteration. 
Once the representation has been fixed, the repeated choice of the center 
of gravity guarantees steady progress towards the optimum, at least in the 
metric of the representation. 

A simplification of the preceding paragraph can be made by considering 
the more familiar binary search. Suppose f(x) is continuous over the unit 
interval such that f(0) < 0 < f(1) and we need to approximate a point x 
such that f(x) =O. The only information we can obtain is in the form of 
values o f f  at points of our choice. A natural equivalence relation over 
inputs in this problem is derived from monotone transformations: f and 



g are equivalent if there is a strictly monotone function m such that 
g(x) = m( f(x)). We may further restrict the equivalence relation to cases 
where m is a projective transformation of the form 

which implies that m(0) = 0 and m(1) = 1. Even under the weaker relation, 
binary search is not invariant. Indeed, with binary search we believe we 
are chopping the interval by the maximum amount possible in the worst 
case, in each step. An adversary can distort the picture in such a way that 
our binary search probes, at least in the first step, very close to one of the 
endpoints. But, since the adversary cannot change the metric from step to 
step, we do make progress relative to the metric he had to choose before 
the process started. 

Invariance does look like a nice theoretical requirement. However, the 
level of equivalence of inputs should be decided with caution. For example, 
in the context of graphs it seems natural to consider isomorphic graphs as 
equivalent from the point of view of computing graph-theoretic invariants. 
Taking such a point of view eliminates any interest in the graph iso- 
morphism problem. Also, in the context of recognizing Hamiltonian 
graphs, suppose an adversary could choose the particular assignment of 
labels to nodes. Knowing that our algorithm is invariant, the adversary 
does not compromise anything by assigning the labels 1,2, .  . . , around a 
Hamiltonian circuit if one exists. Thus an invariant algorithm cannot take 
advantage of such transparent facts. 

A somewhat less trivial observation applies to the linear programming 
problem. Instead of invariance under convex projective transformations 
let us consider a weaker notion-namely, invariance under linear trans- 
formations. It may seem natural to consider two linear programming 
problems equivalent if there is a linear transformation that maps one to 
the other. However, for every linear programming problem there is a linear 
transformation that reveals the solution. In fact, the simplex algorithms 
compute such transformations and use them as certifications for the sol- 
ution. 

A weaker notion of equivalence that seems more appropriate is derived 
from scaling: Two problems are equivalent if they differ only in the choice 
of units of measurement. Thus, an invariant algorithm is one that does 
not depend on these choices. Indeed, many variants of the simplex algo- 
rithm are invariant under scaling transformations. 

Interior point algorithms can also be studied through the vector fields 
they define over the feasible domain. Such an approach is used by Bayer & 
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Lagarias (1986), Megiddo & Shub (1986), and Megiddo (1986b). Nazareth 
(1986) points out the relation to homotopy methods previously used in 
nonlinear optimization. 

The new methods would probably extend to problems close to linear 
programming, such as convex quadratic programming. An extension of 
Karmarkar's algorithm to this domain has already been developed by 
Kapoor & Vaidya (1986). Megiddo (1986b) discusses extensions to various 
types of linear complementarity problems. 
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