
Optimal Precision in the Presence of Uncertainty*,+ 

JOSEPH Y. HALPERN, NIMROD MEGIDDO, AND ASHFAQ A. MUNSHI 

IBM Research Laboratory, San Jose, California 95193 

We consider the problem of achieving coordinated actions in a real-time distributed 
system. In particular, we consider how closely (in terms of real time) processors can 
be guaranteed to perform a particular action, in a system where message transmission 
is guaranteed, but there is some uncertainty in message transmission time. We 
present an algorithm to achieve optimal precision in arbitrary networks. In networks 
where clocks run at the rate of real time, the optimal precision achievable in a network 
is exactly how tightly clocks can be guaranteed to be synchronized. o 1985 Academic 

Press, Inc. 

Achieving coordinated actions in a real-time distributed system often re- 
quires that processors perform actions at roughly the same time. Suppose the 
processors in a system want to perform a particular action (such as flipping 
a bit) simultaneously. How closely (in terms of real time) can they be guar- 
anteed to perform this action? 

Of course, the answer to this question depends on the model of com- 
putation. Here we assume that processors communicate by sending messages 
over links in a network. Message delivery is guaranteed, but processors can 
neither control nor observe the amount of time it takes messages to be 
delivered along a given link. All they know are lower and upper bounds on 
these message delivery times. Each processor has its own local clock, but 
there is no universal clock available to the processors. For the moment, we 
will also assume that each processor's local clock runs at the rate of real time, 
and that there are no faulty processors. 

The (essential temporal) imprecision-the degree of simultaneity that can 
be guaranteed-is a fundamental property of a communication network. 

"Presented at the Symposium on Complexity of Approximately Solved Problems, April 17, 
1985. 

A preliminary version of this paper appears in the Proceedings of the 17th Annual ACM 
Symposium on Theory of Computing. 

170 
0885-064x185 $3.00 
Copyright 8 1985 by Academic Press, Inc. 
All rights of reproduction In any form reserved. 



OPTIMAL PRECISION WITH UNCERTAINTY 171 

Clearly it is a function of the network topology and the uncertainty in message 
delivery time (i.e., the difference between the upper and lower bounds) 
between the processors and the topology of the network. General lower and 
upper bounds on imprecision are given by Dolev et al. (1984). Tight bounds 
were heretofore known in only one special case: that of a completely con- 
nected network with clocks running at the rate of real time and an uncertainty 
of E over all links. Lundelius and Lynch (1984b) show that in this case the 
imprecision is precisely A = ((n - l ) / n ) ~ .  They also present a simple algo- 
rithm to synchronize clocks to within A,  showing this degree of simultaneity 
is achievable. 

In this paper we present an algorithm to achieve optimal precision in 
arbitrary networks. We can view the processors as playing a game against an 
adversary ("nature" or "the system"): the processors would like to perform a 
particular action as closely together in real time as possible, while the adver- 
sary tries to prevent this by appropriately choosing the initial difference 
between the processors' clocks and the message transmission time for each 
message, subject to the given upper and lower bounds. We give a technique 
that guarantees that the worst-case difference between when the first and last 
processors perform the action is optimal given the choices made by the 
adversary. Of course, if the adversary in turn makes optimal choices, this 
difference is precisely the imprecision of the network. The technique involves 
the solution of shortest path and related network optimization problems, and 
is easily implementable in polynomial time. 

Of course, questions about imprecision are closely related to questions 
about how tightly one can synchronize clocks (cf. the clock synchronization 
algorithms of Lamport and Meilliar-Smith, 1984; Halpern et al., 1984; Lun- 
delius and Lynch, 1984a). Certainly if we can completely synchronize clocks 
then we can achieve simultaneity (every processor flips the bit when its clock 
reads 11 AM); conversely, if we can achieve simultaneity (and all clocks run 
at the same rate), then we can completely synchronize clocks (all clocks are 
set to 11 AM when they flip the bit). Indeed, if clocks are guaranteed to run 
at the rate of real time and clocks can only be adjusted a bounded number of 
times, then the imprecision of the network is easily seen to be equal to the 
tightness of synchronization achievable (this point is discussed in more detail 
in Section 2). Of course, in practice, a processor's physical clock does drift 
away from real time; clock synchronization algorithms are used to syn- 
chronize a processor's logical clock. As pointed out by Dolev et al. (1984), 
if logical clocks are constrained to run within a linear envelope of real time, 
then lower bounds on imprecision immediately give lower bounds on the 
degree of syrlchronization that can be achieved by a clock synchronization 
algorithm. 

The rest of this paper is organized as follows. The model is formally 
introduced in Section 2. In Section 3 we give some insight into the difficulty 



172 HALPERN, MEGIDDO, AND MUNSHI 

of the problem by means of some simple examples. In particular we show that 
in a three-processor network where the uncertainty in transmission times 
between pairs of processors is a,  b, and c, with c 2 max(a, b), the im- 
precision is exactly max(i(a + b),  ic). We also show how the "many- 
scenarios" techniques of Dolev et al. (1984), and Lundelius and Lynch 
(1984b) can be generalized to prove the lower bound. In Section 4 we prove 
our main result, presenting the strategy that guarantees that the processors 
achieve the optimal degree of simultaneity, given the adversary's moves. In 
Section 5 we show that the processors can do no better using probabilistic 
algorithms than they can by using deterministic algorithms. Indeed, we show 
that there is a probabilistic strategy that nature can follow such that for any 
probabilistic strategy the processors follow, the expected precision attained 
by the processors is no better than the optimal precision attainable by a 
deterministic strategy. In Section 6, we reduce the problem of computing the 
imprecision of an arbitrary (connected) network to that of computing the 
imprecision of a completely connected network where the lower bound on 
message transmission time is 0. We also show, somewhat surprisingly, that 
the imprecision in a directed network is the same as the imprecision in an 
undirected network where the uncertainty in transmission time of messages 
between processors p and q is the minimum of the uncertainty in transmission 
time of messages betweenp and q and between q andp. In Section 7 we show 
by a simple trick that in a precise sense fault tolerance results in no loss of 
precision and conclude in Section 8 with a number of open problems. 

The model presented here is essentially that of Dolev et al. (1984), slightly 
generalized to allow one-way communication. We view a communication 
network as a directed graph, where nodes in the graph represent processors 
while edges represent communication links. We assume that the graph is 
strongly connected (for all nodes p and q, there is some path from p to q), but 
not necessarily completely connected. Associated with the edge from p to q 
are two numbers H (p ,  q) and L (p ,  q) that represent upper and lower bounds 
on the time to transmit (and process) a message from p to q. More formally 
then, we take a communication network C to be a triple (G, H,  L), where 
G = (V,  E) is a directed graph, and H, L are functions from E to the non- 
negative reals such that H ( p ,  q) 2 L(p,  q). 

We assume the existence of an external time frame, not directly observ- 
able. Each processor has a physical clock (or duration timer) D which can be 
viewed as a real-valued function of real time. Like Lundelius and Lynch 
(1984b), we will assume that physical clocks run at the rate of real time; thus 
D (t) = t + D (0) for all times t .  

We assume that each processor has a local variable TAR (for time adjust- 



OPTIMAL PRECISION WITH UNCERTAINTY 173 

ment register) which provides a correction to its physical clock to give the 
logical clock reading. We can also view TAR as a real-valued function of real 
time. We define C (t) = D (t) + TAR(t). Thus we can think of C (t) as repre- 
senting a processor's logical clock time at real time t. 

A processor p's message history at real time t consists of a finite sequence 
of tuples of the form (q, m, T y) ,  where q is a processor, m is a message, T 
is a time on p's physical clock, and y is either received or sent. Intuitively, 
at real time t, there is one such tuple for each message that p has received or 
sent up to, but not including, time t, where q indicates that the message was 
received from or sent to processor q, m is the value of the message, and T 
indicates that D, (t ') = T at the real time t ' (< t) when the message arrived 
or was sent. A deterministic algorithm is one where the actions performed by 
a processor at a given real time t (i.e., the messages it sends and the updates 
that it makes to internal variables like TAR) depend only on its physical clock 
reading D(t) and its message history at time t (and thus only on messages 
received up to, but not including, time t). For now we restrict our attention 
to deterministic algorithms. In Section 5 we extend our results to probabilistic 
algorithms, where a processor's actions may also depend on the result of 
random coin tosses. 

We next define the notion of imprecision. For ease of exposition, we 
assume that each processor has a special register that initially contains the 
value 0.  At some point the value must be changed to 1. We want to compute 
how tightly this can be guaranteed to be done (in terms of real time). Of 
course, one way of doing this is to synchronize logical clocks as tightly as 
possible, and then change the value in the register at a particular clock 
reading. Note that if physical clocks run at the rate of real time, then the 
precision is exactly the optimal clock synchronization achievable; many of 
our proofs make use of this fact. In general, we define the essential temporal 
imprecision inherent in running algorithm d in network C, A,,,, as the 
worst-case difference in the real times that two processors change the value 
of their special register, when all processors in C run algorithm d .  The 
essential temporal imprecision, or just imprecision, A,, in a network C is the 
minimum of A,, , over all algorithms Q. 

More formally, define a scenario to be a specification of the algorithm run 
by each processor, the function describing the physical clock of each pro- 
cessor, and a choice of message transmission time for each message (subject 
to the constraints given). A run of an algorithm d in a communication 
network C is just a scenario in which all the processors in C run d .  Following 
Dolev et al. (1 984), given an algorithm d ,  a communication network C, two 
processors p and p ' in C, and a run r of d we define 

A,, ,(p, p ' , r) = the difference between the real times when p andp ' change 
the value of their special register in run r of d ,  



174 HALPERN, MEGIDDO, AND MUNSHI 

Thus Ac,d(r) is the the closest real-time synchronization that can be guar- 
anteed any pair of processors in run r of algorithm d, AcSd is the inherent 
imprecision of algorithm d in network C (the worst-case real-time difference 
between when two processors in C perform a given action over all runs of d ), 
and Ac is the imprecision in C: the tightest coordination in C that can be 
guaranteed by arty algorithm. 

As we mentioned in the Introduction, there is a close relationship between 
the imprecision in a network and how tightly logical clocks can be syn- 
chronized. Suppose we have an algorithm that can compute a value of TAR 
for each processor that guarantees that processors' logical clocks are syn- 
chronized to within a specified value, say e ,  and suppose that processors' 
physical clocks run at the rate of real time (so that once we get logical clocks 
to within E, they stay within E). Then we can clearly use the processors' 
logical clocks to decide when to change the value of the special register, so 
the imprecision is I E .  Conversely, if we have an algorithm that achieves an 
imprecision of E ,  then we can set all logical clocks to some agreed-upon 
value, say 0, at the point when the value of the special register is changed (so 
that if this happens at real time t  for processor p ,  processor p sets 
TAR, (t) = -D, (tj ,  thus making C, (t) = 0). If we assume that physical 
clocks run at the rate of real time, then this algorithm guarantees that logical 
clocks stay synchronized to within E .  

We make use of this connection between clock synchronization and im- 
precision throughout this paper. In particular, we give algorithms that com- 
pute a value of 'TAR for each processor such that logical clocks are syn- 
chronized to within some predetermined E. We then use these logical clocks 
in our algorithm for optimal precisioc. 

However, note that in practical applications we cannot assume that physical 
clocks run at the rate of real time. Thus, in practical clock synchronization 
algorithms (Lamport and Melliar-Smith, 1984; Halpern et al.,  1984; Lun- 
delius and Lynch, 1984a), logical clocks are periodically resynchronized 
(i.e., TAR is adjusted periodically, rather than just a bounded number of 
times). And from the fact that logical clocks differ by at most E at any given 
real time, it does not immediately follow that by using logical clocks we can 
guarantee that the imprecision is less that E .  Although at any real time logical 
clocks may be no more than E apart, it may still be the case that the real times 
when logical clocks read a given time, say 11 PM, are arbitrarily far apart.' 

' Actually, the clock synchronization algorithms of Lamport and Melliar-Smith (1984), 
Halpem et al. (1984), and Lundelius and Lynch (1984a) also guarantee upper bounds on how 



OPTIMAL PRECISION WITH UNCERTAINTY 175 

It is exactly because of this that we consider the question of imprecision in 
a network to be more fundamental than the question of how tightly clocks can 
be synchronized. Ultimately, we want to coordinate real-time actions, not 
synchronize logical clocks (see Dolev et al. (1984) for further discussion on 
this point). 

In order to give the reader insight into the difficulties involved in computing 
Ac we consider some examples in this section. 

The first example is a network C2 consisting of two processorsp and q, with 
L(p ,  q) = L(q, p) = 0 and H ( p ,  q) = H(q, p) = a.  Here we have 

Proof. For the upper bound we proceed as follows. Processor p sends a 
message to q; q changes the value of the special register when it gets the 
message, whilep does so $ a  after the message is sent. It is now easy to check 
that these values are changed within ;a  of each other. 

Results of both Dolev et al. (1984) and Lundelius and Lynch (1984b) show 
that this in fact is a tight bound. We briefly review details of the lower bound 
argument here. Fix an algorithm d. We consider two runs of d. In the first, 
the processors' physical clocks are identical (i.e., D, (t) = D, (t)), messages 
from p to q take time a ,  while messages from q top  take 0 time. In the second, 
processor q's physical clock is a  ahead of p's (D, (t) = D, (t) + a),  messages 
from p to q take 0, while messages from q to p take a.  It is now straight- 
forward to check that these two runs are indistinguishable from the point of 
view of both p and q; i.e., they both get the same messages at the same time 
on their physical clocks in both runs. (Although the details here are straight- 
forward, a careful proof is not completely trivial; see Lemma 4.1 below for 
a generalization of this result.) 

Since the runs are indistinguishable, the processors must perform a given 
action at the same time on their physical clocks in both runs. Suppose p 
changes the value of its special register at time T1 on its physical clock, while 
q changes the value at time T2 on its physical clock. Let tl and t2 (resp. ul and 
uJ be the real times that the physical clocks of p and q read T1 and T2, 
respectively, in the first (resp. second) run. By definition, Ac,,d L 

max(t2 - tl, tl - t2, u2 - UI ,  u1 - u2)  Since the processors' physical clocks 
are identical in the first run, while q's physical clock is a  ahead of p's in the 
second run, we must have t2 - tl = a + u2 - ul. Thus if (ul - uz) 5 l a ,  
then (t2 - tl) L l a .  The result is now immediate. 

far apart the real times are that logical clocks read a given time T, so that logical clocks can be 
used for real-time coordination. However, it is still not the case that the tightness of syn- 
chronization is equal to the imprecision. 



176 HALPERN, MEGIDDO, AND MUNSHI 

Although we have assumed L(p ,  q) = 0 here, an easy extension of the 
argument above can be used to show that the imprecision in the general 
two-processor case is i U ,  where U = min(H(p, q) - L(p ,  q), H(q, p) - 
L(q, p)). In fact, as we show in Section 6, the imprecision always depends 
only on the uncertainty, as long as physical clocks run at the rate of real time. 

We can extend the arguments of Proposition 3. I to get tight bounds on the 
imprecision for tree-like networks and general upper bounds for the im- 
precision of all networks. For simplicity, we will limit the discussion below 
to special networks where the lower bound on transmission time over any link 
is 0 (i.e., L (p ,  q )  = 0 for all edges (p ,  q)), and the network is symmetric in 
that H ( p ,  q) = H(q,  p) for all edges (p ,  q). (We remark that the discussion 
in Section 6 below shows that these restrictions can be made without loss of 
generality. More precisely, we show in Section 6 that given any commu- 
nication network we can always find, in linear time, a special network with 
the same imprecision.) 

Recall the standard notions of diameter and radius from graph theory: the 
diameter of a graph is the distance between the two nodes that are furthest 
apart, while the radius is the minimum over over all nodes p of the maximum 
(over all nodes q) of the distance from p to q. Given a special network 
C = (G, H ,  L), we define its diameter (resp. radius) with respect to the 
uncertainty to be the diameter (resp. radius) of the graph G where the distance 
between adjacent nodes p and q is H ( p ,  q). 

PROPOSITION 3.2. Suppose CT = (G, H,  L) is a special tree-like net- 
work. Then ACT = ; D ,  where D is the diameter of CT with respect to the 
uncertainty. 

Proof. The proof is easy. First, a straightforward extension of the lower 
bound argument in Proposition 3.1 gives us a lower bound of ;D.  For the 
upper bound, we give an algorithm to compute a value of TAR for each 
processor that guarantees that all logical clocks are synchronized to within 
1 ? D .  As we remarked in Section 2, this suffices to show that Ac 5 +D.  For 
this proof, we assume all clocks mentioned are logical clocks, not physical 
clocks. 

If there are two nodes, we can synchronize the clocks of the two pro- 
cessors, say p and q, by essentially the same process as described in Propo- 
sition 3.1: p sends q a time-stamped message, say with time 7: When q 
receives the message, it sets its clock to T + $ D .  Sincep's clock reads some 
time between T and T + D when q receives the message, we are done. 

In the general case, consider any longest path P in the tree. Let (p,  q) be 
a link on P that contains the midpoint of P. By removing the link (p ,  q) from 
the tree we are left with two tree-like subnetworks: C,, containingp, and C,, 
containing q. Let L1, L2, and L3 denote the lengths of the three portions of P 
corresponding to C,, the link (p ,  q ) ,  and C,, respectively. Thus L1 + L2 + 
L3 = D ,  L1 5 413, and L3 5 ;D.  



OPTIMAL PRECISION WITH UNCERTAINTY 177 

It is easy to see that the path from p to any node of the subnetwork Cp has 
length at most L1. Thus, by an easy extension of the arrangement presented 
for the case of two processors, we can show that the clocks of all processors 
in Cp can be synchronized to within of that of p .  Similarly, the clocks of 
all processors in C, can be synchronized to within iL3 of that of q. Thus, we 
start by p and q synchronizing their clocks to within 4~~ using the simple 
algorithm described above. We then synchronize the clocks of all processors 
in Cp to within 4~~ of p's clock, and the clocks of processors in C, to within 
;L3 of that of q.  It is easy to see that all the clocks of processors in Cp are 
within at most L1 5 ;D of each other, the clocks of processors in C, are 
within at most L3 5 $D of each other, and it is also easy to check that the 
clock of a processor in C, is at most 4 (L1 + L2 + L3) = ; D of a processor 
in C,. This observation completes the proof. rn 

PROPOSITION 3.3. For any special communication network C, h c  5 R ,  
where R is the radius of C with respect to the uncertainty. 

Proof. Let po be the "center" of C, i.e., the processor such that the 
maximum distance fromp, to q in the graph with edge weights H ( p ,  q) is R. 
By arguments similar to those used in Proposition 3.2, we can easily show 
that the logical clock of every processor can be synchronized to within 4 R of 
that of po. Thus, all logical clocks in the network can be synchronized to 
within R. rn 

We next consider a fully connected communication network C3 consisting 
of three processors p l ,  p2 and p3. Assume L (pi,  pj) = 0, H (pl ,  p2) = 

H(pz, PI) = a ,  H(p2, ~ 3 )  = H(p3, ~ 2 )  = b, and H ( P I ,  p3) = H(p3, PI )  = 
c ,  where c 2 max(a, b) and c 5 a + b (see Fig. 1). 

PROPOSITION 3.4. &, = max(f(a + b), jc). 

Proof. The fact that A,, r $ c  follows immediately from the arguments 
used in Proposition 3.1. A "three-scenario" argument along similar lines can 
be used to show that A,, r f (a + b). We omit details here. Thus 
A,, r max(f(a + b), ic).  



178 HALPERN, MEGIDDO, AND MUNSHI 

For the upper bound, we give an algorithm that synchronizes (logical) 
clocks to within max (4 (a + b), I c). (We again assume that all clocks men- 
tioned throughout this proof are logical clocks, rather than physical clocks.) 

The first step is to synchronize the clocks ofp, andp3 so that they are within 
1 zc of each other. This can be done easily as described in the proof of 
Proposition 3.2 above. 

Processors p l  and p3 next send time-stamped messages to p2. For ease of 
exposition, let us assume that they are sent at the same time T on their clocks. 
Suppose that processor p2 receives pi's message at time TI and p3's message 
at time T3 on its (p2's) clock. p2 knows that pi's clock reads T at some time 
in the interval [TI - a ,  TI] on its (p2's) clock, and that p3's clock reads Tat  
some time in the interval [T3 - b, T3]. Suppose TI - a 5 T3 - b and 
TI 5 T3 (see Fig. 2); a completely analogous argument works in the other 
three cases. Note that if p2 sets its clock to read T at the midpoint of the 
interval [TI - a ,  T3], it would be at most (T3 - TI + a) away from both p l  
and p3. It may be able to do even better by telling p3 to set its clock back by 
an amount k. In order to reduce the total span of the intervals where pi's and 
p2's clocks read I: k must be chosen so that 0 5 k 5 min(T3 - TI, 
T3 - b - (TI -- a)) (there is no advantage in shifting any more than the 
amount needed to make one interval completely contain the other). After 
shifting by k, p3's clock will read T at some point in the interval [T3 - b - k, 
T3 - k]. Then by setting its clock so that it reads T at the midpoint of the 
interval [TI - a,T3 - k], p2  can guarantee that its clock differs from those of 
p l  and p3 by at most 1 (T3 - k - TI + a). 

Shifting p3's clock back can also increase the difference in the readings of 
p,'s and p3's clocks, but this is only possible if initially pi's clock read T 
earlier (in real time) than that of p3. But we know that p,'s clock could have 
reat T at most e earlier than that of p3, where e = min (TI - (T3 - b), 4 c), 
so after shifting by k, the clocks of p l  and p3 differ by at most 
max (TI - T3 + b + k, I c - k) (the second term comes from the possibility 
that p3's clock read T earlier than that of pl).  Thus, p2 should choose k to 
minimize 

F(k) = m a x ( i ( ~ ~  - k -  TI + a ) ,  TI - T3 + b + k , $ c  - k), 

E pl reads T 
in this interval 1 

shift k 
t-- 

p3 reads T 
in this interval I 



OPTIMAL PRECISION WITH UNCERTAINTY 179 

subject to the constraint that 0 5 k 5 min (T3 - b - TI + a ,  T3 - TI). It is 
now easy to check that k can always be chosen so that F(k) 5 

max(i(a + b), Ic). Indeed, if we set k = T3 - T, + i ( a  - 2b) (provided 
this satisfies the constraints), then F(k) = max(i (a + b), i c  - k). If this 
choice of k does not satisfy the constraints, then we leave it to the reader to 
check that setting k to one of 0 or min(T3 - b - TI + a ,  T3 - TI) will work. 
Since Ac, 5 min,(F (k)), we are done. 

Proposition 3.4 already suggests some of the difficulties involved in giving 
an algorithm for attaining Ac for an arbitrary communication network C .  It 
also illustrates two of the main ideas used in our optimal algorithm: com- 
paring the time on a time-stamped message with local time, and choosing a 
shift that will minimize a certain expression. These ideas are explored in more 
detail in the next section. 

4. AN ALGORITHM FOR ATTAINING OPTIMAL PRECISION 

We now develop a general framework for solving the problem of achieving 
optimal precision. As mentioned in Section 2, it suffices that each processor 
be able to compute a value for its local variable TAR in such a way as to 
synchronize logical clocks as tightly as possible. Thus the processors' aim is 
to estimate as closely as possible the difference in readings between their 
physical clocks. 

We can view the process as a game, where "nature" plays against the 
processors. The game has three phases which can roughly be described as 
follows. In the first phase, nature chooses the readings for each processor's 
physical clock (since we assume that processors' physical clocks run at the 
rate of real time, it suffices for nature to choose an initial setting Di (0) for each 
processor pi),  and a message transmission time for each message, subject to 
the constraint that messages from pi to pj must take between L(pi ,  pj) and 
H(pi ,  pj). The processors do not know the choices made by nature, but they 
can observe the difference between the time a message is sent (on the sending 
processor's physical clock) and the time it is received (on the receiving 
processor's physical clock). Suppose pi  sends a message to p,, time stamped 
T, which is received by p, at time T'  on its (pj's) clock. Let 6,. be the actual 
transmission time of this message. Then it is easy to see that T '  - 
T = D,(O) - Di(0) + SU. Since L(pi ,  pj) 5 Sij 5 H(pi, pj), it follows that 

Thus, in phase 2, processors send messages to each other and then use the 
information acquired by this message exchange to try to compute the shifts 
that will bring their logical clocks optimally close together. In phase 3, nature 
can revise its choices of initial physical clock readings so as to maximize the 
largest difference between the clock readings of processors; i.e., if SHIFTi is 



180 HALPERN, MEGIDDO, AND MUNSHI 

the final value of pi's variable TAR as chosen in the second phase, nature 
wants to choose INIT;, i = 1, . . . , n, initial readings for the processors' 
clocks, so as to maximize: 

maxi (INIT, + SHIFT;) - minj(INITj + SHIFTj). 

Of course, nature is constrained to choose the values of the 1NIT;'s in a way 
that is consistent with the information received by the processors (i.e., so that 
the resulting run is indistinguishable from that initially chosen). 

Keeping these ideas in mind, consider the following "pseudoalgorithm" for 
achieving optimal precision in a network C = (G, H, L) consisting of pro- 
cessorspl, . . . , p,. (We call it a pseudoalgorithm since it is not yet clear how 
to implement step 4.) 

1. Each processor sends all its neighbors a message time stamped with 
its current (physical) clock reading. 

2. If pi receives a message from a neighbor pj time stamped T at time 
T'  on its (physical) clock, pi computes rij = T' - 7: 

3. The values Ti,- are all sent to one processor, say p l .  
4. Processor p l  computes SHIFT,, . . . , SHIFT, so as to 

Minimize 

maxlN1~, , . , , INITn(maxi (INIT; + SHIFT;) - mini ( 1 ~ 1 ~ ~  + S H I T ) )  (*) 

subject to L(pi ,  pj) - TY 5 INITi - INIT, I H(p;, pi) - r i j .  

5.  p l  tells pj the value SHIFT computed in step 4; p, then sets TAR, : = 
S H I P .  

We now show that this pseudoalgorithm is optimal; we then show how to 
implement it in polynomial time. In fact, the pseudoalgorithm is optimal in 
a strong sense: it gives the tightest precision possible over all runs consistent 
with nature's choice of initial clock readings and message transmission times. 
Intuitively this is because the pseudoalgorithm makes optimal use of all the 
information present in the system. 

To make this precise, we first need some definitions. We define a run r to 
be standard if for all i, j, there is a constant 6,. such that all messages from 
pj to pj take time Sij. Given a run r ,  let INITi(r) be the initial reading of pi's 
physical clock in run r ,  and let S,, (r) be the message transmission time of the 
first message from pi to pj if there is such a message (otherwise SY(r) is 
undefined). Given a communication network C ,  two runs r and r '  in C are 
said to be consistent if for all i j  whenever Sij(r) and 6,. (r ') are both defined, 
we have INIT, (r) - INIT, (r) + 6, (r) = INIT, (r ') - INIT, (r ') + 6ij (r ') . In 
case there is no first message from pi to pj in run r ,  but there is one in run r ', 
we add the technical condition that INIT,(r) - INITi(r) 5 INITj(r ') - 
INITi (r ') + (r '); there is a symmetric condition in case (r) is defined but 



OPTIMAL PRECISION WITH UNCERTAINTY 181 

6ii(r') is not. As we have already observed, if r is a run of an algorithm that 
implements the pseudoalgorithm described above, the quantity TY computed 
in step 2 is equal to INITj(r) - INITi (r) + Sii(r). Thus, in any imple- 
mentation of the pseudoalgorithm, the same shifts are computed for all con- 
sistent runs. 

The following lemma generalizes some of the key ideas of the proof of the 
lower bound of Proposition 3.1. 

LEMMA 4.1. Let C be a communication network and d be any algorithm. 
If r and r ' are two consistent standard runs of dl, then r and r ' are indistin- 
guishable in that all processors receive the same messages at  the same time 
on their physical clocks in both runs. In particular, Ac, d(r) = Ac,d(r '). 

Proof. Suppose not. We then derive a contradiction by considering the 
first time that r and r ' differ. More precisely, let T, be the first time on pi's 
physical clock that pi's message history differs in r and r ' ;  we take T, = w 

if pi has the same message history in both r and r '. (Note that if pi's message 
history differs in r and r ' , there will be a first message that causes a discrep- 
ancy, by our assumption that there are only finitely many messages in a 
processor's message history.) If T; < 03, let t; be the real time such that 
Di(ti) = Ti in run r. Suppose j is such that t, is minimal. Thus t, is the first 
real time (as measured in run r) where there is a discrepancy in the message 
history of some processor. There must be a tuple (pk,  m, T,, y )  in pj's mes- 
sage history in run r which is not in pj's message history in run r ' ,  or there 
is such a tuple in pj's message history in r' which is not inpj7s message history 
in r.  This tuple cannot represent a message that was sent by p,, since the 
messages sent only depend on the prior message history, which is the same 
forp, in both runs. Thus, this must be a message that was received from pk. 
Suppose the message was received in r, but not in r ' , and suppose pk sent the 
message m to pj at time T '  on its physical clock in run r. There are now two 
subcases to consider: (a) pk also sends the message m to pj at time T'  on its 
physical clock in run r ' ,  or (b) it does not. Suppose subcase (a) holds, and 
pi receives the message m at time U in run r ' .  Since r is a standard run, all 
messages from pk to pj take Skj(r), SO we easily get T, - T' = INIT, (r) - 
INITk(r) + Skj(r). Similarly, U - T' = INITj(r ') - INITk(r ') + Skj (r '). 
Since r and r ' are consistent, we immediately get U - T ' = T, - T ' . Thus 
U = T,, contradicting the assumption that there is a discrepancy between p,'s 
message histories in runs r and r '  at time T,. 

Now consider subcase (b). Let t '  be the real time that pk's physical clock 
reads T'  in run r (thus t ' is the real time that pk sends the message m to pj in 
run r). Note t, - t ' = Skj (r), SO t ' 5 t,. Since pk does not send the message 
in run r ' when its clock reads T '  , there must be a discrepancy in the message 
histories of pk in the two runs before pk's physical clock reads T' (since the 
messages that pk sends at clock time T' depend on message history up to, but 
not including, T'). Thus tk < t '  5 t,, contradicting the choice of t,. 



182 HALPERN , MEGIDDO, AND MUNSHI 

Finally, suppose (pk, m, Tj) is a tuple in pj's message history in run r but 
not in r ' .  Again there are two subcases. The argument in the first subcase is 
identical to that above, while for subcase (b), if again we take T' to be the 
time on p i s  physical clock in run r ' when it sent the message m to pj, from 
the fact that r and r ' are consistent, we get that tj - t ' = akj (r), if &,(r) is 
defined. If not, it is easy to check that the technical condition added to the 
definition of consistency ensures that we still have tj - t '  = 
(Tj - mIT,(r)) - (TI - mITk(r)) = (INIT, (r ') - INITk(r ') + &, (r ')) - 
(INIT,(r) - INITk(r)) z 0. Now we can complete the argument just as 
above. 

THEOREM 4.2. Let C be a communication network and 93 be an imple- 
mentation of the pseudoalgorithm above. Then Ac,% = Ac. Moreover, i f r  is 
a run of 93, and d is any other algorithm, then 

Ac,%(r) 5 maxs{Ac,&) I s is consistent with r}. ( t )  

Proof. It suffices to prove (t). For then we have, for any algorithm d ,  

I max,(max,{Ac,&) I s is consistent with r)) (by (t)) 

Thus Ac = mind{Ac,ga) = Ac,a. 
In order to prove (t), let r be a run of 93, and suppose the values 7, are the 

ones computed in step 2 of 93 in run r. Suppose INITI, . . . , INIT, satisfy 
the constraint of (a). Let s be a standard run of d such that INITi (s) = INIT,, 
i = 1, . . . , n, and aV(s) = INITj - INITi + T~ (provided there are mes- 
sages from pi  to pj in s). By the constraint of (*), it follows that L (pi, pj) 5 

aV(s) 5 H (pi, pj). It is also easy to see that if aij (s) is defined, then 
INITj (r) - INIT; (r) + SV (r) = TV = INITj (s) - INITi (s) + GV (s). If SV (s) is 
not defined, it is also easy to check that the technical condition for consistency 
holds. Thus r and s are consistent. 

Thus, for any choice of INIT,, . . . , INIT, satisfying the constraint of (*), 
there is a standard run s of d consistent with r such that INITi(s) = INIT,, 
i = 1, . . . , n. Let S be the set of all standard runs of d that are consistent 
with r. Note that by Lemma 4.1, all the runs in S are indistinguishable. Let 
SHETI, . . . , SHIJT., be the shifts computed by d in any one run, and 
hence all runs, in S. Thus we have 

maxs{Ac, &(s) I s is a consistent with r} 



OPTIMAL PRECISION WITH UNCERTAINTY 183 

2 m a x ~ ~ ~ , ,  . . . 1~~~ ,{max~(1NIT~  + SHIFT;) - minj(INITj +  SHIFT^) 1 

The result is now immediate. 

We remark that the proof here suggests that nature's best strategy is to use 
standard runs. The intuition behind this is that the least amount of information 
is released in standard runs. Varying the transmission time of messages 
between pi  and pj allows the processors to gain extra information about their 
relative initial time readings, by repeated measurements of T ~ .  Thus in our 
algorithm we only measure the value of 7~ once, on the assumption that nature 
uses its best strategy. 

It now remains to show how to implement step 4 in the pseudoalgorithm. 
For this we need some techniques of linear programming and combinatorial 
optimization. 

First consider "nature's problem" in Phase 3 of the game, namely, choos- 
ing INIT 1, . . . , INIT,, given SHIFT . . . , SHIFT, and { T ~  ( pi and pj are 
neighbors) so as to 

Maximize (maxi(INITi + SHIFTi) - minj(INIT, + SHIFTj)) 
I**) 

This problem can be solved as follows. For every pair of nodes (pk, pl), let 
Dkl denote the maximum of INITk - INIT/ that can be obtained by choosing 
INITi7s subject to the above constraints. Thus Dkl is obtained by choosing 
NIT1, . . . , INIT, so as to 

Maximize INITk - INIT! 

Since the constraint L (pi, pj) - rij 5 INIT; - INITj 5 H (pi,  pj) - rij is 
equivalent to 7ji - H(pj, pi)  5 INITj - INIT; 5 7ji - L(pj, pi) we can 
reformulate the preceding problem to choosing INITI, . . . , INIT, so as to 

Maximize INITk - INIT/ 

subject to INITi - INITj 5 min (H (pi, pj) - rij, 7ji - L (pj, pi)). 

The latter problem is the dual of the shortest path problem from pk to pl, 
relative to the distances dij = min(H(pi, pj) - TO, 7ji - L(pj, pi)) (see, for 
example, Lawler (1976) for a general discussion of duality and problems of 
this nature). Thus, Dkl is the length of the shortest path from pk to pi relative 
to the dij's. 



184 HALPERN, MEGIDDO, AND MUNSHI 

Now, consider the processors' problem: solving (*) given the T;~'s. In the 
worst case the maximum difference between the logical clocks of any two 
processors will be equal to the maximum over all pairs (pk, pl)  of the quantity 
D ~ I  + SHIFTk - SHIFTI. Thus (*) reduces to finding SHIFT,, . . . , SHIET, 
so as to 

Minimize maxkql(Dkl + SHIFTk - SHIFT!). 

This is equivalent to finding SHIFT,, . . . , SHIFT, so as to 

Minimize A 

subject to SHIFTk - SHIFTI I A - Dkl. 

We now provide a characterization of the solution of this problem. Con- 
sider any set of values for A and the SHIFTi's. Let i , ,  . . . , i, be a circuit 
(i.e., i ,  = i ,) .  If we take the sum of inequalities associated with edges around 
this circuit, then the left-hand side (X ;: ',(SHIFT,+ - SHIFT,)) is identically 
zero and hence the total weight of A - Dkl around the circuit is nonnegative. 
Let A * denote the minimum value of A. Consider any circuit K. If K has m 
edges then A* is greater than or equal to the total (Dkl)-weight around K, 
divided by m. We have thus established that A * is greater than or equal to the 
maximum (over all directed circuits) of the average (Dkl)-weight per edge 
around the circuit. We now use a duality argument to show that A * actually 
equals the maximum average weight per edge along a circuit. The dual linear 
programming problem that determines A * is the following: 

Maximize 2 Duxij 
ij 

subject to 2 (xu - xji) = 0 for all i 
j 

A matrix (xij) satisfying the first and third constraints above (Xj(xij - 
xji) = 0 and xij 2 0) is usually called in the literature a circulation. If in 
addition it satisfies the second constraint (Xijxij = 1) then we call it a normal 
circulation. If we interpret xij as the flow in the link from i to j, then the first 
constraint implies conservation of flow at each node. It is well known that any 
circulation can be represented as a sum of simple circuit circulations (cf. 
Lawler, 1976), where a simple circuit circulation is one in which the links ij 
for which xij > 0 form a simple circuit. Thus a normal circuit circulation can 
be represented as a convex combination of normal simple circuit circulations. 



OPTIMAL PRECISION WITH UNCERTAINTY 185 

Note that from the first constraint, it follows that all nonzero flows in a simple 
circuit circulation must be equal, so in a normal simple circuit circulation 
where the circuit has length m, the value of the xij around the circuit must be 
l /m. It easily follows that the circulation that maximizes the optimization 
problem is one such normal simple circuit circulation, hence the value of A * 
is the average (Dk,)-weight over some circuit. 

The value of A* as well as a corresponding circuit can be computed in 
0 (n3) time (where n is the number of processors), using an algorithm of Karp 
(1978). It follows that around that circuit the original inequalities are satisfied 
as equalities: SHIFTk - SHIFTl = A* - Dkl. Thus, the SHIFTi's can be 
easily computed around the circuit by setting one of them arbitrarily to zero 
and computing the rest using the above equalities. All the other SHIFTi's can 
be produced by a shortest path computation starting from the node pi for 
which SHIFTi = 0, using the distances A* - Dkl. 

The discussion above leads to the following theorem. 

THEOREM 4.3. Let C = (G, H, L), where G = {p, ,  . . . , p,). Let DV 
denote the length of the shortestpathfiom pi to pj relative to the edge weights 
dV = min(H(pi, pj) - TV, 7jr - L (p,, pi)). Let A denote the maximum circuit 
mean relative to the edge weights Do. Then A is the solution to (*). Moreover, 
the values of SHIFT,, . . . , SHIFT, that give A can be computed in 0 (n3) 
time. 

Putting together Theorems 4.2 and 4.3, we see that we have a polynomial 
time algorithm that guarantees optimal precision in any communication net- 
work. To actually compute the value of Ac, we need to compute nature's 
optimal strategy in phase 1, which is to choose T ~ ' S  in order to 

Maximize m i n s ~ ~ m ~ ,  . . . , SHIFT"  XINIT NIT^, . . . , INIT,, 

(maxi(INITi + SHIFT,) - minj(INITj + SHIFT,))) (t) 
subject to L(p,,  p,) - rij 9 INIT; - INIT, 5 H(pi,  pj) -T~, 

(We remark that we have worded this problem in terms of choosing q , ' ~ ,  
which are not directly observable by nature. However, since rij = 

Dj(0) - Di(0) + SV, we can easily reformulate this problem in terms of 
variables under nature's control. Indeed, it is easy to see that the solution to 
the maximum circuit mean problem is invariant under transformations of the 
form d$ = dV + .rri - q, and from this fact it is not hard to show that 
replacing rV by aV in ($) or (*) results in an equivalent problem.) 

By the discussion above, this amounts to choosing the T ~ ' S  in order to 
maximize the value of A *, the maximum circuit mean (i.e. the maximum 
mean &-weight over all simple circuits). This problem can be solved in 



186 HALPERN, MEGIDDO, AND MUNSHI 

exponential time. To see this, note that there are less than (n + I)! circuits 
in the graph, where n is the number of nodes (i.e., the number of processors). 
Thus it suffices to show that given a circuit, the subproblem of computing T ~ ' S  

so as to maximize the mean &-weight around that circuit can be solved in 
exponential time. We can clearly maximize the mean Dkl-weight around a 
circuit by maximizing the sum of the Dk19s around the circuit. But recall that 
Dkl is obtained by choosing INIT,, . . . , INIT, so as to 

Maximize INITk - INIT, 

subject to L(pi, pj) - T~ 5 INITi - INITj 5 H(pi,  pj) - TV. 

Suppose without loss of generality we are given the circuit (1, 2, . . . , m, I),  
where 2 5 m 5 n (so that node m + 1 is identified with 1). Thus the max- 
imum Dkl sum around the circuit can be found by solving the following linear 
programming problem: Choose INIT:, i = 1, . . . , n, k = 1, . . . , m, and 
TV SO as to 

rn 

Maximize 2 INITt+, - INIT! 
k=  l 

subject to L(pi, pj) - TU 5 INIT: - INITj 5 H(pi, pj) - T ~ ,  

Of course, this linear programming problem can be solved in polynomial time 
using well-known techniques, but to prove that our problem can be solved in 
exponential time all we need is that the linear programming problem can be 
solved in exponential time. 

Since the discussion prior to Theorem 4.3 shows that Ac is in fact the 
maximum circuit mean over all choices of rV, in the process of solving 
nature's problem, we also compute the value of Ac. Thus we have: 

THEOREM 4.4. Let C = (G, H, L), where G = {pl ,  . . . , p,) .  Then a 
solution to ($) and the value of Ac can be found in time 0 (2'"'"9(")), for some 
constant c > 0 .  

It also follows from the discussion above that the following problem is in 
NP: given a communication network C with rational data and a rational 
number A, decide if Ac 2 A. To solve this problem, we simply have to guess 
a circuit and check that the mean over that circuit can be made greater than 
or equal to A by appropriately choosing the ~ ~ ' s .  Note that here we rely only 
on the fact that the linear programming problem is in NP and not on the 
existence of polynomial-time algorithms for solving it. We conjecture that in 
fact our problem ($) is NP complete, but have not yet proved this. 



OPTIMAL PRECISION WITH UNCERTAINTY 187 

When decisions have to be made under uncertainty one can usually do 
better by randomizing. In the context of our problem, the question is whether 
the processors can do any better by using a probabilistic algorithm for choos- 
ing their shifts, given all the information they have collected. In fact, we show 
that they cannot. 

We sketch the semantics of probabilistic algorithms here, without going 
into details. An augmented run of a probabilistic algorithm d is a pair (r, c), 
where r is a run of d (i.e., a specification of physical clock readings for each 
processor, and message transmission times for each message) and c is a 
sequence of outcomes of coin tosses for each processor. Note that the behav- 
ior of a processor is completely specified in an augmented run of a proba- 
bilistic algorithm d. 

By analogy to the definitions of Section 2, we define AC,,(p, p ' ,  r ,  C) to 
be the difference between the real times when p and p ' change the value of 
their special register, in the augmented run of probabilistic algorithm d. We 
take Ac,,(r, c) = max,,,~{Ac,,(p, p ' ,  r ,  c)} and LC,.&) to be the expected 
value of C) over all coin tosses c (note that this generalizes the 
definition given for deterministic d, where we can view the algorithm's 
behavior as independent of c). We can then define Ac,, = max,, Ac,,(r), 
just as before. 

We will show that A , ,  r A,,,, where 93 is an implementation of the 
optimal algorithm of Section 4. Thus, the mean imprecision inherent in a 
probabilistic algorithm is at least as great as that of the optimal deterministic 
algorithm, in fact, we actually prove a stronger result. 

Given a communication network C and an algorithm sB, there is some run 
of d where the maximum difference between when two processors change 
the value of their special register is at least A,. But this run could a priori 
depend in a complicated way on d. We now show that there is a set of m 
scenarios, say rl, . . . , r,,, (where m is the number of nodes in the circuit with 
the maximum circuit mean constructed in the proof of Theorem 4.3), such 
that for any (deterministic or probabilistic) algorithm d, the average value of 
Ac,,(ri), i = 1, . . . , m, is at least Ac, and hence Ac,,(ri) r Ac for some 
i .  (We remark that for the optimal algorithm 93, it turns out that Ac,%(ri) = 

Ac for all these m scenarios; in fact, one way of looking at 93 is that it is 
defined to have precisely this property.) Note that once we have proved this 
claim, it will follow that nature has a probabilistic strategy that "neutralizes" 
any algorithm the processors may use. It simply chooses one of these sce- 
narios at random, with equal probability. In terms of the three-phase game 
discussed at the beginning of Section 4, this means that nature can pass up its 
move at the third phase just by using this randomized strategy at phase 1. 

To understand the intuition behind this, let us reconsider the two-processor 
network C discussed in Proposition 3.1, where the uncertainty for messages 



188 HALPERN, MEGIDDO, AND MUNSHI 

between p and q is a. Recall the two scenarios described in the proof of 
Proposition 3.1: (1) D, (0) = D, (0), a,, = a ,  6, = 0; and (2) D, (0) = 
D,(O) + a ,  a,, = 0, 6, = a. For any deterministic algorithm d, the runs 
corresponding to these scenarios, call them r l  and r2, will be indistinguish- 
able. It is also easy to extend the arguments of Proposition 3.1 to show that 
l (A,&,) + 2 l a ;  i.e. , the average precision over these two runs 
is at least the optimal precision. For a probabilistic algorithm d, an analogous 
argument shows that for any sequence c of coin tosses, the augmented runs 
(r,, c) and (r2, C) are indistinguishable, so that l (Ac,&l, c) + 

c)) L ha. Taking the expected value over all sequences of coin 
tosses, we still get 3 + A,,(r2)) l a .  

In a general network C, nature's first step is to choose rU7s to satisfy Eq. 
($). With this choice of T~ 's ,  nature then computes the DU's used to solve Eq. 
(*). Consider the values of Do for which the maximum circuit mean is 
attained. For ease of notation, we assume without loss of generality that the 
maximum circuit mean is attained at the circuit (1, 2, . . . , m, 1 ) (for some 
2 5 m 5 n). Let rk, k = 1, . . . , m, be the m scenarios defined via 
INITi(rk) = -Dki and all messages from pi to pj in rk have transmission time 
TO + INITi(rk) - INITj(rk). Of course, we must show that this choice of 
message transmission times satisfies the constraints in the network. By con- 
struction, we have INITi(rk) - INITj(rk) = Dkj - Dki. Since DU is the length 
of the shortest path from pi to pj relative to the distances dU = 

min(H(pi, pj) - TU, T~~ - L(pi, pj)), it is easy to see that we have 
Dkj - Dk; 5 dij. Thus it follows that L(p;, pj) - Ti,. 5 INIT; (rk) - 
INITj(rk) 5 H(pi ,  pj) - rij Thus, this choice of message transmission times 
does satisfy the constraints of the network. 

Note that by construction, for any algorithm d, the scenarios will be 
consistent. Hence, if d is a deterministic algorithm, the same values 
SHIFT1, . . . , SHIFT, will be chosen in all these runs. Let 1 denote the 
successor of k in the maximum circuit. Since INITk(rk) - INITl(rk) = Dkl, 
the maximum difference between final logical clock readings in rk is at least 
Dkl + SHIFTk - SHIFTl. Therefore the average value of the maximum dif- 
ference between the final readings of the processors' logical clocks over these 
m scenarios is at least the average of the Dkl + SHIFTk - SHIFT,, where k 
varies around the circuit. The latter however is precisely the mean of the Dkl's 
around the circuit, which by the arguments of Section 4, is just Ac. 

If d is a probabilistic algorithm, a similar argument works. Let c be any 
sequence of coin tosses. An argument identical to that used in Lemma 4.1 
shows that all the augmented runs (rl,  c), . . . , (r,, c) are indistinguishable. 
Again, let SHIFT1, . . . , SHIFT, be the shifts computed in one, and hence 
in all, of these augmented runs. The same argument as that used above shows 
that the average value of the maximum difference in these m augmented runs 
is at least Ac. Taking the expected value over all sequences of coin tosses c, 
we get the desired result. 



OPTIMAL PRECISION WITH UNCERTAINTY 189 

The previous discussion can be summarized as follows: 

THEOREM 5.1. Let C be a communication network. There are m scenarios 
r,, . . . , r, in C (where m is the size of the maximum circuit mean of 
Theorem 4.3) such that for any algorithm d, ( l l m )  (C. Y=n=lAC,.&i)) 2 AC 
(and thus Ac,&(ri) 2 Ac for some i). 

In this section we show that we can always reduce the problem of calcu- 
lating the imprecision in a network to that of calculating the imprecision of 
a completely connected, undirected network, where the lower bound on 
message transmission time is 0 over every link. For an undirected network, 
we take the H function to be symmetric, so that H ( p ,  q) = H(q, p). 

We prove this result in stages, making heavy use of Theorem 4.2, which 
says that optimal precision is attained by solving the combinatorial opti- 
mization problem of Eq. (*). For this section, we always use 3 to denote an 
implementation of the optimal algorithm for attaining precision, as described 
in Section 4. The following easy lemma gives us a way to compare im- 
precision in two networks: 

LEMMA 6.1. Let C and C ' be two communication networks. lffor all runs 
r of 93 in C,  there is a run r ' of 93 in C ' such that AC,%(r) 5 AC,& I ) ,  then 
Ac 5 LC,. 

Proof. Suppose the hypotheses of the lemma hold. Then since 93 is an 
optimal algorithm, we have Ac = A,,, = max,(Ac,a(r)) max,-(Acs,a(r ')) 
- - Ac,,B = Ac,. . 

Our first proposition shows that the imprecision in a network depends only 
on the uncertainty in message transmission time. 

P R o ~ o s l n o ~  6.2. Let C = (G, H, L) be a communication network, with 
G = (V E ) ,  and C'  = (G, H ' ,  L ' ) ,  where for all edges ( P ,  q) E E, we 
haveLr(p ,  q) = O a n d H r ( p ,  q) = H ( p ,  q) - L ( p ,  q). ThenAc= Ac,. 

Proof. Given a run r in C ,  define a run r ' in C ' via INITi (r ') = INITi (r) 
and aij (r  ') = aij (r) - L (p i ,  p,). By construction, 0 5 (r ') 5 H (p i ,  pj) - 
L(pi ,  p,), so r '  is a scenario in C ' .  Let rv (resp. 7;) be the quantities 
computed in step 2 of 93 in run r (resp. r ' ) .  Thus, the constraints on the 
optimization problem (*) in r ' are -7; 5 INITi - INITj 5 Hr(pi ,  pj)  - rh, 
while the constraints in r are L (p i ,  p,) - TO 5 INITi - INITj 5 H (pi, pj).  
Since we have rv = INIT, (r) - INITi(r) + av(r), T; = INITj(r ') - 
INITi (r ') + ai (r '), INITi (r) = INITi (r '), and INITj (r) = INIT, (r '), it is 
easy to see that we have 7; = rii - L(p i ,  pi). And by construction, 
H ' ( p i ,  p,) = H(pi ,  p,) - L (p i ,  pj).  Now an easy computation shows that in 
fact the constraints in runs r and r '  are identical. 



HALPERN, MEGIDDO, AND MUNSHI 

Since the constraints in r and r ' are identical, the solutions to Eq. (*) must 
be identical in r and r ' , hence Ac,%(r) = Acg, %(r '). Thus by Lemma 6.1, we 
have Ac r A,. The opposite inequality is proved by a symmetric argument. 
We omit details here. 

We next show that to every directed network, there corresponds an un- 
directed network where the H function is symmetric. To get some intuition 
for this result, we examine two simple examples. First consider the star- 
shaped network of Fig. 3, with central node p and outlying nodes 
q,, . . . , q,. Suppose we have L(p,  qi) = L(qi, p) = 0, H(p,  q,) = 0, and 
H(qi, p) = E, for i = 1, . . . , n and E > 0. It is easy to see that the im- 
precision is 0 in this network: p simply broadcasts a time T to all the other 
processors, and they set their logical clocks to T upon receipt of this message. 
Since message transmission time is 0, they must be completely synchronized. 

Now suppose we flip the uncertainties, taking H(p,  qi) = E and 
H(qi, p) = 0 (see Fig. 4). Again the imprecision is O! Each of the qi's sends 
a message to the central node p with its local clock reading. Upon receipt of 
these messages, p can easily compute the amount by which each qi must shift 

FIG. 4. 



OPTIMAL PRECISION WITH UNCERTAINTY 191 

its clock so that all logical clocks are synchronized to that of p .  Thus p 
computes these shifts and sends them out to each processor. Note that al- 
though there is some uncertainty about when the message fromp reporting the 
shift will arrive, complete synchronization can still be attained. 

We can summarize the intuition behind these two examples as follows. If 
the uncertainty in the link from p to q is less than the uncertainty in the link 
from q top ,  then p sends q a time-stamped message and q adjusts its logical 
clock accordingly. If the uncertainty is less in the link from q to p ,  then q 
sends p a time-stamped message, p computes a shift, and sends it back to q, 
which again adjusts its logical clock accordingly. In both cases, the im- 
precision in the network is the same as that of a new network where the 
uncertainty in the link from p to q is the minimum of the uncertainties in the 
link from p to q and the link from q top  in the original network. These ideas 
can be generalized as follows. 

Given a communication network C = (G, H, L) with G = (V, E) and 
L(p ,  q) = 0 for all edges (p ,  q) E E, let the communication network 
C,,, = (G ', H ', L'), where G ' = (V, E '), where E '  = {(p, q) 1 (p ,  q) E 
Eor (q ,  p) E E ) , L f ( p ,  q) = OandH1(p, q) = min(H(p, q), H(q, PI) for 
allnodes(p, q) E E'  (wherewetakeH(p, q) = wif(p ,  q) jZ E).  Notethat 
H ' is symmetric. 

Proof. It is easy to see that Acsym 5 Ac, since there are more constraints 
on the solutions to (*) for C,,, due to the tighter bounds on message trans- 
mission time. More formally, given a run r of $53 in C,,,, let r '  be the 
corresponding run of 3 in C ,  where the same choices are made for physical 
clock readings and message transmission times (note that r ' is indeed a run 
in C since any legal message transmission time in C,,, is also a legal message 
transmission time in C ) .  Clearly Ac, %(r ') 2 AcSym, a(r), since essentially the 
same optimization problem must be solved by the processors in r and r f ,  
except that there are possibly more and stronger constraints in r on the choice 
of NITi  (corresponding to the smaller bounds for H '  in C,,,). Thus by 
Lemma 6.1, we immediately have that A c  r Ac,,. 

To get the inequality in the other direction, we must show that the extra 
constraints present in C,,, do not help in the optimization problem. We do this 
by showing that for every run r of 3 in C ,  there is a run r ' of 93 in C,,, with 
essentially the same information. Given r ,  we define r ' so that INITi (r ') = 
INITi(r) and SV(r) = aU(r ') if H '(pi, pj) = H (pi, p,), otherwise we take 
aU(rr)  = H(pj, pi) - aji(r). Note that if Hf (p i ,  pj) # H(pi,  pi), then, by 
construction, H1(pi,  p,) = H(pj, pi),  so this is a legal choice of message 
transmission times for r ' . 

Again, let TU, 76 be the quantities computed in step 2 of 93 in runs r and 
r ', respectively, and consider the constraints arising in Eq. (*) in runs r and 



192 HALPERN , MEGIDDO , AND MUNSHI 

r ' .  If H 1 ( p i ,  pi) = H ( p i ,  pj) ,  then clearly we have rO = r;, and the con- 
straints involving rO and 7; are identical. Suppose we have 
H 1 ( p j ,  pi)  # h r ( p j ,  pi)  (possibly because (p,, pi) jZ E ) .  In this case, 
H f ( p j ,  pi) = Hr(pi, pi) and, by construction, 6,,(r1) = H{p i ,  p j )  - aO(r). 
An easy computation now shows that 

T$ = INIT; ( r  ') - INIT, ( r  ') + (r ') 

Substituting H ( p i ,  p j )  - rO for 7; in the constraint -9: 5 INIT, - INIT; 5 

H '(p,, pi) - T;, and using the fact that H '(p,, pi) = H ( p i ,  p j )  and T;, = 7$,  
we get -7; 5 INITi - INIT, I H ( p , ,  p j )  - r;, which is the constraint we 
already had! Thus, there are fewer constraints in the optimization problem for 
r' than there are for r ,  hence Ac,%(r) 5 Acs,,,%(r '). Again using Lemma 6.1, 
weget Ac 5 Acs,,. H 

Finally, we show that the imprecision of an undirected connected network 
C is equal to the imprecision of a corresponding completely connected net- 
work Ccomp. Given C = (G,  H ,  L) ,  with G = (V, E) and L ( p ,  q) = 0 for 
( p ,  q) E E,  let Ccomp = ( G ' ,  H ' ,  L ' ) ,  where G '  = (V, E ' ) ,  E' = V X V 
(so G ' is a completely connected network on the nodes in V), L ' ( p ,  q) = 0 
for ( p ,  q) E E ' ,  and H 1 ( p ,  q) = min{C.!~; H(p , ,  p,+J I pl ,  . . . , pk is a 
path from p to q in G ) .  Thus the uncertainty in message transmission time 
between p and q in C,,, is the min of the sum of the uncertainties over all 
paths from p to1 q in G.  

Proof. The proof is very similar to the proof of the previous two propo- 
sitions, so we just sketch the details here. For any run r of 93 in C,,,,, let r' 
be the corresponding run of 93 in C .  Since there are more and possibly 
stronger constraints on the choice of the INITils in the optimization problem 
in r ' ,  we must have Ac,%(rl)  2 Accomp,~(r ) .  As before, it follows that 
Ac Accomp. 

For the oppo:jite inequality, suppose r is a run of 93 in C.  Let r '  be the run 
such that INIT, (r) = INIT, (r ') and aO(r ' )  is C ~ Z ;  6k(k+l), where the sum is 
taken over a path rr = q l ,  . . . , q, from pi to pj such that the sum of the 
uncertainties over rr is minimal over all paths from pi to pj in G.  It is 
straightforward to show that AC,%(r) 5 Accomp,~(r  I ) ,  again by showing that 
the new constraints imposed by this choice of 6,.(rf) do not add any extra 
information. We leavk details to the reader. The argument is again completed 
by an application of Lemma 6.1. 



OPTIMAL PRECISION WITH UNCERTAINTY 193 

By combining the results of Propositions 6.2, 6.3, and 6.4, we get 

THEOREM 6.5. For any communication network C,  we can effectivelyjnd 
a communication network C' = (G, H,  L ) ,  where G is a completely con- 
nected undirected graph, L ( p ,  q) = 0, and H ( p ,  q) = H (q, p) for all edges 
in ( p ,  q)  in G, such that Ac, = Ac. 

In order to be practical, an algorithm that achieves a high degree of 
simultaneity must also be able to tolerate faults. In Section 2 we gave a 
definition of the essential temporal imprecision inherent in a particular algo- 
rithm d under the assumption that there were no faults. We now extend this 
definition to allow faults. We consider both processor and communication 
link faults, and assume that faults are Byzantine: faulty processors can mali- 
ciously try to sabotage an algorithm, and faulty communication links can 
deliver a message at any time after it is sent, totally ignoring the bounds given 
by the H and L functions. We say that a set F of faults does not disconnect 
a network C if for all processors p and q not in F ,  there exists a path consisting 
of processors and links not in F from p to q. 

Define 

A c , ~  f )  = maxp,p~,,{A~,ga(p, p,' r) I at most faults occur during run r,  
and these faults do not disconnect C), 

AC ( f )  = mindAc,ga(f 1). 
Since in Section 2 we assumed there were no faults, Ac,d as defined in 
Section 2 is equivalent to Ac,&(0). We say an algorithm achieves bounded 
precision in the presence o f f  faults if Ac, d( f )  < m. 

One might expect that since a fault-tolerant algorithm must protect against 
the possibility of faults even when none actually occur, in the fault-free case 
it would not perform as well as an optimal non-fault-tolerant algorithm. 
Surprisingly enough, as far as precision goes, this is not the case. Define the 
loss of precision in algorithm d ,  denoted I (d) ,  to be Ac, &(0) - Ac. Thus 
l ( d )  measures by how much the precision achieved by d differs from the 
optimal precision achievable if there are no faults. 

THEOREM 7.1. There exists an algorithm d that achieves bounded pre- 
cision in the presence of arbitrarily many faults such that 1 ( d )  = 0.  

Proof. The required algorithm d with 1 (d )  = 0 proceeds in two phases. 
The first phase gets all logical clocks synchronized to within some bound B 
that depends only on the network C, while the second phase simulates the 
optimal algorithm 93 of Section 4 if there are no faults, and guarantees some 
bound on the precision if there are faults. We make use of the following key 



194 HALPERN, MEGIDDO, AND MUNSHI 

observation: in the optimal precision algorithm presented in Section 4, if 
clocks are initially at most B apart, then there is bound to be a solution to Eq. 
(*) such that 0 5 SHIFTi 5 B. 

The first phase proceeds as follows. When a processor "wakes up" (either 
because its physical clock reaches a certain reading or becuase it receives a 
message from another processor) it sets its logical clock to 0 (by appropriately 
setting TAR) and sends a message to all its neighbors in the network, telling 
them to wake up. All further phase 1 messages are ignored. Within at most 
(n - l)b time, where n is the number of processors in the network and b is 
an upper bound on message transmission time between any pair of processors, 
the wake up message has diffused to every correct processor in the network. 
Thus logical clocks are within B = (n - l )b  after this phase. Note this is true 
no matter how many faults there are, as long as the faults do not disconnect 
the network. 

In phase 2, we just simulate the optimal algorithm 93 of Section 2, with the 
following minor changes. In step 2, logical clocks are used instead of physical 
clocks to measure rv. In step 4, processorpl tries to compute a solution to Eq. 
(*) with 0 5 SHIlT, 5 B. If no such solution exists (this is possible in the 
presence of faulty processors since such processors may send incorrect values 
of rv topl), then pl takes SHIFTi = 0 for all i .  In step 5, if the value of SHIFT, 
received by pj is between 0 and B, then p, sets TAR, := TAR, + SHIFT,; 
otherwise, TARj is not changed (this may happen if p ,  is faulty). 

It is now easy to check that if there are no faults, then optimal precision is 
achieved; the proof is the same as that in Section 4. On the other hand, if there 
are faults, since logical clocks are not shifted by more than B in phase 2 and 
they are within B at the beginning of phase 2, they can be no more than 2B 
apart after the algorithm terminates, even in the presence of arbitrarily many 
faults. W 

Theorem 7.1 tells us that there is an algorithm that both achieves bounded 
precision in the presence of faults and optimizes for the fault-free case. This 
may prove useful in networks where faults are a relatively rare occurrence. 
We remark that, unlike many Byzantine agreement algorithms with high fault 
tolerance, the algorithm of Theorem 7.1 does not require authentication. 

It is interesting to compare this result to those of Coan et al. (1985). In their 
model there is no uncertainty in message delivery time between correct 
processors (all messages are delivered in one round). The question there is 
whether there are fault-tolerant algorithms that guarantee that the processors 
will perform a given action simultaneously. Answers are given in terms of the 
number and type of faults. Here we have only shown that there is an algorithm 
that achieves both bounded precision in the presence of arbitrarily many 
faults, and optimal precision if there are no faults. It would be interesting to 
extend the ideas of Section 4 to try to find an algorithm d such that 
k d f )  = &(f) forf > 0. 



OPTIMAL PRECISION WITH UNCERTAINTY 195 

8. CONCLUSIONS AND OPEN QUESTIONS 

We have given an algorithm that allows processors to achieve optimal 
precision in arbitrary networks with no clock drift and have given an algo- 
rithm to compute the essential temporal imprecision of a communication 
network. However, a number of questions of both theoretical and practical 
significance remain open. We list a few of them here: 

1. All our results thus far have been proved for the case where physical 
clocks run at the rate of real time. A more realistic assumption is that physical 
clocks may drift away from real time, but by at most a bounded rate. More 
precisely, this means there is a constant R  > 1 such that 

R-'(u - v )  5 D(u)  - D ( v )  5 R(u - v) .  

In practice, this bound is quite small, so that our results for the case of no drift 
provide a good indication to what can be done even with drift. Nevertheless, 
it would be interesting to precisely compute the effects of drift. We remark 
that with drift results such as Proposition 6.2 no longer hold; the actual 
message transmission time matters, as well as the uncertainty. 

2. Our optimal algorithm for precision requires 0 (e) messages, where 
e is the number of edges in the network. Can we do better? 

3. Our optimal algorithm is highly centralized. One processor calcu- 
lates the values of SHIFT; and then sends these values to all the other 
processors. Clearly decentralization is useful to achieve true fault tolerance. 
But even in the absence of faults, decentralization may speed up the real-time 
performance of the algorithm, especially if the computation of the SHIFT; can 
be parallelized in a useful way. Can this be done? 

4. It would be interesting to minimize the real time required to run the 
algorithm, particularly when the rate of drift is a nontrivial factor. 

5 .  As remarked in the last section, more work also needs to be done 
to obtain algorithms that achieve optimal precision in the presence of faults. 

6 .  What is the precise complexity of computing nature's optimal strat- 
egy and the essential temporal imprecision? We have shown that it can be 
done in exponential time, but conjecture it is NP complete. 

7. Although we have given an algorithm for computing the essential 
temporal imprecision, it would be interesting to obtain precise formulas for 
the imprecision for a number of graphs that arise in practice. We have given 
such formulas for two- and three-processor networks, as well as tree-like 
networks, but the exact imprecision of other networks remains open. 

8.  We have viewed nature as an adversary that will always choose 
message transmission times between any pair of processors to be constant in 
a given run, in order to release as little information as possible. In practice, 
of course, message transmission times are best viewed as being randomly 
chosen from a probability distribution. In this case, there is some advantage 



196 HALPERN, MEGIDDO, AND MUNSHI 

in taking a number of readings of message transmission times (the TG of the 
algorithm in Section 4). Finding the best strategy for the processors to follow 
to achieve optimal precision as a function of the probability distribution on 
message delivery time remains a completely open problem. 

Clearly, there is room for more interesting work in this area! 

The first author would like to thank Nancy Lynch and Ray Strong for numerous stimulating 
conversations. Ray suggested the notion of "loss of precision due to fault tolerance" discussed 
in Section 7. Flaviu Cristian, Yoram Moses, and Larry Stockmeyer provided a number of useful 
comments and criticisms. 

COAN, B. A,,  DOLEV, D., DWORK, C., AND STOCKMEYER, L. (1985), The distributed firing 
squad problem, in "Proceedings, 17th ACM Symposium on the Theory of Computing." 

DOLEV, D., HALPERN, J. Y., AND STRONG, H. R. (1984), On the possibility and impossibility 
of achieving clock synchronization, in "Proceedings, 16th ACM Symposium on Theory of 
Computing," pp. 504-51 1; IBM RJ 4218; J. Comput. System Sci., to appear. 

HALPERN, J. Y., SIMONS, B. B., STRONG, H. R., AND DOLEV, D. (1984), Fault-tolerant clock 
synchronization, in "Proceedings, 3rd ACM Conference on Principles of Distributed 
Computing," pp. 89-102. 

KARP, R. M. (1978), A characterization of the minimum cycle mean in a digraph, Discrete 
Math. 23, 309-3 1 1. 

LAMPORT, L.,  AND MEILLAR-SMITH, I? M. (1984), Byzantine clock synchronization, in 
"Proceedings, 3rd ACM Conference on Principles of Distributed Computing," pp. 68-74. 

LAWLER, E., (1976), "Combinatorial Optimization," Holt, Rinehart & Winston, New York. 

LUNDELIUS, J., AND LYNCH, N. (1984a), A new fault-tolerant algorithm for clock syn- 
chronization, in "Proceedings, 3rd ACM Conference on Principles of Distributed Com- 
puting," pp. 75-88. 

LUNDELIUS, J . ,  AND LYNCH, N. A. (1984b), An upper and lower bound for clock synchron- 
ization, Inform. and Control 62, 190-204. 




