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THE MAXIMUM COVERAGE LOCATION PROBLEM* 

NIMROD MEGIDD0,t EITAN ZEMELS AND S. LOUIS HAKIMIB 

Abstract. In this paper we define and discuss the following problem which we call the maximum 
coverage location problem. A transportation network is given together with the locations of customers and 
facilities. Thus, for each customer i, a radius ri is known such that customer i can currently be served by 
a facility which is located within a distance of r, from the location of customer i. We consider the problem 
from the point of view of a new company which is interested in establishing new facilities on the network 
so as to maximize the company's "share of the market." Specifically, assume that the company gains an 
amount of wi in case customer i decides to switch over to one of the new facilities. Moreover, we assume 
that the decision to switch over is based on proximity only, i.e., customer i switches over to a new facility 
only if the latter is located at a distance less than ri from i. The problem is to locate p new facilities so as 
to maximize the total gain. 

The maximum coverage problem is a relatively complicated one even on tree-networks. This is because 
one aspect of the problem is the selection of the subset of customers to be taken over. Nevertheless, we 
present an O(nZp)  algorithm for this problem on a tree. Our approach can be applied to other similar 
problems which are discussed in the paper. 

1. Introduction. We shall discuss in this paper problems in which establishing 
new facilities in an existing network is aimed at attracting a maximum number of 
customers. There is thus some competitive flavor to such problems in that the existing 
facilities may belong to one company while a second company is trying to extract the 
maximum profit by locating its own facilities on the same network. For further 
discussion of this and related problems the reader is referred to [H2]. 

Consider a graph G = (V, E) with edge-lengths di4 We identify each edge (i, j )  
of G with a line-segment of length dij so that we can speak of points (not necessarily 
vertices) on the edges of G. Each such point x is identified by its distances from the 
endpoints of the appropriate edge. For every two points x, y of G let d(x, y )  be the 
length of the shortest path between them along the edges of G. 

We associate a "customer" with each vertex of G. We assume that there exists 
a threshold radius ri for each customer i so that if a new facility is established within 
a distance of ri from i then this customer would start using the new facility (unless, 
of course, an even closer facility is established; in any case, a customer uses one of 
the closest facilities). We say in such a case that customer i is "covered," with a 
resulting gain which we denote by wi (the "weight" of i). The results of this paper 
are valid for any set of positive constants ri. However, several simplifications are 
possible if the threshold radii are derived from distances to old facilities already 
positioned on G. This topic is addressed in Appendix 2. 

Assume that p facilities can be located anywhere on G (including points on the 
edges other than vertices). We wish to locate these facilities so as to maximize the 
total weight of the customers which are covered. We will show that it is easy to identify 
a fairly small subset of points Y = {yl, . . . , y,) such that we need consider only points 
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of Y as possible location for facilities. Alternatively, the problem may be originally 
specified with respect to a finite set of feasible location sites. 

Our maximum coverage problem is obviously NP-hard on a general graph since 
the problem of minimum dominating set (see [GJ]) can be formulated as that of 
minimizing the number of facilities required to gain W = n (where n is the number 
of vertices). To that end we set ri = 1.5, wi = 1, dij = 1 for all i, j. 

We shall present a polynomial-time algorithm for the maximum coverage problem 
on a tree. We note that unlike the problem of minimum dominating set on a tree 
(which is easily solvable in linear time), or even that of gaining the total weight (i.e., 
covering all the vertices), the existence of a polynomial-time algorithm for our problem 
is nontrivial. The relative difficulty is due to the fact that here we do not require 
covering of all vertices but only k of them (in the special case of unit weights and 
W = k, say). Thus, the large number of different combinations of k out of n complicates 
the problem. Further evidence to the difficulty of the problem even on a tree is given 
by the fact that, unlike in many other locational problems on trees (see [TI, [K]), the 
integer linear programming problem associated with ours is not solvable as a regular 
linear program (as we demonstrate in Appendix 1). 

In 4 2 we discuss the set of potential points for the construction of new facilities. 
The basic routines of the algorithm are described in •˜ 3. The algorithm itself is 
explained in •˜ 4. In •˜ 5 we discuss the complexity of the algorithm. Section 6 discusses 
further problems, related to the maximum coverage problem, which are solvable by 
a modified version of our algorithm. Appendix 1 describes the linear programming 
aspects and Appendix 2 discusses simplifications in the case where all threshold radii 
are implied from distances to (old) existing facilities. 

f 

2. Potential locations for new facilities. As we stated in the introduction, a new 
facility may be constructed at any point of the graph. We denote by d(x, y ) the distance 
(along the shortest route) between any pair of points (x, y). However, we shall identify 
a fairly small finite set from which an optimal combination can be selected. Our 
algorithm can also be applied to problems in which new facilities can be constructed 
at designated points, yl, . . . , y,, only. 

Let U, be the ri-neighborhood of vertex i, i.e., U, is the set of all points x such 
that the distance between i and x is less than r,. For every set S of vertices, let 
Us = nreS U,. We say that Us is maximal if US # 0 and UT = 0 for every T 2s. 
Obviously, we may assume without loss of generality that a new facility will always 
belong to some maximal Us. Moreover, we may select in advance a single point ys E Us 
from each maximal Us and consider only these points ys for locations of new facilities. 
We shall now prove that the number of maximal Us's is not too large. 

THEOREM. On a general graph with e edges and n vertices the number of maximal 
Us's is O(en ) while on a tree this number is O(n). 

Proof. First, note that if x is a boundary point of a set Us then there exists a 
vertex i such that d (i, x)  = r,. Thus, each vertex i can contribute at most two boundary 
points on each edge of the graph. Moreover, i cannot contribute the same boundary 
point to more than one maximal Us. It follows that a single edge contains no more 
than 2n boundary points and hence the total number of boundary points is at most 
2en. This establishes the first claim of the theorem. 

Consider now the case where G is a tree T. Note first that there are at most n 
maximal Us's which contain a vertex, since these sets are pairwise disjoint. It thus 
suffices to show that the number of maximal Us's which do not contain any vertex is 
O(n). Every such Us has precisely two boundary points x,, x, such that i is a vertex 
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with d  (i, xi) = ri > d (i, xi) and j is a vertex with d (j, xi) = ri > d  (j, xi). The set Us could 
thus be identified with an interval (xi, xi). By removing this interval from T, our tree 
decomposes into two subtrees Ti, T,, such that for every point x #xi in Ti, d(i, x)  > ri 
and for every point x #xi in ?;., d (j, x )  > ri (see Fig. 1). Thus, if vertex i contributes 

a boundary point to another such interval, then that interval must be completely 
contained in ?;.. Suppose that there is such an interval (x l, xi),  where d  (i, x f ) = ri > 
d (i, x i )  and k is a vertex such that d  (k, x i )  = rk > d  (k, x!). It is easy to verify that 
there can be no interval to which both j and k contribute two distinct boundary points. 
In general, consider a graph G* on the vertices of T such that vertices u and v are 
linked with an edge in G* if and only if there exists an "interval" to which both u 
and v contribute distinct boundary points as previously described. Then, it can be 
proved by induction that G*  has no cycles. This implies that the number of those 
intervals is not greater than n - 1 and that completes the proof. 

We note that the determination of all the boundaries of the maximal Us's can 
be easily carried out in 0 ( n 2 )  time. 

3. The basic routines. The algorithm for the maximum coverage problem on a 
tree works in general as follows. Suppose that the potential locations are at the points 
yl, . , y,. To simplify the presentation, let us assume that the potential locations 
are precisely the vertices themselves. Since m 5 2n it follows that by adding all the 
yi's as vertices we do not lose in terms of the asymptotic complexity. 

Let the tree now be rooted at an arbitrary vertex u. If u is selected for a location 
of a new facility then we proceed, recursively, by looking at the subtrees rooted at 
the neighbors of u, taking into consideration the fact that there has been a new facility 
established at u. This requires, however, the solution of a "resource allocation" 
problem, i.e., optimizing the distribution of the p - 1 remaining facilities among the 
subtrees rooted at the neighbors of u. If u is not selected as a location of a new 
facility, we proceed, recursively, to the subtrees and then we have to consider the 
interactions between these subtrees caused by the fact that vertices of one subtree 
may be covered by a facility located in another. 

In order to overcome all these difficulties we define the following routines: 
1. EXT (T, T, r). Here T is a rooted tree with parameters dii, ri, wi as explained 

in the introduction, .n is an integer and r is a nonnegative number. The routine EXT 
finds the maximal total weight of vertices in T that can be gained by locating ?r new 
facilities in T, given that there is one additional facility outside of T at a distance r 
from the root. Thus, this gain consists of the total weight of vertices i, such that the 
distance between i and the root is less than ri - r, plus the total weight of other vertices 
i such that the distance between i and one of the T new facilities is less than ri. 
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2. Int (T, tr, r). With T and tr as in EXT (T, T, r) this routine solves the maximum 
coverage problem on T with tr new facilities but with an additional requirement that 
at least one new facility must be located at a distance less than or equal to r from 
the root of T. 

It is easy to verify that the routine EXT has at most n critical values for the 
parameter r, namely, the differences St = ri -d( i ,  u ~ )  (where UT is the root of T), for 
all vertices i. In other words, it suffices to know the output of EXT for each 6i in 
order to know that output for all values of r. Analogously, INT has just the distances 
d(i, uT) as the critical values for the parameter r. 

3. ALLOC (fl, . . , fk; w). This is a routine that solves the resource allocation 
problem with concave returns. Specifically, let fl, . . , fk be monotone concave func- 
tions of discrete variables, and let tr be a nonnegative integer. Then, ALLOC solves 
the following: 

k 

Maximize fi(pi) 
i = l  

k 

subject to C pi = w 
i = l  

pi is a nonnegative integer. 

Fast algorithms for ALLOC have been proposed by Galil and Megiddo [GM] 
and by Frederickson and Johnson [FJ]. The latter requires O(k log w) evaluations of 
the functions fi. On the other hand, if one wishes to know the solutions of all problems 
for .n = 1,2, . . -, p (with fl, . - .  , fk fixed), then only kp evaluations are required in 
addition to O ( p  log k) time for running the greedy algorithm. 

4. The algorithm. The routines EXT and INT described in •˜ 3 require recursive 
calls to each other. Our maximum coverage problem could be solved by either of 
these routines, if r is chosen sufficiently large. 

We use the following notation. The tree T is rooted at the vertex u whose "sons" 
are ul, . - .  , uk. For i = 1, ---, k, T, is the subtree rooted at ui. Let ni denote the 
number of vertices in Z and let d l  I. . . ~ d ; ,  denote the distances of vertices of Ti 
from ui. 

We first describe the routine INT (T, T,  r). There are two cases to examine: 
Case (i). A facility is established at u. Let fi(pi) = EXT (Z, pi, d(ui, u)), i = 

1, . . . , k. It is easy to verify that the fi's are monotone and concave. Obviously, in 
this case the total gain is w, + ALLOC (ft, - . - , fk ; .n - 1). 

Case (ii). No facility is established at u. Here, the routine INT considers k 
different subcases. In a typical subcase, a subtree T,(l$ j d k) is selected and for each 
p E {di, . , dLj) such that p +d(uj, u) $ r, the following is considered. For every i # j 
(i = 1, . . . , k) let fi(pi) = EXT (Z, pi, p + d(ui, ui)). Also, let fi(pj) = INT (T,, pi, p). 
Again, the functions fi are monotone and concave. Note that these functions depend 
on the parameter p. Now define 

where S(p) = 1 if p + d (ui, u) < r, and S (p) = 0 otherwise. Let Aj  =Max, {Aj(p)), 
j = l , . . . , k .  

The routine INT returns either the maximum of the Aj's or the optimal value of 
case (i), whichever is the larger. 
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The computation of EXT (T, rr, r) is analogous. Again, two cases are distinguished. 
Case (i). A facility is established within a distance of r from u. This, by definition, 

is identical with the situation solved by INT (T, rr, r). 
Case (ii). No facility can be established within a distance of r from the root. Note 

that in this case, since there is a facility already located at a distance r from the root, 
there are no interactions among the subtrees. On the other hand, such a constrained 
problem cannot be solved directly by our routines. Instead, we solve the relaxed 
problem (i.e., we remove the requirement of not constructing a facility within a distance 
of r from the root) but ignore the interactions among the subtrees. Specifically, let 
fi(pi) = EXT (Ti, pi, d(ui, u )  + r), i = 1, . - . k .  Let A = A L L O C ( f l , . . . , f k ; r r ) +  
w, . S(r) (where the S is as in the description of INT). 

We now claim that EXT (T, rr, r )  = rnax {A, INT (T, rr, r)}. To see this note that 
if one of the rr optimal locations for the problem solved by EXT (T, rr, r)  is at a 
distance of less than or equal to r from u then EXT (T, rr, r) = INT (T, rr, r) and 
A 5 INT (T, T, r). Otherwise, we are in Case (ii) and no interactions exist among the 
subtrees. Therefore, EXT (T, rr, r) = A  and INT (T, rr, r) S A .  

5. The complexity of the algorithm. Suppose that 0 = do d d l  S . d dnU are the 
distances of vertices of T from u. Consider the function g(r) = INT (T, rr, r), where rr 
is fixed. Obviously, g is a step-function with jumps only at r = d,(O 5 s S nu). Moreover, 
if d,(s 2 1) is a distance from a vertex in T,, then 

INT (T, rr, d,) = max [INT (T, rr, d,-I), ALLOC (fl, . , fk; .rr) + w ,  . S(u)l, 

where fj(pj) = INT (q, p,, d, - d(u, uj)) and for i # j, fi(pi) = EXT (Ti, pi, ds + d(u, ui)). 
This implies that when rr is given, the evaluation of INT (T, rr, r) for all critical values 
of r takes O(n )  computations of resource allocation. Similarly, if S o S  S1 S .  . . SSnu 
are the sorted values of rx -d(x, u), where x is a vertex in T, then the critical values 
of r in EXT (T, rr, r) are in the set {do, . . , d , ,  So, . - . , SnU}; i.e., at a critical value 
either r = d(x, u)  or d (x ,  u) + r = rx for some vertex x in T, Since EXT (T, rr, r) = 
max [INT (T, rr, r), A], it follows that the evaluation of EXT (T, r ,  r) for all critical 
values of r (where rr is fixed) also requires only O(n)  computations of resource 
allocation. 

If the algorithm is recursively run as stated in •˜ 4, then it requires superpolynomial 
time. However, this is only because the same subproblems are being solved over and 
over again in such an implementation. To avoid that, one just has to be careful not 
to compute the same thing more than once. Specifically, if we store the results of all 
computations then we run in polynomial-time by the following argument. The number 
of different problems that either EXT or INT has to solve is 0 (n2p) .  This is because 
there are O(n)  subtrees to be considered, each with O(n)  critical values of r, and rr 
may take on only the values O,1, . , p. When we have to compute INT (T, rr, r), 
say, then it takes only one computation of resource allocation if all the necessary 
values that are returned recursively are known. This establishes a bound of 
~ ( n ~ ~  log n). 

A more careful analysis shows that the algorithm can be implemented much 
faster. Consider the computation of INT (T, rr, r) for example, where T is rooted at 
u and u has k sons. If we solve the necessary allocation problem only for one value 
of T, then it takes O(k log rr) time, once the necessary EXT and INT values are 
known. However, we can solve the problem relative to all values of rr in 
O(k  min (p, log k ) + p  log k )  time. For, once the values fi(l)-fi(O), i = 1, . . . , k are 
sorted, it takes O ( p  log k)  time to find the p largest marginal gains of the form 
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fi(m + 1)- fi(m) (i = 1, . , k, m = 0, . . , p - 1); the initial sort should be eliminated 
if kp < k log k, in which case those p largest values can be found in kp steps. Now, 
the solution of EXT (T, T, r)  and INT (T, T, r) for all values of T and r takes 
O(n(k min (p, log k )  + p  log k)), once the necessary values are known. The total effort 
is therefore O(n 1, (deg (u) min (p, log deg (u)) + p  log deg (u))), where the summa- 
tion is over all the vertices u and deg (u) is the degree of u. This is however 0(nZp) .  

6. Related problems. A natural generalization of the problem treated in 0 1 is 
as follows. Suppose that each vertex i has an additional parameter, ci, which represents 
the cost of establishing a new facility at vertex i. We now replace the number p by 
some budget B and seek to find the maximum coverage subject to this budget. This 
problem, however, is NP-hard even on chain networks since the knapsack problem 
can be easily formulated as such a coverage problem. On the other hand, our algorithm 
can be modified to solve this problem on a tree in pseudo-polynomial time (see [GJ]), 
i.e., in polynomial time in terms of n and B. Also, the problem of covering a maximum 
number of vertices given a fixed budget can be solved in polynomial time on a tree 
by considering the equivalent problem of covering at least q vertices given a budget 
B. The latter is easily seen to be amendable to an algorithm similar to the one proposed 
in 9 4. 

Another related problem is that of covering all the vertices at minimum cost. 
More formally, we wish to select points at which facilities will be established such 
that every vertex i has a facility located within a distance ri from i, and such that the 
total construction cost is minimized. Tamir [TI solves this problem in 0 ( n 3 )  time. 
Kolen [K] solves a related problem, where the threshold radii are associated with the 
facilities (rather than the demand points) in O(nm) time, where m is the number of 
potential locations of facilities. Our approach easily provides O(nm) algorithms for 
both these problems as follows. Define INT (T, r)  to be the minimum total cost of 
facilities established in T so as to cover all the vertices of T, subject to a constraint 
that at least one of them has to be located within a distance of r from the root. Let 
EXT (T, r) denote the minimum total cost of covering all the vertices of T that are 
not covered by a facility located outside of T at a distance r from the root. For every 
u, these functions evaluated at the subtree rooted at u, have O(m)  critical values 
of r. These are simply the distances from u to any potential location of a facility. If 
do  5 dl 5 .  . - 5  d, are the distances from u to such locations in T from which u itself 
would be covered and if d,(s 2 1) is a distance from a vertex in q to u, then 

For the routine EXT, let A = c,~=, EXT (Ti, r +d(ui, u)) if r <r,, and A = +a other- 
wise. Then, EXT (T, r)  = min [A, INT (T, r)]. It follows from the structure of these 
formulae that it takes O(mk) to solve the problems at u for all values of r. The total 
effort is therefore 0 (m 1, deg ( v ) )  = 0 (nm ). 

Finally, consider the problem of maximizing the net gain; i.e., the total revenue 
(resulting from covering nodes) minus the total construction cost. This problem too 
is NP-hard on a general network since the minimum dominating set (see [GJ]) can 
be reduced to this problem by taking w j  = 2, cj = 1, j = 1, . . , n and B = k. However, 
on a tree the solution is similar to that of the min-cost coverage of all vertices, i.e., 
the parameter p and the ALLOC routine can be eliminated. That leads to the same 
O(nm) time bound. 
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Naturally, the same methods can be used to solve other types of problems defined 
on tree networks such as those which seek to locate facilities as far apart as possible 
from the various vertices. For instance, consider the problem of minimum coverage 
of obnoxious facilities. Here we are seeking to minimize the total weight of vertices 
who are "damaged" because an "obnoxious" facility [CG], [CT] is located too close, 
given that we have to locate p such facilities and the interfacility distances are also 
bounded from below. This can be solved in a way which is very similar to the one 
developed in the present paper. 

Appendix 1. Linear programming considerations. Tamir [TI and Kolen [K] have 
recently shown that a fairly large class of location problems on trees can be solved 
by linear programming. Specifically, let aij = 1 if d(i, j) < ri and aij = 0  otherwise. Let 
xj = 1 be interpreted as establishing a facility at j and xj = 0  otherwise. Thus, the 
program 

n 

Minimize 1 cjxj 
j = 1  

(A = (aij)) solves the problem of covering all vertices with minimum cost. It is known 
[GI, [K], [TI that for a tree network the matrix A is balanced and hence the polytope 
{x : Ax 2 1, x 1 0 )  has only integral extreme points. On the other hand, our coverage 
problem can be formulated as maximizing the number of vertices that would be 
covered by at most p facilities. Thus, if yi = 0  is interpreted as "vertex i is covered" 
and yi = 1 otherwise, then our problem is in fact 

n 

Minimize C yi 
i = l  

subject to Ax + y 1 1 

Now, even though the underlying matrix in this problem, namely, 

is still balanced, a linear programming solution may lead to a nonintegral solution, 
as we show in the following example. Consider the tree in Fig. 2. All weights wi = 1 
and ri's and dijls are shown in the figure. There are four potential points denoted by 
arrows (i.e., for every other point y there is one of the four points that covers at least 
those vertices covered by y). 

Consider the problem of maximizing the number of vertices covered by two new 
facilities. With two "integral" facilities, namely, the center and another point of the 
four, we can cover at most nine vertices. However, by selecting one "half" of a facility 
to be located in each one of these four vertices, we manage to cover nine and a "half" 
vertices. 
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Appendix 2. Threshold radii arising from distances to existing facilities. Suppose 
that the radii ri are in fact the current distances from each vertex i to the nearest 
existing facility (which belongs to the first company) and the customer located at i 
would use a new facility if one were established by the second company at a distance 
less than ri from i. 

We claim that the problem can be decomposed in this case as follows. Consider 
the connected components of the tree induced by the locations of the existing facilities. 
Specifically, two points belong to the same component if there is no existing facility 
on the path which connects them. Let these components be denoted by TI, . . , Tk. 
Obviously, a customer located in T, would use a nkw facility only if it is located inside 
Ti. Thus, it suffices to consider maximum coverage problems on the components and 
then solve a resource allocation problem as follows. Suppose that fi(pi) is the maximum 
gain possible by locating pi new facilities in Z. Then, the solution to our problem is 
by maximizing C fi(pi) subject to C pi = p (pi 2 0 and integral). We note that in each 
component an existing facility is always located at a leaf. Furthermore, we can assume 
without loss of generality that every leaf contains a facility. For, assume on the contrary, 
that a customer i is located at a leaf in which no existing facility is located. Such a 
customer will switch to a new facility inside the component if and only if its unique 
neighbor does. Thus, we can eliminate the leaf i from the tree and add its weight to 
that of its neighbor. Continuing with this process, we eventually get components in 
which the existing facilities coincide with the leaves. 

The case of a chain tree is extremely simple. Here we split the chain into subchains 
whose boundary points are the locations of the existing facilities. Each subchain should 
be assigned either 0, 1, or 2 new facilities. Thus, the resource allocation problem that 
has to be solved in this case is very simple and the problem can be solved by the 
greedy algorithm in linear time. 
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