Parallel Linear Programming in Fixed Dimension
Almost Surely in Constant Time

Noga Alon and Nimrod Megiddo

IBM Almaden Research Center

San Jose, California 95120 and

School of Mathematical Sciences
Tel Aviv University, Israel

Revised; January 1992

Abstract. For any fixed dimension d, the linear programming problem with
n inequality constraints can be solved on a probabilistic CRCW PRAM with O(n)
processors almost surely in constant time. The algorithm always finds the correct
solution. With nd/log?d processors, the probability that the algorithm will not
finish within O(d?log® d) time tends to zero exponentially with n.

1. Introduction

The linear programming problem in fixed dimension is to maximize a linear function of
a fixed number, d, of variables, subject to n linear inequality constraints, where n is not
fixed. Megiddo [11] showed that for any d, this problem can be solved in O(n) time.
Clarkson [4] and Dyer [7] improved the constant of proportionality. Clarkson [5] later
developed linear-time probabilistic algorithms with even better complexity. The problem

in fixed dimension is interesting from the point of view of parallel computation, since

the general linear programming problem is known to be P-complete. The algorithm of
[11] can be parallelized efficiently, but the exact parallel complexity of the problem in
fixed dimension is still not known.! Here we develop a very efficient probabilistic parallel

algorithm based on Clarkson’s [5] scheme.

In this paper, when we say that a sequence of events {F,,}°2, occurs almost surely,
we mean that there exists an € > 0 such that prob(£,) > 1 —e™". A consequence of
this estimate is that with probability 1, only a finite number of the events do not occur.
The main result of this paper generalizes a known fact [12; 10] that the maximum of n

items can be computed almost surely in constant time.

As mentioned above, the basic idea of the underlying sequential algorithm is due to
Clarkson [5]. His beautiful iterative sequential algorithm uses an idea of Welzl [14]. As in
Clarkson’s algorithm, we also sample constraints repeatedly with variable probabilities.
Several additional ideas and some modifications were, however, required in order to
achieve the result of this paper. Our probabilistic analysis is also different, and focuses
on probabilities of failure to meet time bounds, rather than on expected running times.
In particular, a suitable sequential implementation of our algorithm can be shown to

terminate almost surely within the best known asymptotic bounds on the expected time.

!Ajtai and Megiddo recently developed deterministic algorithms which run on a linear number of
processors in poly(loglogn) time.

In Section 2 we present a special form of the output required from a linear program-
ming problem, which unifies the cases of problems with optimal solutions and unbounded
ones. In Section 3 we describe the algorithm and provide the necessary probabilistic anal-

ysis.

2. Preliminaries

The purpose of this section is to state the required form of the output of the linear

programming problem, which turns out to be usetul for our purposes in this paper.

2.1 A special form of the output

Let N ={1,...,n} and suppose the linear programming problem is given in the form

Minimize ¢ -
(LP)
subject to a; @ >b; (1€ N),

where {c,a,,...,a,} C R and by,...,b, are real scalars. An inequality a; - @ > b; is
called a constraint. We denote by LPs a similar problem where only a subset S C N of
the constraints is imposed. If LP is infeasible (i.e., there is no @ such that a;- @ > b; for
all © € N), then there exists a set Z7 C N with |Z]| < d + 1 such that LPyz is infeasible.

In this case we refer to the lexicographically minimal such Z as the defining subset.

For any S C N, and for any fixed scalar ¢, denote by Ps(?) the problem:
C 1 5
Minimize te- @ + 5”;13“
subject to a;-® >b; (i €5).
The objective function of Ps(t) is strictly convex, hence if L Ps is feasible, then Ps(t) has
a unique optimal solution ®°(¢). It is easy to see that the latter can be characterized
as the closest point to the origin, among all points & such that a, - @ > b, (i € 5) and

c-x =c-z(t). Denote val(S,t) = c-x°(1).

Fix ¢, and let S C N denote the set of indices i for which a; - ™ (¢) = b;. Obviously,
V(1) = °(t). Moreover, the classical Karush-Kuhn-Tucker optimality conditions imply
that tc + ®~(t) is a nonnegative linear combination of the vectors a; (: € S), i.e.,
te + &V (t) € cone{a;}ics. By a classical theorem of linear programming, there exists a
set B C S such that {a;};cp are linearly independent and te + &V (¢) € cone{a;}icp. It
follows that @™ (¢) = ®P(t) and |B| < d. Moreover, we have a; - " (t) = b; (: € B). For
this particular value of £, the optimal solution does not change if the inequalities of Pg(t)
are replaced by equalities. The importance of this argument about B is that it shows

the piecewise linear nature of the parametric solution.

2.2 Analysis of the parametric solution

Denote by B the matrix whose rows are the vectors a; (¢ € B), and let bg denote the
vector whose components are the corresponding b;’s. Assuming L Pg is feasible, since
P (t) minimizes tc - ® + H|l®||? subject to Ba = bg, it follows that there exists a

y® (1) € RP! such that
te+2P(t) - BTyP(t)=0

BiEB(t) = bB .

Since the rows of B are linearly independent, we can represent the solution in the form:

yB(t) = (BB")'bg 4+ t(BBT) ' Be

S0
2B (1) = uf 4 to”
where
u® = BT (BB") 'bj
and

v? = —(I - B"(BB")'B)c .

The vector u? +tv? however, will be the solution of Pg(¢) only for ¢ such that y?(¢) > 0.
Denote by Ip the set of all values of ¢ for which yP(¢) > 0, and also a; - (u? +tv?) > b,

for all 7 € N. Obviously, I is precisely the interval of #’s in which ™ (¢) = ®5(¢#).

We have shown that if LP is feasible, then @™ (¢) varies piecewise linearly with ¢,
where each linearly independent set B contributes at most one linear piece. Thus, there
exists a “last” set Z C N with |Z| < d, and there exists a tg, such that for all ¢ > tq,
2N (t) = 2?(t) and a; - 2™ (t) = b; (i € 7). Given the correct 7, it is easy to compute
u”, v7 and the (semi-infinite) interval Iz in which a:N(t) = a:Z(t) = u? +tv?. Tt is
interesting to distinguish the two possible cases. First, if vZ = 0, then £ (¢) is constant
for t > to; this means that the original problem has a minimum, which is the same as
if only the constraints corresponding to Z were present. In this case, u? is the optimal
solution that has the minimum norm among all optimal solutions. Second, if vZ # 0,
then the original problem is unbounded, and {u? 4 tv? : t > #,} is a feasible ray along

which ¢- @ tends to —oo. Moreover, each point on this ray has the minimum norm among

the feasible points with the same value of ¢ - @.

In view of the above, we can now define the vectors u” and v" to be equal to u?

and vZ, respectively. Indeed, for any subset S C N (whose corresponding vectors a; may
be linearly dependent), we can define the appropriate vectors u” and v® to describe the

output required in the problem LPs. To summarize, we have proven the following:

Proposition 2.1. If the ray u” + tv" coincides with the optimal solution of Py(t) for

all sufficiently large t, then there exists a subset Z C N, whose corresponding vectors are

linearly independent, such that the ray coincides with the optimal solution of Pz(t) for

all such t.

For every point on a polyhedron, there exists precisely one face of the polyhedron which
contains the point in its relative interior. Consider the lexicographically minimal set 7
which describes this face. We say that this set Z is the defining subset of the solution

(u, o).

2.3 The fundamental property

Denote by V(u,v) the set of indices : € N for which a; - (u + tv) < b; for all sufficiently
large values of t. If 1 € V(u,v), we say that the corresponding constraint is asymptoti-
cally violated on (u,v). Obviously, if v = 0, then V (u, v) is the set of indices ¢ € N such
that a; - w < b;. If v # 0, then ¢« € V(u,v) if and only if either a; - v <0 or a;-v =0

and a; - u < b;.

The following proposition is essentially due to Clarkson [5]:

Proposition 2.2. For any S C N such that V(u®,v°) # 0, and for any [C N such

that val(N,t) = val(I,t) (for all sufficiently large t), V(u®, v°) N T # (.

Proof: If on the contrary V(u®,v®) N I =), then we arrive at the contradiction that

for all sufficiently large t,

val(l) <wval(SU) =val(S) < val(N) ,

where the strict inequality follows from the uniqueness of the solution of Ps(t).

The importance of Proposition 2.2 can be explained as follows. If a set S has been
found such that at least one constraint is violated at the optimal solution of LPs, then
at least one of these violated constraints must belong to the defining set. Thus, when
the probabilistic weight of each violated constraint increases, we know that the weight of

at least one constraint from the defining set increases.

3. The algorithm

As mentioned above, the underlying scheme of our algorithm is the same as that of the
iterative algorithm in the paper by Clarkson [5], but the adaptation to a parallel machine

requires many details to be modified.

During a single iteration, the processors sample a subset S of constraints and solve
the subproblem L Ps with “brute force.” If the latter is infeasible then so is the original
one and we are done. Also, if the solution of the latter is feasible in the original problem,
we can terminate. Typically, though, some constraints of the original problem will be

violated at the solution of the sampled subproblem. In such a case, the remainder of the

iteration is devoted to modifying the sample distribution for the next iteration, so that
such violated constraints become more likely to be sampled. The process of modifying
the distribution is much more involved in the context of parallel computation. It amounts
to replicating violated constraints, so that processors keep sampling from a “uniform”
distribution. The replicating procedure is carried out in two steps. First, the set of
violated constraints is “compressed” into a smaller area, and only then the processors

attempt to replicate.

During the run of the algorithm, the probability that the entire “defining set” is
included in the sample increases rapidly. In order to implement the above ideas effi-
ciently on a PRAM, several parameters of the algorithm have to be chosen with care
and special mechanisms have to be introduced. The algorithm utilizes p = p(n,d) =
2nd/log® d processors Py,..., P,. Denote by k = k(n,d) the largest integer such that
max{d®, kd/log® d} (S) < p(n,d). Note that? k = Q(n'/(4+1)). We first describe the

organization of the memory shared by our processors.

3.1 The shared memory
The shared memory consists of four types of cells as follows.

(i) The Base B, consisting of k cells, B[1],..., Blk].

2The notation f(n) = Q(g(n)) means that there exists a constant ¢ > 0 such that f(n) > cg(n).

(ii) The Sequence S, consisting of 2n cells, S[1],...,S5[2n]. We also partition the
Sequence into 2n%/4 blocks of length n'/*, so these cells are also addressed as S[1, J],

I=1,....n"% J=1,...,2n%"%

(iii) The Table T, consisting of m = Cygn'="Cd cells T[1],...,T[m], where Cy =
log(16d) + 2. We also partition the Table into C'y blocks of length m’ = n!'=1/(24),
so these cells are also addressed as T[I,J], [=1,...,m', J=1,...,C}4.

(iv) The Area R, consisting of n®/* cells, R[1],...,R[n*4]. We also partition the

Area into n'/* blocks of size \/n, so these cells are also addressed as R[I,.J],

I=1,...,n, J=1,...,n'%

Each memory cell stores either some halfspace H; = {x € R:a; -z < b;} (1 € N), or
the space R?. Initially, S[j] = H; for j = 1,...,n, and all the other cells store the space
R?. The Base always describes a subproblem L P where K is the set of the constraints
stored in the Base. By the choice of our parameters, every Base problem can be solved

by “brute force” in O(log® d) time as we show in Proposition 3.1 below.

The Sequence is where the sample space of constraints is maintained. Initially, the
Sequence stores one copy of each constraint. Throughout the execution of the algorithm,
more copies are added, depending on the constraints that are discovered to be violated at

solutions of subproblems. The role of the Table and the Area is to facilitate the process

10

of modifying the sample distribution.

3.2 The base problem

As already indicated, the algorithm repeatedly solves by “brute force” subproblems con-

sisting of k£ constraints

Proposition 3.1. Using a (2nd/log” d)-processor CRCW PRAM, any subproblem L Py

with |K| = k(n,d) constraints can be solved deterministically in O(log® d) time.

Proof: Recall that p = 2nd/log? d. In order to solve the Base problem, p/ (S) processors
are allocated to each subset B C K such that |B| = d. Thus, the number of processors
assigned to each B is bounded from below by max{d®, kd/log?d}. It follows that
all the subproblems LPg can be solved in O(log®d) time, as each of them amounts
to solving a system of linear equations of order (2d) x (2d), and we have at least
d® processors (see [2]). If any of the LPg’s is discovered to be infeasible then LP
is infeasible, and the algorithm stops. Otherwise, for each B the algorithm checks
whether u? + tv? is asymptotically feasible (i.c., feasible for all sufficiently large ¢) in
LPyg. With d/log®d processors, it takes O(log” d) time to evaluate the inner product

of two d-vectors.®> Since there are at least kd/log®d processors assigned to each B,

31t is easy to see that the inner product can be evaluated by d/logd processors in O(logd) time.
Here we can afford O(log2 d) time, so we can save on the number of processors.

11

the asymptotic feasibility of all the (u? 4 tv®)’s in LPg can be checked in O(log” d)
time. Finally, the algorithm finds the best among the solutions of the L Pg’s which are
feasible in L Pg or, in case none of these is feasible in L Py, the algorithm recognizes
that L Py, and hence also LP, is infeasible. The final step is essentially a computation
of the minimum of (S) = O(n¥!+Y) numbers. An algorithm of Valiant* [13] (which
can be easily implemented on a CRCW PRAM) finds the minimum of m elements,
using p processors, in O(log(logm/log(p/m))) time. Here, m = (S) = O(n¥+1)) and

p = 2nd/log” d, so the time is O(log d). y

3.3 The iteration

We now describe how the sampling works and how the sample space is maintained.

Sampling a base problem

An iteration of the algorithm starts with sampling a Base problem. As indicated above,
the sample space is stored in the S-cells. There are 2n such cells and each stores either
a constraint or the entire space; one constraint may be stored in more than one S-cell.
To perform the sampling, each of the first & processors P; generates a random integer®

I; uniformly between 1 and 2n, and copies the contents of the S-cell S[I;] into the B-cell

*We note that with a different choice of k, namely, if k is such that (Z) < /P, then the use of Valiant’s

algorithm can be avoided.

®We assume each of the processors can generate random numbers of O(logn) bits in constant time.

12

B[i]. Next, all the processors jointly solve the subproblem L Py currently stored in the

Base (see Proposition 3.1) in O(log® d) time.

Asymptotically violated constraints

Assuming L Py is feasible, the algorithm now checks which S-cells store constraints that
are violated asymptotically on the ray {u™ 4-tv™}, i.e., for ¢ sufficiently large. This task
is accomplished by assigning d/log® d processors to each cell S[i] as follows. For each i
(i = 1,...,2n), the processors P; with 1 4+ (i — 1)d/log*d < j < id/log® d are assigned
to the cell S¢]; they check the asymptotic feasibility of the constraint stored therein, as
explained in Section 2. This step also takes O(log® d) time, since it essentially amounts
to an evaluation of inner products of d-vectors. For brevity, we say that an S-cell storing

an asymptotically violated constraint is itself violated.

Replicating violated constraints

Having identified the violated S-cells, the processors now “replicate” the contents of each
such cell n'/“9 times. The idea is that by repeating this step several times, the members
of the “defining set” get a sufficiently large probability to be included in the sample
(in which case the problem is solved). Since it is not known in advance which S-cells
are violated, and since there are only O(n) processors, the algorithm cannot decide in

advance which processors will replicate which cells. For this reason, the replication step is

13

carried out on a probabilistic CRCW PRAM in two parts. First, the violated S-cells are
injected into the Table (whose size is only O(n'~"/(%)) and then replications are made
from the Table back into the Sequence, using a predetermined assignment of processors

to cells. The first part of this step is performed as follows.

Injecting into the Table: Operation 1

First, for any violated cell S[i], processor P; generates a random integer I! between 1
and m’, and attempts to copy the contents of S[i]into T[I},1]. Next, if P, has attempted
to write and failed, then it generates a random integer I? between 1 and m’ and attempts
again to copy the contents of S[¢]into T[I?,2]. In general, each such processor attempts

to write at most C'; — 1 times, each time into a different block of the Table.

Proposition 3.2. The conditional probability that at least n'/* processors will fail to
write during all the Cy — 1 trials, given that at most n'=2a~Ta processors attempt to

write during the first trial, is at most e=Untt),

Proof: Let X; be the random variable representing the number of processors that failed
to write during the first ¢ rounds (and therefore attempt to write during the (¢ + 1)-st
round). Suppose Xy < n'=2a-wa. Note that for each processor attempting to write
during the :-th round, the conditional probability that it will be involved in a write

conflict, given any information on the success or failure of the other processors during

14

this round, is at most X;_;/m’. Thus, we can apply here estimates for independent
Bernoulli variables. By an estimate due to Chernoff [3] (apply Proposition 4.1 part (i)

with n =¢;_1 and p = &_1/m’),
pI’Ob {XZ > 252»2_1/7’)1/ | Xi—l — fi—l} S 6—9(512_1/m/) X

Let j denote the largest integer such that

1 27 1
¥ Iplm3a"1a > g .

Clearly, j < log(16d) for n sufficiently large. Notice that if indeed X; < 2X? | /m’ for

all o, 1 <<y, then

2X; <2Xi_1)2
<

and hence,

2X; 2X0\
m’ — \m ’

Thus, X; < 92 -1pl=5:=%7 The probability that j does not satisfy the latter is at

N

nl/4

most ¢4 Combining this with Proposition 4.1 part (ii), we get

prob{X;;1 >n/1} < e)

We note that, as pointed out by one of the referees, the analysis in the last proposition

can be somewhat simplified by having the processors try to inject the violated constraints

15

to the same table for some C times (or until they succeed). It is easy to see that for,
say, C, = 16d the conclusion of Proposition 3.2 will hold. However, this will increase the
running time of each phase of our algorithm to Q(d) and it is therefore better to perform
the first part of the injection as described above. Alternatively, the time increase can be
avoided by making all C’} attempts in parallel and then, in case of more than one success,

erase all but the first successful replication. We omit the details of the implementation.

Injecting into the Table: Operation 2

To complete the step of injecting into the Table, one final operation has to be performed.
During this operation, the algorithm uses a predetermined assignment of some ¢ = n'/*
processors to each of the 2n** S-blocks, e.g., processor P; is assigned to the block
Slx, [in~/4]]. An S-cell is said to be active at this point if it has failed Cy — 1 times
to be injected into the Table. An S-block is said to be active if it contains at least one
active cell.® For each active block S[*,J] (1 < J < 2n3/4), all the ¢ processors assigned
to S[*, J] attempt to write the symbol J into the Area R as follows. The i-th processor

among those assigned to S[, J] generates a random” integer I; between 1 and /n, and

attempts to write the symbol J into the cell R[I;,1].

51t takes constant time to reach the situation where each of the ¢ processors knows whether or not it
is assigned to an active S-block.
"This last step can also be done deterministically with hash functions.

16

Proposition 3.3. If there are less than n'/* active S-blocks, then the probability that

write conflicts will occur in every single R-block is less than e~

Proof: At most n'/* processors attempt to write into any R-block (whose length is
/1), so the probability of a conflict within any fixed R-block is less than 1/2. Thus,

the probability of conflicts in every single R-block is less than 9=/t 1

It takes constant time to reach a situation where all the processors recognize that
a specific block R[+,J*] was free of conflict (assuming at least one such block exists).
At this point, the names of all the active S-blocks have been moved into one commonly
known block R[*,.J*]. The role of the area R is to facilitate the organization of the work

involved in replicating the remaining active S-blocks into the last T-block.

Next, n'/* processors are assigned to each cell R[I,J*] (I = 1,...,/n). Each such
cell is either empty or contains the index J; of some active S-block S[*,.J;]. In the latter
case, the processors assigned to R[[,.J*] copy the contents of the active cells of S[x, J;]

into the last T-block, T'[*, Cy], according to some predetermined assignment.

From the Table to the Sequence

For the second half of the replication step, the algorithm uses a predetermined (many-to-

one) assignment P; — T[o(5)] of the first Cyn'="/ "9 processors to the m = Cyn'=1/(24)

T-cells, where n'/(9) processors are assigned to each cell. Each processor P; copies the

17

contents of T'[o(j)] into a cell S[/], where
(=L,v)=n+(v—1Cm!~ Ve L

depends both on the processor and on the iteration number v. Later, we will discuss the
actual number of iterations. We will show that almost surely ¢ < 2n. In the unlikely
event that the number of iterations gets too large, the algorithm simply restarts with

v =1.

3.4 Probabilistic analysis

In this section we analyze the probability that the algorithm fails to include the defining

set in the sample after a certain constant number of iterations.

Estimating the number of violated S5-cells

Let < be any fixed weak linear order on N. Given the contents of the Sequence S and
the random Base set K, denote by p = u(S, K; <) the number of S-cells which store

halfspaces H; such that® j < i for all j such that H; is in the Base.

Proposition 3.4. For any possible contents of the Sequence and for every ¢ > 0,

prob{p > nl_c“lr_lJ’E} < R

8We write j < 7 if and only if j <7 and i £ j.

18

Proof: For any x > 0,

N
prob{,u>:1;}§<1——))
2n

In particular, for x = R T this probability is at most

k
1
()
2nd+i ¢

Our claim follows from the fact that k£ = Q(nd}r_l) 1

M
For any M C N such that L Py, is feasible, denote by < the weak linear order induced
on N by the asymptotic behavior of the quantities b; — a; - (u™ + tv™) as ¢ tends to

infinity. More precisely, j % ¢ if and only if for all sufficiently large ¢,
b; —a; - (uM +1oM) < b — a; - (uM +10M) .

For brevity, denote u'(M) = u(S, K; %)

Corollary 3.5. For any € > 0, the conditional probability that there will be more than

R T violated S-cells on u™ + 1o, given that LPy is feasible, is less than (Z)e—ﬂ(ne),

B
Proof: Consider the set £ of orders <, where B C N corresponds to a set of linearly
independent vectors (and hence |B| < d), and L Pg is feasible. If LPy is feasible, then
by Proposition 2.1 there exists Z C K, whose corresponding constraints are linearly

- - K
independent, such that (u?,v?) = (u®,v"). Thus, <€ L. By Proposition 3.4, for

19

any fixed M,

Since |£] < (Z),

Proposition 3.6. During each iteration, the probability that at least one active S-cell

will fail to inject its contents into the Table is at most =!8

Proof: The proof follows immediately from Corollary 3.5 with € = 1/(16d) together

with Propositions 3.2 and 3.3.

Successful iterations

Let L Py denote the current Base problem. An iteration is considered successful in either

of the following cases:

(i) The problem L Pk is discovered to be infeasible, hence so is LP and the algorithm
stops.

(ii) The problem L Py is feasible and its solution u® 4 tv™ turns out to be feasible for
LP for all sufficiently large ¢, so it is also the solution of L P and the algorithm

stops.

20

(iii) For at least one ¢ in the defining set 7 (see Section 2), H; is asymptotically violated

on u™* 4 tv™, and all S-cells storing H; are injected into the Table.

Proposition 3.7. During any iteration, given any past history, the conditional proba-

bility of failure is at most o —Qnt/CED)

Proof: By Proposition 2.2, if the solution of L P has not been found, then H; is violated,
for at least one ¢ € Z, and hence every processor checking a copy of H; will attempt to

inject it into the Table. The result now follows from Proposition 3.6.

Proposition 3.8. For any fived d, the probability that the algorithm will not finish within

3 ; . 2 1/(16d
9d? iterations is at most e~4 /)

Proof: Notice that in 9d* iterations, for sufficiently large n, only the first n +
92 Cyn' =114 < 2p S-cells are possibly accessed. By Proposition 3.7, in each itera-
Q(nl/(16d))

tion, the conditional probability of failure, given any past history, is at most e~

Therefore, the probability of less than 5d* successes in 9d? iterations is less than

(9612) (6_9(n1/<16d>))4d2 < /00D
5d -

To complete the proof, we show that it is impossible to have 5d* successes. This

is because if there are that many successes, then there exists at least one 7 in the

21

“defining set” Z such that during at least 5d of the iterations, the contents of all the
S-cells storing the halfspace H; are successfully injected into the Table.? This means

that there are at least

(n1/(4d))5d S 9y

S-cells storing H;, whereas the total length of the Sequence is only 2n. Hence, a

contradiction. g

Thus, we have proven the following:

Theorem 3.9. There exists a probabilistic parallel algorithm for the linear program-
ming problem with d variables and n constraints, which runs on a (2nd/log* d)-processor
CRCW PRAM with performance as follows. The algorithm always finds the correct so-
lution. There exists an € > 0 (e.g., € = 1/16) such that for every fired d and for all
sufficiently large n, the probability that the algorithm takes more than O(d*log*d) time

is less than e—2%),

A further improvement

It is not too difficult to modify the algorithm to obtain one for which there are two
constants C, e > 0, independent of d with performance as follows. For every fixed dimen-

sion d, and for all sufficiently large n, the probability that the running time will exceed

9The Table is erased after each iteration.

22

Cd?log® d is at most 2-%("), This is done by choosing the size k of the Base problem so
that k(g) < /n. This enables us to solve during each iteration y/n random Base prob-
lems simultaneously. As before, processors are assigned to S-cells. Fach such processor
chooses randomly one of the Base problems. The processor then checks whether the
constraint in its cell is violated at the solution of the Base problem. With each of the \/n
Base problems we associate a Table of size ns~3atma. Next, each processor which has a
violated S-cell (with respect to the Base problem ¢ that was chosen by that processor)
attempts to inject the contents of its cell into the Table of Base problem . This is done
as in the corresponding steps of the algorithm described above. We call a Base problem
successful if all the processors attempting to write succeed eventually. Note that if Base
problem ¢ is successful, then not too many S-cells (among those whose processors chose
the Base problem 7) were violated. Therefore, with high probability, not too many S-cells
altogether were violated at the solution of this Base problem. The algorithm now chooses
a successful Base problem. It then continues as the previous algorithm, i.e.; it checks

1-1/(4d)

which of all the S-cells are violated, injects these cells into a Table of size 2Cyn ,

and replicates each of the violated ones n'/>¢ times. We say that an iteration is successful
if at least one of its \/n Base problems is successful, and the contents of all the violated
S-cells are injected successtully into the Table. It is not too difficult to check that the

conditional probability that an iteration will not be successful, given any information

23

about the success or failure of previous iterations, is at most e=**"**) for some € > 0 (e.g.,

e =1/16). We omit the details.

Remarks

The total work done by all the processors in our algorithm is O(d®n), whereas Clarkson’s
sequential algorithm [5] runs in expected O(d?n) time. We can easily modify our algo-
rithm to run on a probabilistic CRCW PRAM with n/(dlog® d) processors in O(d®log® d)
time, so that the total work is O(d?n). Moreover, the probability of a longer running
time is exponentially small in terms of n. To this end, observe that, using our previous
algorithm, we can solve in O(d?log® d) time and n/(dlog® d) processors a Base problem
of size n/d*. Hence, we can repeat the previous algorithm by choosing Base problems
of size n/d?, solving them, checking all the violated S-cells in O(d?log®d) time, and
replicating each violated S-cell \/n times. Such an algorithm terminates almost surely

in O(d) iterations. Hence, the total parallel time is O(d®log® d).

4. Appendix

The following proposition summarizes the standard estimates of the binomial distribution
which are used in the paper. A random variable X has the binomial distribution with

parameters n, p, if it is the sum of n independent (0, 1)-variables, each with expectation

24

Proposition 4.1. If X is a binomial random variable with parameters n,p, then

(i) For every a >0,

prob{X —np > a} < ¢ 2 xm?

In particular, for a = 0.5np,

prob{X > 2np} < prob{X > 1.5np}

(i) If a > e*np then prob{X > a} < e

Proof: Part (i) is due to Chernoff [3]. (see also [1], p. 237). Part (ii) follows immediately

from the fact that

prob{X > a} < (Z)pa

en\? a \?
<(7) (&) =
a e2n

Acknowledgement. We thank Moni Naor for helpful suggestions concerning the
step of injection into the Table, that led to a significant improvement in the estimate
of the failure probabilities. We also thank two anonymous referees for their helpful

comments.

25

References

[1] N. Alon and J. H. Spencer, The Probabilistic Method, Wiley, New York, 1991.

[2] A. Borodin, J. von zur Gathen and J. E. Hopcroft, “Fast parallel matrix and GCD compu-
tations,” Information and Control 52 (1982) 241-256.

[3] H. Chernoff, “A measure of asymptotic efficiency for tests of hypothesis based on the sum
of observations,” Ann. Math. Stat. 23 (1952) 493-507.

[4] K. L. Clarkson, “Linear programming in O(n3d2) time,” Information Processing Letters 22
(1986) 21-24.

[5] K. L. Clarkson, “Las Vegas algorithms for linear and integer programming when the dimen-
sion is small,” unpublished manuscript, 1988; a preliminary version appeared in Proceedings
of the 29th Annual IEEE Symposium on Foundations of Computer Science (1988), pp.
452-456.

[6] X. Deng, “An optimal parallel algorithm for linear programming in the plane,” unpublished
manuscript, Dept. of Operations Research, Stanford University and Dept. of Computer
Science and Engineering, University of California at San Diego.

[7] M. E. Dyer, “On a multidimensional search technique and its application to the Euclidean
one-center problem,” SIAM J. Comput. 15 (1986) 725-738.

[8] M. E. Dyer and A. M. Freeze, “A randomized algorithm for fixed dimensional linear pro-
gramming,” Mathematical Programming 44 (1989) 203-212.

[9] G. S. Lueker, N. Megiddo and V. Ramachandran, “Linear programming with two variables
per inequality in poly log time,” SIAM J. Comput. , to appear.

[10] N. Megiddo, “Parallel algorithms for finding the maximum and the median almost surely in
constant-time,” Technical Report, Graduate School of Industrial Administration, Carnegie-
Mellon University, October 1982.

[11] N. Megiddo, “Linear programming in linear time when the dimension is fixed,” J. ACM
31 (1984) 114-127.

[12] R. Reischuk, “A fast probabilistic parallel sorting algorithm,” in: Proceedings of the 22th
Annual IEEE Symposium on Foundations of Computer Science (1981), pp. 212-219.

[13] L. G. Valiant, “Parallelism in comparison algorithms,” SIAM J. Comput. 4 (1975) 348-355.

[14] E. Welzl, “Partition trees for triangle counting and other range searching problems,” in:
Proceedings of the Jth Annual ACM Symposium on Computational Geometry (1988), pp.
23-33.

26

