
SlAM J COMPUT
Vol 10. No 2. M a y 1981

1981 Soclef, for lndustr~al and Apphed Mathcmattk
0097 -52Y7 81 100?-0008 W l 00,O

AN O(n logZn) ALGORITHM FOR THE kth LONGEST PATH IN A TREE
WITH APPLICATIONS TO LOCATION PROBLEMS*

N. MEGIDDO, A. TAMIR, E. ZEMEL AND R. CHANDRASEKARANi

Abstract. Many known algorithms are based on selection in a set whose cardinality is superlinear in
terms of the input length. It is desirable in these cases to have selection algorithms that run in sublinear time in
terms of the cardinality of the set. This paper presents a successful development in this direction. The methods
developed here are applied to improve the previously known upper bounds for the time complexity of various
location problems.

Key words. polynomial algorithm, selection, location theory, tree, p-center

1. Introduction. It is now well known that the kth largest element of an ordered
set S can be found in linear time in the cardinality of S [I]. Since the discovery of that
fact, it has been observed by several authors that in some structured sets, the kth largest
element may be found even faster. For example, if S = X + Y (where both X and Y
consist of n numbers) then the kth largest element of S can be found in O(n log n) time,
even though IS1 = nZ. This was first achieved by Jefferson, Shamos and Tarjan [15] and
by Johnson and Mizoguchi [l l] , and later generalized and improved by Frederickson
and Johnson [6]. A more general case is the following. Suppose that the set S is
partitioned into m sorted subsets such that the kth largest element in each subset can be
found in constant time. Fox [5] finds the kth largest element of S in O(m + k log m)
time. Galil and Megiddo [7] solve the problem in O(m log2 (ISllm)) time. The basic
idea of [15] can be used to solve this problem in O(m log ([Slim)) steps. This was
improved by Frederickson and Johnson [6], who solve the same problem in
O(max {m, c log (klc)) time, where c = min (k, m). This is also proved to be an asymp-
totically optimal bound [6], [lo].

The structure of S in this latter example is quite abstract. It remains an open
question how other structured sets should be handled. For example, suppose that S is
the set of all pairs of nodes of a graph, ordered according to the distance (along a
shortest path) between the members of the pair. How can we exploit this structure on S
for finding the kth largest element? Another interesting example is when S is the set of
maximum flows between pairs of source-sinks in a capacitated network.

In this paper we develop an algorithm for the kth largest element in the set of all
simple paths in a tree with edge-lengths. The cardinality of this set is 0 (n 2) (n is the
number of nodes in the tree and each simple path is characterized by its two endpoints).
However, our algorithm runs in O(n log2 n) time. This fast method of selecting an
internodal distance is shown to be very useful in the solution of different combinatorial
location problems.

The organization of the paper is as follows. In 0 2 we review the two basic
approaches to selection in an ordered set with sorted subsets. In •˜ 3 we discuss a
decomposition scheme for trees, on which the partition of the set of paths is based. The
partitioning itself is developed in $ 4 and the solution of the selection problem in the set
of paths is summarized in •˜ 5. A brief survey of four different location problems is given
in •˜ 6. In •˜ 7 we apply the methods developed in this paper to obtain improved
algorithms for the location problems defined in •˜ 6. In $ 8 we briefly discuss the more
general case of weighted location problems.

* Received by the editors May 5, 1979, and in revised form April 21, 1980.
Northwestern University, Graduate School of Management, Evanston, Illinois 60201.

AI-GORITHM FOR ~ T H LONGEST PATH IN A TREE 329

2. An overview of selection algorithms. Suppose that an ordered set S is parti-
tioned into m subsets S , , S2, . . , Sm such that the kth largest element in each subset can
be found in constant time. We distinguish between two methods of selection in S. The
first one, which we like to call "trimming," is attributed to Jefferson, Shamos and Tarjan
[15] and is also used in Frederickson and Johnson [6] . The second, which we call
"splitting," is a generalization of linear-time median finding [1] and is used in Johnson
and Mizoguchi [ll] and in Galil and Megiddo [7]. For simplicity of exposition, we
assume in this section that all members of S are distinct. Handling the general case of S
being a multiset is similar (see the above references). At a given iteration, let S: E S, be
the set of elements still under consideration with S' = U,"=, S:.

A. Trimming. Suppose that we are looking for the kth largest element x of S', and
assume without loss of generality that k dfjs'l. We first find the lower quartile, y,, in
each S:. Next, we consider the set Y = { y , , . . . , y,} where each y , is weighted by IS:/,
and we find the (weighted) lower quartile y of Y. Obviously, at least one half of the
elements of S' are greater than y, and hence y S x . We can now reduce the set Sf by
discarding the lower quarter of each subset S: for which y, S y . This amounts to
discarding & of the set S r , and the problem now reduces to finding the kth largest
element of the remaining set.

B. Splitting. In this method we first find the median z, in each S:. Next, we find the
weighted median z of Z = { z , , . . . , z,} (relative to the weights IS: 1). Obviously, z is
between the lower and upper quartiles of S'. By computing the rank of z in S', we can
tell whether z Z x or z < x . In the latter case, the lower half of every S: such that z , I z
can be discarded, and we look for the kth largest element in the remaining set.
Otherwise, the upper half of every S: such that z , 2 z is discarded, and we look for the
(k -i1sf/)th largest element of the remaining set.

It is interesting to compare the logic and overall efficiency of splitting and
trimming. One difference between the two methods lies in the position of elements they
eliminate. At any given iteration, splitting may eliminate elements from the upper or
lower quartiles of S', depending on the outcome of a logical test. In contrast, the
elimination process of trimming is not based on any test, and the elements eliminated
always come from lower parts of S' if k ~ $ 1 ~ ~ 1 and from its upper part if the reverse
condition holds. As will be pointed out in •˜ 7, a procedure similar to splitting (i.e., based
on a logical test) turns out to be preferable for solving various location problems on a
tree. As for the efficiency of identifying the kth element of S, we note that, in the worst
case, splitting eliminates at each iteration more variables than trimming (four times as
many in the formulation given above, although the difference can be reduced by a slight
modification of the trimming procedure). However, the corresponding reduction in the
number of iterations enjoyed by the splitting method is more than offset by the effort
involved in identifying the rank of z in S ' which is necessary to support the logical
test. Thus, while the overall complexity achieved by the splitting procedure
is O(m log2 (ISllm)) the corresponding complexity for trimming is only
Oim log (ISllm 1).

Our algorithm for the kth longest simple path in a tree exploits the structure of the
set S of paths in the following way. We partition S into m = O(n log n) subsets
SI , . , S,,, with the following properties.

(i) The kth largest element in any Si, as well as its length, can be computed in
constant time.

(ii) All the elements of each Si are paths leading from the same node vi to other
nodes of the tree.

330 N. MEGIDDO, A. TAMIR, E. ZEMEL AND R. CHANDRASEKARAN

(iii) The k largest and the k smallest elements of any S, can be discarded in
constant time.

(iv) The partitioning process is carried out in O(n log2 n) time and O(n log n)
space.

Once this partition is obtained, one can employ the trimming algorithm for finding
the kth longest path. This amounts to a time bound of O(n log2 n) . Details are worked
out in the following sections. The partitioning is carried out by a divide-and-conquer
algorithm on the tree T. The first step in this direction is an efficient decomposition of
the tree which we describe in the next section.

3. Decomposition of trees. In this section we show how to decompose a tree T
into three (or fewer) subtrees such that precisely one node of T belongs to more than
one subtree and such that each subtree has no more than n/2 + 1 nodes (where the set of
nodesof T i s N = (l ; . . , n }) .

Suppose that the tree T is given in the form of lists N (i) of all the neighbors of a
node i (i = 1, . , n). If i and j are neighbors, then by removing the edge (i, j) two
subtrees of T are induced. We denote by K(i, j) the number of nodes in that subtree
which contain node i. (Note that K is defined on ordered pairs of neighboring nodes.) It
is easy to verify the following:

(1) If i is a leaf where N(i) = {j) then K(i, j) = 1.
(2) K (i, j) + K (j, i) = n for all pairs of neighbors.
(3) Fo ra l l j ,C ,,,,,, K (i , j) = n - 1 .
(4) If j, k € N (i) (jit k) then K(j , i)<K(i , k).

In order to decompose T in the manner described above, we need to find a node x
such that for all i E N(x), K(i, x) 5 n/2. The existence of such a node, referred to as the
centroid of T, was observed by Jordan in 1869 [12]. Linear time algorithms for finding
the centroid appear in Goldman [a] and Kariv and Hakimi [13]. For the sake of
completeness we provide such an algorithm below.

We first note that the computation of all the K(i, j)s can be carried out in O(n)
time. This is done as follows. Fix one of the nodes r as the "root," so that every other
node i has a "father" f(i) relative to r (i.e., f (i) is the node following i on the path from i
to r).

The quantities K(i, f(i)) (i # r) can be computed recursively by K(i, f (i))=
1 + 1, ,(,,=, K (j, f (j)), and the computation of all K (i, j)s can be completed by (2). The
whole process takes O(n) time.

Once all the K (i, j)s are known, the following process can be used to find a node x
such that K(i, x) S n/2 for all i E N(x).

x + l
if K(i, x) 5 n/2 for all i E N(x) then stop

(I) else (there is precisely one i E N(x) such that K(i, x) > n/2) x + i
go to 1

This procedure generates a path 1 = xl, . . , xk = x such that K (x,+l, x,) > n/2
(j = 1, . . , k - 1). By (4) and (2), the function m(~ ,)=max , ,~ , , , , K(i, x,) is monotone
decreasing along that path, and hence an xk = x is reached for which m(x)Sn /2 .
Obviously, this procedure takes O(n) time.

We now claim that the set N(x) can be partitioned into three or fewer subsets N I ,
N2, N3 such that CIS,, K(i, x) 5 n/2. This is easily proved as follows. Assume N(x) =

ALGORITHM FOR kTH LONGEST PATH I N A T R E E

{uI;. . , u p } . By (3) thereiss (1 5 s S p l s u c h t h a t

3 - 1 n - 1 P n - 1 1 K(c, , x)s7 and C K(v,, XIS,-.

The desired subsets are N , = { P I , . . . , c,-I), Nz = {t',}, Nj = {c,+I, . . . , v p } .
Finally, the partition of N (x) induces a decomposition of T into three or fewer

subtrees TI, T2, Tj; namely, T, is the subtree consisting of x and all the nodes accessible
from x via a member of N, (j = 1, 2,3). Obviously, x is the only node of T that belongs
to more than one such subtree, and also in each T, there are no more than (n/2) + 1
nodes. The decomposition is carried out in O in) time.

4. Partition of the set of paths in a tree. In the preceding section we described a
decomposition of a tree into three subtrees with a single node x common to the three of
them. We refer in this section to that node x as the "decomposer." In this section, S is
the set of all simple paths in a tree T. Since there is a one-to-one correspondence
between pairs of nodes and simple paths in a tree, we also consider S as the set of pairs of
nodes, ordered according to the internodal distances. We partition S into subsets such
that the kth largest element in any subset can be found in constant time.

The essence of the partitioning algorithm is as follows. First, we find a decomposer
x (see 5 3) and we look at the three subtrees TI, T2, T3 in the corresponding
decomposition. For each T, (i = 1,2 ,3) , we compute all the distances from the node x to
all other nodes of T,, and we sort the set S, of all simple paths leading from x into T,
according to these distances. Thus, the node x contributes three sorted subsets to our
partition of S. Next, for each node j # x in TI we can easily compute the sorted set of
distances from j to all nodes of T2, since this is obtained by adding a constant (namely,
the distance between j and x) to all elements of S2. Analogously, for each j f x in either
TI or T2, we compute the sorted set of distances from j to all nodes of T3, by adding the
distance between j and x to all elements of S3. Thus, each node j # x of TI contributes at
this stage two sorted subsets and each j # x in T2 contributes one sorted subset to our
partition of S. We proceed by decomposing the subtrees TI, T2, T3, each along the same
lines described above, until all the paths (or equivalently, pairs) are enumerated.
Throughout this process, we skip paths leading to or from nodes that have previously
served as decomposers, to make sure that each pair of nodes is taken into account
precisely once.

The number of subsets created during the partitioning process is estimated as
follows. Let M (n) denote the maximum number of subsets in such a partition of S for a
tree with n vertices. The tree is decomposed into three subtrees. If n l , n2, n3 are the
numbers of nodes in these subtrees, then n l + nz + n3 = n + 2 and n, 5 n/2 + 1. Each
node contributes no more than three subsets to the partition of S, and we proceed,
recursively, with the subtrees. Hence

M (n) S 3 n + M (n l) + M (n 2) + M(n3),

and it follows that M (n) = O(n log n).
We now estimate the running time Tin) of the partitioning process. It is very

essential to note here what is meant by "creating" subsets. The creation of the subsets
contributed by the first decomposer requires O(n log n) time, since we need to compute
all distances from the decomposer to all other nodes and then sort them. However, the
creation of other subsets (i.e., subsets contributed by nondecomposers) requires only a
few pointers, as discussed later in this section. Thus, the general step in the partitioning
process consists of: (i) tree decomposition, O(n); (ii) computing all distances from a

332 N. MEGIDDO, A . TAMIR, E. ZEMEI. AND R . CHANDRASEKARAN

single node. O (n) ; (iii) sorting the set of all these distances and discarding those
associated with previous decomposers, O(n log n) ; (iv) creating the subsets, pointers
and constants, O(n) . Thus, the recursive relation is

T (n) S Cn log n + T(n ,)+ T (nz)+ T(n3) ,

and therefore T (n) = O(n log2 n).
Next, we discuss the storage aspects of the partitioning algorithm. Whenever a

node x serves as a decomposer for a subtree T , , three sorted sets R 1 , R2, R3 of distances
from x into T I are generated. We distinguish between the sets R, and the subsets S, that
actually constitute our partition. Each set is stored as an array, and the total space for
storing these arrays is O(n log n) . (This can be proved by induction.) The partition of S
into subsets S1, . . . , S,,, as well as the reduced forms of S that are processed by the
trimming or splitting procedures (see •˜ 2), are handled as follows. Each S, is charac-
terized by four items. First is a pointer to the corresponding R, from which St is created.
Second is a constant number that should be added to an element of R, in order to get an
element of S,. Third and fourth are two pointers needed to specify the boundary of that
portion of R, from which S, is generated. (These two pointers are at the start the same
for all the S,s that rely on the same R,, but during the trimming or splitting process they
may become different.) Thus, the total amount of storage that we need is O(n log n) . In
addition, at most O(n log n) storage is required in order to properly maintain the set of
trees T, which are generated throughout the algorithm.

We conclude this section with a pidgin Algol description of the partitioning
process. i t receives as input a tree T with a set of nodes N = (1, . . . , n } and produces as
output a partition S,, . . . , S, of the set of internodal distances of T, where m =

O(n log n) . The sets S1, . . . , S,, sat~sfy the properties (i)-(iii) of Q 2. The overall
complexity bounds for the algorithm are O(n log2 n) time and O(n log n) space. The
procedure uses the following terminology:

Q current set of subtrees not yet subdivided.
B current set of nodes which have not as yet served as decomposers.

R, jth sorted set of distances between a decomposer and the nodes of a
subtree.

k index for set Sk used in the partition.
y (k) a label identifying the index of subset R, used to create Sk.
p (k J the constant increment which must be added to each element of R, to get

the corresponding element of Sk.

In addition, the procedure uses the following subroutines in the course of its execution:

CENTROID (T) Given a tree T returns its centroid.'
SUBTREE (T, x , i) Given a tree T, its centroid x and an index i = 1, . . . , 3,

returns the subtree T, (see last paragraph of (i 3).
DISTANCE (T, A, B) Given a tree T and two sets of nodes A and B returns a

vector of all the distances d (i , j) , i E A, j E B, i # j.
SORT (D) Given a vector D, returns the entries in a sorted way.

Procedure DECOMPOSE (T)
begin

Q + T
B + - N
j+-0
k c 0

ALGORITHM FOR kTH LONGEST PATH I N A TREE

while Q # 0 do
begin

choose T' from Q
x i- CENTROID (T ')
f o r i = 1 ; . . , 3 d o

begin
T, c SUBTREE (T, x, i)
N, t Nodes of T,
N : i- Nl fl B\{x)
Dl + DISTANCE (T,, x, N :)
j i - j + l
0, t i
R, + S O R T (D ,)

end
for each j E N ; do

begin
k + - k + l
y (k) + - cz
p (k) + - d (j , x)
k + - k + i
Y i k) = r .3

P i k) + d i j , ri
end

for each j E N ; do
begin

k + - k + l
r (k) + - u j
P (k) i - d (j , x)

end
if x E R do

begin
f o r i = l ; . . , 3 d o

begin
k + - k + l
r (k) + - v ,
P (k) + - 0

end
B+- B\bJ

end
f o r i = 1 ; . . , 3 d o

begin
if [N , (z ~ then Q c Q U T ,
else

Dl +-DISTANCE (T, N : , N :)
j i - j + l
R, + SORT (D l)
k + - k + l
v (k) + - j
B(k) i -O

end
end

334 N. MEGIDDO. A . TAMIR. E. ZEMEI- A N D R. CHANDRASEKARAK

5. The kth longest path in a tree. Once the partition of the set S of all paths into
m = O (n log n) subsets is established, one can use the techniques introduced in 5 2 to
find the kth longest path. This amounts to an effort of O (m log n l m) = O (n log2 n) if
one uses trimming and an inferior bound, of O (n log3 n) , if splitting is used. As the
effort involved in generating the partition of S is also O (n log2 n) , we can conclude that
the overall effort for finding the kth longest path in T is O (n log2 n) .

Can this bound be further beaten down? Possibly, but the margin for improvement
is slim. An O (n log n) lower bound on the complexity of the problem can be obtained in
a number of ways. The following simple reduction was offered to us by one of the
referees. Consider the tree of Fig. 1 where the heavy line in the center is chosen long
enough to ensure that the longest paths in T include one element from X and one from
Y. Thus, the well-known O (n log n) bound on selection in X + Y is valid for our
problem as well.

t
weighted w ~ t h

t
w e ~ g h t e d with

e lements of X elements of Y

FIG. 1

6. Location problems. We consider here the following different problems of
location. First, we assume that a tree T is embedded in the Euclidean plane, so that the
edges are line segments whose endpoints are the nodes and whose edges intersect one
another only at nodes. Moreover, each edge has a positive length. (Any tree with
positive edge-weights can be so embedded in R *) . This embedding enables us to talk
about points, not necessarily nodes, on the edges. We then denote by d (x , y) the
distance, measured along the edges of the tree, between any two points x , y of the tree.

In a typical location problem, one has to select p points of the tree under different
assumptions depending on the particular model considered. In each model, we dis-
tinguish between the "supply" set C (this is the set from which we select the p points)
and the "demand" set A, with reference to which the objective function is defined. The
p-center problem seeks to choose p points x l , . . , x, from C so as to minimize
sup,.. mini,,,, d (x , , y) . The four special cases, where the sets I: and A are either the set
of all nodes or the set of all points of the tree, have been discussed and given different
algorithms in [2], [3], [4], [9], [13].

Following Handler [9], we use the categorization scheme interpreted as
follows. The first cell describes the supply set C, which could be either the set N of all
nodes or the set A of all points. The second cell describes the demand set A, which could
also be either N or A . The third cell indicates the number of points that we have to select
from X. For example, N / A / 2 refers to selecting two nodes so as to minimize the
maximum (over all points of the tree) of a distance between a point of the tree and the
selected node that is nearest to that point. Kariv and Hakimi [13] provide 0 (n 2 log n)
algorithms for A / N / p and N / N / p . Chandrasekaran and Tamir [3], using a unified
approach, solve A / N / p , N / N / p and N / A / p in 0 (n 2 log n) time. The A / A / p problem
is solved in [4] in 0 (n 2 log2 p) time.

All the algorithms mentioned above are based on the same principle. First, a finite
set R of real numbers, which is known to contain the optimal objective function value, is
identified. Next, we search R for the minimum value which is feasible in the following

ALGORITHM FOR kTH LONGEST PATH IN A TREE 335

sense. A value r > O is feasible if there exists a set of p points x,, . . . , w, of Z such that
the distance between any demand point y and its nearest A,, is not greater than r.
Efficient algorithms are known for deciding whether a given r is feasible, and hence the
location problem can be solved by a binary search of R using such a feasibility test. For
all four problems this test runs in O(n) time. (See [13] for N / N / p and A / N / p and [4]for
N / A / p and A / A / p .) The set K of relevant values in the four different problems is given
in Table 1 (see [3], [4], [13]).

TABLE 1

Model The set R

Along the lines discussed above, each one of these problems can be solved by
computing the set R and then searching R by repeatedly using linear-time median
finding (I]. This amounts to O(JRJ+n log JRI) time where I R] is the dominant term.
Thus, in order to improve this upper bound, one has to bypass the computation of the
set R and still be able to search in that set. This is essentially where we apply the
techniques developed in the previous sections.

7. Improved algorithms for location problems. The sets R of relevant values for
the various versions of the p-center problem bear a close resemblance to the set S of
internodal distances on T. Thus, we can use any algorithm for finding the kth longest
element in S to support a binary search over R. Such search involves at each iteration
identifying the median element of R, performing the feasibility test and finally discard-
ing one half of the elements. However, we note that identifying the median element at
each iteration may be more than one needs. In fact, one can do better by applying a
search strategy similar to that of splitting.

Assume that the set R is partitioned into m subsets R,, . , R, such that the kth
largest element in each subset can be found in constant time. We can employ the
following procedure. First, we find the median element z, in each subset R,. Next, we
find the median element z in the set z = (z , , . . . , z,) relative to the weights IR,I. Thus,
z is between the lower and upper quartiles of R. This value z can now be tested for
feasibility. The test takes O(n) time and determines whether the optimal value v is
greater than z (this is when z is not feasible) or not. If v > z , we discard the lower half
(including z ,) from each R, such that z , 5 z. If v 5 z , we discard the upper half (including
z,) from each R, such that z , 2 z, with the exception that z itself is not discarded. The
search then proceeds with the reduced set R until the optimal value is singled out.

Since each reduction eliminates one quarter of the remaining set, the number of
such stages is O(log IRI). Following is a more detailed analysis for the particular cases.

A. N / N / p . Here R is the set of the internodal distances. It follows from 9 4 that R
can be appropriately partitioned into O(n log n) subsets where the partitioning process
takes O(n log2 n) time. During the searching process, in each iteration we need
O (n log n) time for identifying the element z and O (n) time for the feasibility test.
Thus, the searching stage takes O((n + n log n) log IRl) time, and hence the location
problem is solved in O(n log'' n) time.

336 N. MEGIDDO. A . TAMIR, E. ZEMEI. A N D R . CHANDRASEKARAN

B . A / N / p . Since R = {$d(i , j) : i, j E N) in this case, the location problem is solved
by the same partition which is used in N / N / P . Hence, the time bound for this case is
O (n log2 n) .

C . N / A / p . The relevant set here is R = { d (i , j) , $d(i , j) : i, j E N } . Thus, we use
essentially the same partition as the one for N / N / p and A / N / p , but in terms of pairs of
nodes, each pair is counted twice: once for the distance d (i , j) and once for the number
i d (i , j) . This implies the same time bound of O (n log2 n) for this case too.

D. A / A / p . This last case is slightly more complicated than the previous ones.
Since R = { (1 / 2 k) d (i , j) : i , j E N, k = 1 , . . . , p} in this case, one way of partitioning R is
by using the partition of •˜ 4 for the set of pairs of nodes and replicating each subset p

1 1 1 times, so that each d(i , j) is multiplied by all the numbers 2, s, 6 , . . , 1/2p. Thus, R is
partitioned into m = O (p n log n) subsets while IR/ = ~ (~ n ~) . By applying the search-
ing method, R is successively reduced by a factor of one quarter. Let the set of
remaining variables at a given iteration be R', and denote by ~ (1 R ' i) the time required
by the algorithm to handle this set. We now have

When the cardinality of R' reaches the level iR' \= O (m) we can search over R ' directly
using the method of linear-time median finding. This involves, at each iteration, finding
the median element and performing the test. The total effort involved in the
identification of all the median elements is clearly O (m) . Also, since the number of
iterations is O(1og m) , and since each test requires an effort of O (n) , the total effort
associated with handling a set of cardinality O (m) is O (n log m) = O (m) . Solving the
recursion relation with the initial condition T i m) = O (m) we then get that T(IR'I) =
O (m log (lR1 l /m)) and hence the location problem is solved in this approach in time

0 pn log n log - = O (pn log2 n). ((lo: n))

There is an alternative partition that in some cases leads to a better upper bound.
We first compute the in (n - 1) internodal distances (in 0 (n 2) time). Then we partition

1 R into m = ~ n (n - 1) subsets of the form R,, = { (1 / 2 k) d (i , j) : k = 1, . . , p}, where
computing the kth largest element in each set is trivial. Applying the searching
procedure we obtain the following bound:

O (m log (l ~ [/ r n)) = 0 (n 2 log p) .

To summarize, the different caszs are solved with the upper bounds in Table 2.

Model Upper bound

N / N / p O (n log2 n)
A / N / p O (n log2 n)
N / A / p O (n log2 n)

A / A / p O (n min { p log2 n, n log p })

8. Location problem with weighted demands. A more general type of location
problem is where the demand is weighted. Specifically, when A = N we may have
weights w, > 0 (i E N) and seek to select XI, . . , x, E I: so as to minimize

max { w i . min d (x , i) } .
rc?N 1 C j S p

ALGORITHM FOR kTH LONGEST PATH IN A TREE 337

It is shown in [3], [13] that the relevant set R generalizes to {w ,d(i , j) } , , , , N in the N / N / p
case and to { (w ,w, / (w , + w,))d (i , j)) r , ,EN in the A / N / p case. Both cases are solvable in
0 (n 2) time [4], [13], but based on our method an O(n logZ n) algorithm for the
weighted N / N / p case can be constructed as follows.

Essentially, we consider the set S' of all ordered pairs of nodes together with the
linear order induced by the weighted distances w,d(i , j) . The set S' is partitioned, along
lines similar to those of •˜ 4, into O(n log n) subsets. AII the pairs (i, j) in any subset are
with the same i, hence the restriction of the order to each subset is independent of the
weight w,. All we have to do during the algorithm, is to multiply the kth largest distance
in a set corresponding to i by the weight w,. Thus the partition satisfies all the properties
that are required to obtain a bound of O(n log2 n).

REFERENCES

[I] M. BLUM, R. W. FLOYD, V. R. PRAT~, R. L. RIVEST AND R. E. TARJAN, Time bounds for selection,
J. Comp. Sys. Sci., 7 (19721, pp. 448-461.

[2] R. C H A N D R A ~ E K A R A N A N D A. DAUGHETY, Location on tree networks: p-center and n-dispersion
problems, Math. Oper. Res., to appear.

[3] R. CHANDRASEKARAN AND A. TAMIR, Polynomially bounded algorithms for locating p-centers on a
tree, Discussion Paper No. 358, Center for Mathematical Studies in Economics and Management
Science, Northwestern University, Evanston, IL, 1978.

[41 - , A n O ((n log PI') algorithm for the continuous p-center problem on a tree, Discussion Paper NO.
367, Center for Mathematical Studies in Economics and Management Science, Northwestern
University, Evanston, IL, 1978.

[5] B. L. FOX, Discrete optimization cia marginal analysis, Management Sci., 13 (1966), pp. 210-216.
[6] G. N. FREDERICKSON AND D. B. JOHNSON, Optimal algorithms for generatingquantile information in

X + Y and matrices with sorted columns, Proceedings of the 1979 Conference on Information
Sciences and Systems, The Johns Hopkins University, to appear.

[7] Z. GALIL A N D N. MEGIDDO, A fa~tselection algorithm and the problem of optimum distribution of effort,
J. Assoc. Comput. Mach., 26 (1979), pp. 58-64.

[8] A. J. GOLDMAN, Optimalcenter location in simple networks,Transportation Sci., 5 (1971), pp. 212-221.
[9] G. Y. HANDLER, Finding two-centers of a tree: The continuous case, Transportation Sci., 12 (1978).

pp. 93-106.
[lo] D. B. JOHNSON A N D D. S. KASHDAN, Lower bounds for selection in X + Y and other multisets, J. Assoc.

Comput. Mach., 25 (1978), pp. 556-570.
[l l] D. B. JOHNSON AND T. MIZOGUCHI, Selecting the Kth element in X + Y and XI + X2 + . . . + X,,,, this

Journal, 7 (1978), pp. 147-153.
[12] C. JORDAN, Sur les Assemblayes des lignes, J . Reine Angew. Math, (1869), pp. 185-190.
[13] 0. KARIV AND S. L. HAKIMI, A n algorithmic approach to network location problems. I : The p-centers.

SIAM J. Appl. Math, 37 (1979), 513-538.
[I41 - , A n algorithmic approach to network location problems. 11: The p-medians, SIAM J . Appl. Math,

37 (1979), pp. 539-560.
[15] M. I. SHAMOS, Geometry and Statistics: Problems at the Interface, in Algorithms and Complexity: New

Directions and Recent Results, J. F. Traub, ed., Academic Press, New York, 1976, pp. 251-280.

