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Given f : R: + R", a feasible solution is an x E R: such that f(x) E R:. A 
complementary solution is a feasible solution x such that xT - f (x) = 0. The mapping 
f is monotone [4] if (x - Y ) ~ .  Lf(x) - f(y)] Z 0 for all x, y E R:. The following is 
known. 

(i) If f(x) = Ax + b is affine and monotone (in which case A is positive 
semi-definite), then the existence of a feasible solution implies the existence of a 
complementary solution [I]. 

(ii) If f is continuous and monotone and if there is an x ER: such that 
fi(x) > 0 ( i  = 1, . . . , n), then there is a complementary solution [5, Theorem 3.21. 

(iii) If f is continuous and strictly monotone, i.e. for all x #  y ER: 
(X - y)T - V(X) - f (y)] > 0, then there is a complementary solution if there is a 
feasible one (According to [2, Theorem 31 this can be reduced to 6 ) ) .  

More [5] claims that it is not known whether the existence of a feasible 
solution implies the existence of a complementary one under a general assump- 
tion of monotonicity. In view of the following example this is not true. Consider 

It can be easily verified that the set of feasible solutions is {x: x, = 1, x 2 1  0). 
No feasible solution x is complementary since f ,(x) = 1. The Jacobian matrix of 
f is 

2x, - 2 

2-2x, 0 I 
and since it is positive semi-definite at each x E R:, it follows that f is monotone 
(see [3, Theorem 3.11). 
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