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This paper generalizes the answers that were given by R.W. Cottle to questions that were 
originally raised by G .  Maier. 

Essentially, we give necessary and sufficient conditions for some notions of monotonicity of 
solutions for the parametric linear complementarity problem. Our proofs are direct ones and 
not algorithmic, as Cottle's proofs are, and also cover a broader class of matrices. 

1. Introduction 

The linear complementarity problem, (LCP), which has already been in- 
vestigated thoroughly (see [3,4]), is stated as follows. 

Problem 1.1 (LCP (M, q ) ) .  Given an (n x n)-matrix M  and an n-vector q, find an 
n-vector z such that 

q + Mz 23 0, z 23 0, zT(q + M z )  = 0. 

The parametric linear complementarity problem, (PLCP), formulated by 
Maier [ 5 ]  and investigated by Murty [6] and Cottle [ I ] ,  is the following. 

Problem 1.2 (PLCP (M, q,  p ) ) .  Given an ( n  x n)-matrix M and n-vectors q, p, 
solve the family {LCP (M, q + a p ) :  a 2 0) of linear complementarity problems. 

According to Maier [ 5 ] ,  this problem is interesting in the context of elas- 
toplastic structures. Monotonicity of solutions was claimed to be of special 
interest. Several results concerning monotonicity were obtained by Cottle [ I ] .  

Cottle developed a monotonicity-checking algorithm which requires q to be a 
non-negative vector and M either to be positive semi-definite, or else to have 
positive principal minors. This algorithm computes a particular parametric 
solution and decides whether this solution is monotone or not. Thus, in the case 
of non-unique solutions, a positive answer by that algorithm is not more than a 
sufficient condition for the existence of a monotone solution. 

Using that algorithm, Cottle also proved the following. 
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Theorem 1.3 (Cottle [ l ,  Th. l j). If  M has positive principal minors and q is any 
n-vector, then the solution' of PLCP (M, q,  p )  is monotone for every n-uectorp, 
if and only if 

for every principal submatrix M o f  M and corresponding subvector 4 o f  q. 

I 
The property of (M, q )  characterized in Theorem 1.3 is called strong mono- 

tonicity. A property of M, called uniform monotonicity, was characterized by 
Cottle in the following theorem. 

Theorem 1.4 (Cottle [ l ,  Th. 21). Let M be an ( n  x n)-matrix whose principal 
minors are positive. Then the solution of PLCP (M, q, p )  is monotone, for every 
p and every non-negative q, if and only if M is a Minkowski matrix (i.e., has 
positive principal minors and non-positive 08-diagonal entries). 

Thus, Cottle's answers do not cover the positive semi-definite case. 
It is the goal of the present paper to generalize Cottle's results to a broader 

class of matrices, revising the definition of monotonicity in the case of non- 
unique solutions. 

2. A preliminary discussion 

To begin, let Z ( a )  = Z ( a ;  M, q,  p )  denote the set of all the solutions of LCP 
(M, q + a p ) ,  for a 3 0. Thus, Z is a point-to-set function (defined for every 
non-negative number a )  whose values are subsets of R:, that may be empty. A 
definition of monotonicity of Z ( a )  is called for. One might like to call Z 
monotone if every point-to-point function z ,  such that ~ ( a )  E Z ( a ) ,  is coor- 
dinate-wise monotone. Yet, such a definition is too restrictive and, unless Z is 
somewhat trivial (e.g., singleton-valued or empty-set-valued almost everywhere), 
there exist discontinuous functions z ( z ( a )  E Z ( a ) )  which are not monotone. 

It can be easily verified that the solution function Z is in our case lower-semi- 
con t inu~us .~  Accordingly, we call Z monotone if every continuous point-to- 
point function z (such that z ( a )  E Z ( a ) ) ,  defined over a connected domain, is 
monotone. A necessary condition, which is related to non-degeneracy, for 2 to 
satisfy that kind of monotonicity, can be derived by the following observation. 

For every ( n  X n)-matrix and S C N = ( 1 ,  . . . , n) ,  let AS denote the submatrix 
of A, consisting of the columns corresponding to indices in S and let A: denote 
the principal submatrix of A corresponding to the same set of indices. Similarly, 
let xS denote the subvector of an n-vector x corresponding to the indices in S. It 
is easily verified that z is a solution of LCP (M, q )  if and only if 

' The existence and uniqueness of the solution was in fact proved by Samelson. Thrall and Wesler 
171. 
Z ( a )  is lower-semi-continuous if z, E Z(a,), a, +a and z, -, z imply z E Z(a). 
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- - 
M S x S  - I S X S  = - q ,  

where S = {i: zi > 0) and x is a non-negative n-vector such that xS = z S .  A 
necessary condition for monotonicity is as follows. 

Proposition 2.1. Let Z ( a )  = Z ( a ;  M, q, p )  be the solution function of PLCP 
( M ,  q , p ) .  Then, if Z  is monotone, Z ( a )  is a finite set for  every non-negative a ,  
with the exception of a t  most a finite number of values of a .  

Proof. Assume that Z  is monotone and suppose, on the contrary, that the 
condition is not satisfied. There is an infinite number of a's such that Z ( a )  is an 
infinite set. On the other hand, there is only a finite number of different S's. 
Thus, it follows that there exist a ,  > a ,  3 0, S C N, and n-vectors y 3 x  3 0, 
v a u 3 O  ( x f  u and y # v )  such that 

Without loss of generality, assume x, < u,, 1 E S. If 0 < E s a ,  - a ,  let 

for a  such that a ,  + E d a  a 2  and let 

for a  such that a ,  a s a ,  + 6. 
Obviously, 

so that z ( a )  = ( w S ( a ) ,  0) E Z ( a )  for a ,  s a  < a2. However, if E is sufficiently 
small, then ~ ( a )  is not monotone, contradicting our assumption. This completes 
the proof of the present proposition. 

Due to the necessary condition specified in Proposition 2.1, the graph of Z  
may be essentially viewed as a finite number of linear pieces. Monotonicity of Z 
in such a case is equivalent to the monotonicity of each linear piece. Henceforth, 
we shall be dealing with the latter property. 

3. On the monotonicity of Z ( a )  

Given a set P of n-vectors, we denote by lin P the linear space spanned by P. 
Also, let pos P and pos' P denote, respectively, the set of all non-negative linear 
combinations and the set of all positive linear combinations of all the vectors in P. 
We take the liberty of using the above notation also when P is a set of matrices (all 
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having the same column length). In that case P is identified with the set of the 
column vectors of the matrices in P. 

Definition 3.1. Let M, q, and p be given. We call a set S C (1,. . . , n) relevant for  
(M, q, p )  if the ray {-q - a p :  a 2 0) meets the cone pos {M', -19 at more than 
one point. 

Lemma 3.2. A set S is relevant for  (M, q, p )  if and only if there exists a set K of 
columns of (MS, -IS) such that -q E pas+ (K U (p}) and p E lin K. 

Proof. (a) If S is relevant for (M, q,p) ,  then there exist P > a 2 0  and non- 
negative n-vectors x, y such that 

MSxS = -q - (3.1) 

M~~~ - 1%' = -q - pp. (3.2) 
- - 

If (z, y)  = $(x, a )  + :(y, P ) ,  then z is non-negative, y is positive and MSzS - ISzS = 

-q - yp. Let K be the set of those columns, either of M S  or of -1" cor- 
responding to coordinates i such that zi > 0. Obviously, -q - yp E posf K and 
therefore -q E pos' (K U (p)). If zi = 0, then xi = yi = 0. That implies, by sub- 
stracting equality (3.2) from equality (3.1), that -p E lin K. 

(b) Assume that K is a set satisfying the conditions specified in the present 
lemma. It follows that there exists a positive number y and a non-negative 
n-vector z such that -q - yp = MSzS -lSzS, and zi = 0  for every i whose 
corresponding column of (MS, -1" is not in K. Also, since p E lin K, there 
exists an E > 0 such that -q - (y -t ~ ) p  E pos {MS, -19). This, of course, means 
that S is relevant for (M, q, p). 

Definition 3.3. Given M, q, p, and S,  we call p a monotone direction if there 
exists a vector-function ~ ( a )  such that 

and' xi(&) is a monotone non-decreasing function of a for all i E S. 

Lemma 3.4. Let M, q, p, and S be such that S is relevant for  (M, q, p). Under this 
condition, p is a monotone direction if and only if -pS E pos M:. 

Proof. (a) Suppose that p is a monotone direction and let x ( a )  be the function 
assured by Definition 3.3. If P > a 2 0, then 

This implies 

-P = [MS(xS(P) - xS(a)) - lS(xS(p) - xS(a ) ) ] / (~  - a ) .  (3.3) 

Since xS(P) 3 xS(cr), a restriction to the coordinates in S yields -pS E pos M$. 
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(b) Suppose that -pS E pos Mz. There exists a non-negative n-vector a such 
that -p = MSaS - ISaS. Since S is relevant for (M, q, p), it follows from Lemma 
3.2 that, in particular, q E lin {M', -19). Thus, there exists an n-vector b such 
that -q = MSbS - 1%'. Define x(a)  = a a  + b and it follows that xS(a) is mono- 
tone and -q - a p  = MSxS(a) - ISx"a). This proves the present lemma. 

In view of the discussion in Section 2, we introduce the following regularity 
condition. 

Definition 3.5. A parametric linear complementary problem PLCP (M, q ,p )  is 
called regular when every principal submatrix M :  of M, such that S is relevant, 
is nonsingular. 

Theorem 3.6 (See Lemma 3.2). Let PLCP (M, q, p )  be a regular PLCP. Then the 
solution function Z(a )  = Z ( a ;  M, q, p )  is monotone if and only if 

for  every S which is relevant for  (M, q, p). 

Proof. Under the regularity assumption, the solution function Z(a)  is discrete- 
set-valued. For every S, which is relevant for (M, q, p), and a 3 0, there exists at 
most one non-negative n-vector x such that MSxS - ISxS = -q - ap. Thus, 
monotonicity of Z is equivalent to p's being a monotone direction with respect 
to every relevant set S. In view of Lemma 3.4, this is equivalent to -p E pos M; 
or, using the regularity assumption again, (M;)-'pS S O .  This proves our 
theorem. 

Admittedly, the characterization of the relevance property and the resulting 
characterization of monotonicity of Z ( a )  involve a number of checkings that 
grows rapidly with the dimension. It is hoped, however, that the results of this 
section do provide some insight into the monotonicity problem and that some 
simpler sufficient (but not necessary) conditions for monotonicity can be easily 
derived. In any case these results will be used in the next section for charac- 
terizing strong and uniform monotonicity. 

4. On the strong and uniform monotonicity 

In this section we shall be mainly dealing with the strong monotonicity property 
of a pair (M, q), i.e., the property that for every p the problem PLCP (M, q, p )  
has a monotone solution function Z(a) .  

Definition 4.1. Let M a ~ d  q be given. We call a set S C (1,. . . , n} relevant for  
(M, q )  if there is an n-vector p such that S is relevant for (M, q, p )  in the sense 
of Definition 3.1. 
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Lemma 4.2. A set S is relevant for  ( M ,  q )  if and only if q S  E lin Mg. 

Proof. By 
is p and 
condition 
q  E lin K. 

Lemma 3.2, it follows that S is relevant for (M, q )  if and only if there 
K C  ( M S ,  -19 such that - q  E p o s + ( K  U b ) )  and - p  Elin K. This 
is obviously equivalent to the existence of a K C ( M S ,  -19 such that 
The latter condition simply states that q S  E lin M:. 

As in the preceding section, we need a regularity condition (see also the 
discussion in Section 2). 

Definition 4.3. A pair ( M ,  q )  is called regular if for every S which is relevant for 
( M ,  q )  the principal submatrix M: is non-singular. 

Theorem 4.4. Let ( M ,  q )  be a regular pair. Under this condition, the solution 
function Z ( a )  = Z ( a ;  M, q ,  p )  is monotone for  every p  if and only if 

for  every S such that q S  E lin M:. 

Proof. The pair ( M ,  q )  has the strong monotonicity property if and only if for 
every n-vector p and S which is relevant for ( M ,  q , p ) ,  the direction p  is 
monotone w.r.t. M, q,  S. In the other words, that property is equivalent to the 
truth of the following implication. For all p, S,  and K C  ( M S ,  -19, if - q  E 

posC ( K  U (p}) and - p  E lin K, then - p S  E pos M:. Since - q  E pos' (K U  (p)) is 
equivalent to - p  E posf (K U { q ) )  and, also, - p S  E pos Mg is equivalent to 
- p  E pos { M S ,  -15 Is ) ,  it follows that the strong monotonicity property is 
equivalent to the truth of the relation 

lin K n pos' (K U (4) c pos { M S ,  - I', 1'1 (4.1) 

for all S C (1 ,  . . . , n) and K  C ( M S ,  - I S ) .  But if q e  lin K ,  then the left-hand-side 
of (4.1) is empty, and also if q  E lin K, then that intersection coincides with 
posf (K U { q } ) .  Thus, the condition as a whole is equivalent to 

pos' (K U  { q ) )  C pos { M S ,  - 1" I s }  

for all K such that K  C ( M S ,  -19 and q  E lin K .  This is equivalent to 

q  E pos { M S ,  - I S ,  I ~ }  

for all S such that q  E lin { M S ,  - I S } .  Finally, using the regularity condition for 
strong monotonicity, this property is equivalent to 

(M:)- 'qS 3 0 

for all S such that q S  E lin M;. This completes our proof. 

Remark 4.5. Using Theorem 4.4, a characterization of the uniform monotonicity 
property of a matrix M (i.e., monotone solution Z ( a )  = Z ( a ;  M, q ,  p )  for every p  
and every non-negative q )  is straightforward. The regularity condition on M  in 
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this case insists that every principal submatrix of M is non-singular. Under this 
condition, uniform monotonicity is equivalent to 

for all S C (1,. . . , n )  and every non-negative n-vector q. This is equivalent to 
M's being a Minkowski matrix [2, p. 2471. Notice that during the derivation of 
this characterization we were not assuming that M has positive principal minors, 
as in fact was assumed by Cottle. Thus, in particular, the positive semi-definite 
case is settled. 
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