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This paper deals with matrix representations of linear orders, mixtures of order matrices and 
the non-integral solutions of the linear systems defining them. 

1. Introduction 

We shall be dealing with matrix representations of orders. A linear order R over 
a set M = { I , .  . ., m} is represented by a 0,1-matrix x = (x,,), ,,,,,, where i R j  if and 
only if x,, = 1. We shall call x an order matrix and denote the class of order matrices 
over M by 0,. It can be easily verified that x E Om if and only if x is a n  integral 
solution of the following system : 

x,, = 0 (i = 1,. . ., m )  (1.2) 

We shall call the solutions of (1.1)-(1.4) generalized order matrices and denote the 
class of these matrices by G,. Our  present study is motivated by the following. 

(a) The domain of a social choice function [I] consists of sequences of linear 
orders. Under the assumptions of equal-vote and independence of irrelevant 
alternatives, this domain may be replaced by Hm = conv (Om), since the function 
depends only on the relative frequency of those individuals preferring i to j (for 
every i #  j E M). A linear characterization of Hm seems to be useful for defining 
social choice functions. 

(b) The integral solutions of the subsystem [(1.1), (1.2), (1.4)] are the tournament 
_ matrices [5]. The set of all solutions for [(1.1), (1.2), (1.4)], called generalized 

tournament matrices, coincides with the convex hull of the set of tournament 
matrices [6]. 

(c) Permutation matrices, which are closely related to order matrices, are defined 
to be the integral solutions of the system [(1.4), (1.5)], 
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It is well known that the set of all solutions for (1.4)-(1.5) coincides with the convex 
hull of the set of permutation matrices. 

(d) With a slight modification, namely x,, = 0.5 instead of x,, = 0, generalized 
order matrices appear in the literature of mathematical psychology as binary choice 
probabilities - xi, being the probability of choosing i when being forced to choose 
from {i, j}. Marschak [3] claims that (1.3) is the weakest assumption needed. 

(e) An interesting combinatorial problem is the following. Given a set T of 
cyclically ordered triples out of M (see [4]), find a cyclic order R over M such that 
(if possible) every T E T is derived from R. This is equivalent to finding an integral 
solution for (1.1)-(1.4) as well as 

xik + 1 =S x,, + xIk ((ijk) E T). (1.6) 

Fieldman has conjectured, in view of computational experience, that this problem 
is solvable by linear programming. If this were true, then necessarily H, = G, for 
each m. 

Unfortunately, it is not true that H, = G, for every m. For a counterexample we 
need m = 13. On the other hand, it can be shown that H, = G, for m 3 4 .  

2. On the classes Om, H,, Pm, Gm 

Given an x E G,, the symbol = (ijk) will stand for the equality x , ~  = x,, + x , ~ .  
Similarly, < (ijk) will stand for x , ~  < x,, + xjk. The following lemma can be easily 
proved. 

Lemma 2.1. Let x E G, and i, j, k E M. 
(i) If i, j, k are distinct and = (ijk), then = (kij), = (jki), < (kji), < (ikj), 

< (jik). 
(ii) = (ijk) and = (ikl) imply = (ijl and = ('jkl). 

Lemma 2.2. If x E G, then there is i E M such that for each j#  i x ,  > 0. 

Proof. Obviously, the lemma is true for m s 2. We proceed by induction on m. 
Assume m >2 .  The induction hypothesis implies that for every i E M there is 
k = k( i )  such that k #  i and xk, > 0 for each j E M\{i,  k). Suppose, per absurdum, 
that xk(,),, = 0 for every i E M. It follows that i +- k(i)  is a permutation of M. 
Obviously, 

X k(k(i)),r X k(k(i)),k(,) + X k ( i ) , i  = 0. 

Since k(k(i))  # k(i), it follows that k(k(i))  = i. That implies x , , ~ ( , )  + xk(,),, = 0 and 
hence, a contradiction. This completes the proof. 

Corollary 2.3. If x E G, then there exists a permutation matrix p such that 
y = pTxp satisfies y, > 0 for 1 S i < j S m. 
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This follows by applying Lemma 2.2 to a decreasing sequence of principal 
submatrices of x. 

Definition 2.4. A matrix x E G, is permutable if there is a permutation matrix p 
such that the matrix y = ~ ~ x p  satisfies yi, > O  (1 S i < j S m )  and y,, < y ,  + y,, 
( l < i < j < k S m ) .  

We denote the class of permutable matrices by P,. 

Theorem 2.5. For every m (m = 1 ,2 , .  . .), H, = G, if and  only if P, = G,. 

Proof. Notice that for every m H, C G, and P, C G,. 
(a) We shall prove that H, C P,. Let b = Cs=l A,al where a '  E O,, A, > 0, 

i = 1 , .  . ., m, and C A, = 1. For every i E M let p ( i )  E M be such that i is the p(i)-th 
greatest in the linear order represented by a ' .  The mapping p is a permutation of M 
and, obviously, a > 0 if and only if p ( i )  < p (j). Moreover, if p (i)  < p (j) < p (k ) 
then a: < a ;  + Since a', . . ., a "  satisfy (1.3), it follows that b,, < b, + blk. Also 
b ,  > 0 whenever p( i )  < p(j) .  This implies that b E P,. Obviously, H, = G, implies 
P, = G,. 

(b) We shall prove that P, = G, implies H, = G,. Assume that P, = G,. Let 
b E G, 2 nd assume that b,, = q,,/r,, where q ,  and r,, are non-negative integers 
(r,,# 0). Let r denote the least common multiple of the numbers r,,. If r = 1 then 
b E 0, CH,. We proceed by induction on r. Assume r > 1. The matrix c = rb is 
integral. Since b E P,, let p be a permutation of M such that p ( i )  < p( j )  implies 
btk < b,, + blk. Let a E 0, be defined by a ,  = 1 if and only if p ( i )  < p(j). We shall 
show that d = [ l / ( r  - l)](c - a )  E G,. First, d,, 3 0 since whenever a,, = 1, p ( i )  < 
p( j )  and therefore c,, 3 1. Also, d,, = 0 and d,, + dl, = 1 for i f  j. It can be also 
verified that d satisfies the triangle inequality (1.3). Thus, d E G,. The induction 
hypothesis applies to d and therefore d E H,. This implies that b = 

((r - 1)lr)d + (1lr)a E H,. It follows that every b E G, also belongs to H,. 

3. Examples 

Proposition 3.1. For m G 4, H, = G,. 

Proof. The case m S 2 is trivial. Let x E G, and we shall show that x E P,. 
Without loss of generality assume that xlz, X13, X23 > 0 (Corollary 2.3). If < (123) 
then x is obviously permutable. Otherwise, < (132) (Lemma 2.1) and also 
x , ~  = x,, + x12 > O.In the latter case p(1,2,3) = (1,3,2)is a suitable permutation that 
implies x E P,. Thus, G, = P, and by 'Theorem 2.5, H, = G,. 

Let x E G,. Without loss of generality assume that XI,, xz4, X14 > 0 (Lemma 2.2). 
Also, since G3 = P,, we may assume that < (123) and x12, x,,, X23 > 0. Table 1 
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enumerates all possible cases and in each one of them a suitable permutation is 
indicated. 

Table 1 

The proof in case 1, for example, is as follows. XI4 = xlz + xz4 > 0 and by our 
assumptions xIz7 x13, X4Z, x 4 ~ ,  X23 > 0. Also, < (142), < (143) (Lemma 2.1) and by our 
assumption < (123). If, per absurdum, = (423), then = (124) implies = (123) 
(Lemma 2.1) and hence a contradiction. Thus, < (423) and all the requirements are 
fulfilled. 

It follows that P, = G4 and hence H4 = G4. 

Proposition 3.2. HI, # GI3. 

Proof. Consider the following matrix. 

a b c d e f g h i j k l m  
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We claim that x E GI,. It can be inspected that x,, = 0 and x,, + x,, = 1 ( i f  j ) .  T o  
verify the triangle inequality, notice that a violation of it in this matrix can occur 
only in the following forms: 1 > 0.5 + 0,  1  > 0 + 0.5, 1  > 0 + 0,  0.5 > 0 + 0. In any 
case, there must be either a row or a column containing both 1 and an off-diagonal 
zero. This does not occur and hence x E GI% 

We shall prove that x I f  P,,. First, it can be verified that the following equalities 
hold 

= (dca) ,  = (edb), = (fec),  = (gfd) ,  = (hge),  = (ah f ) ,  = (cag), = (bch),  

= ( iba) ,  = (jic), = (kjb) ,  = ( lk i) ,  = (mlj) ,  = ( a m k ) ,  = (bal),  = (cbm).  (3.1) 

Suppose, per absurdum, that x E PI,. It follows that there exists a linear order R 
over M such that a R  f 3  R y implies < (spy) for all a,  P, y E M. In view of Lemma 
2.1, the same is true for every cyclic equivalent R'  of R (see [4]).  It follows that the 
following cyclically ordered triples are all derived from the cyclic order [ R ] .  

acd, bde, cef, dfg, egh, fha, gac, hcb, abi, cij, bjk, ikl, jlm, kma, lab, mbc. 

This implies that hcm and bhm are also derived from [R]. This contradicts what is 
proved in [4, Example 41, namely, there is no cyclic order from which all these 
triples are derived. Thus, x @  P,,. It follows that x @  HI,. This completes the proof. 

Balas [2] has recently characterized the convex hull U,,, of the set of permutation 
m-vectors, i.e. vectors that can be obtained by a permutation of the vector 
(1,2, .  . ., m ) .  A vector u E R m  belongs to U,,, if and only if 

It is easy to verify that (1.1)-(1.4) implies that u = xe + e (where e is the summation 
vector) satisfies (3.2)-(3.3). In other words, x E G, implies xe + e E U,,, and this 
leaves the problem of characterizing H,,, open. 
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