
Algorithmica (1989) 4: 51 1-517 Algorithmica
@ 1989 Springer-Verlag New York Inc.

Extending NC and RNC Algorithms

Nimrod ~ e g i d d o '

Abstract. A technique is presented by which NC and RNC algorithms for some problems can be
extended into NC and RNC algorithms, respectively, that solve more general parametric problems.
The technique is demonstrated on explicit bounded degree circuits. Applications include parametric
extensions of the shortest-path and spanning-tree problems and, in particular, the minimum-ratio-cycle
problem, showing all these problems are in NC.

Key Words. Circuits, Probabilistic circuits, Poly-log depth, Parametric problems.

1. Introduction. A parametric technique presented in [MI] and [M2] has been
applied in the design of many serial algorithms. It was shown in [M2] that
sometimes a good parallel algorithm for one problem helps via this technique in
the design of a serial algorithm for another problem. We show here that essentially
the same idea can be used to prove that if one problem can be solved by a circuit
of polynomial size and poly-log depth (that is, the problem is in the class NC),
then a certain extension of the problem is also in NC. A similar result holds for
probabilistic circuits, that is, if a problem is in the class RNC, then so is a certain
extension of it.

The technique also sheds more light on the differences between strongly
polynomial time and polynomial time vis-a-vis parallel computation. A poly-
nomial-time algorithm for a problem with numerical inputs is said to run in
strongly polynomial time if the number of arithmetic operations and comparisons
is bounded by a polynomial in the number of inputs and is independent of the
magnitudes of the inputs. In the context of sequential computation it seems that
strongly polynomial time is merely an aesthetic advantage. However, this is not
so in the context of parallel computation. To explain the difference, let us first
introduce an example which is referred to several times in this paper.

Consider a parametric version of the shortest-path problem as follows. Suppose
the edges of a graph on n vertices have lengths dy = d,(t) = aVt + bg (assuming
a, > 0), where t represents time. Let t* denote the time at which the length 6(t)
of the shortest path, connecting two distinguished vertices, exceeds a given integral

. length L (assuming, for simplicity, S(0) < L). Here, without knowing t* explicitly
we can compare it with a value t = t' by computing the length of the shortest
path at time t'. Thus, we can approximate t* using a binary search. Furthermore,
if all the a,'s and by's are rational then we can stop the search at a certain stage

' IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099, USA, and School of
Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel.

Received October 31, 1986; revised November 16, 1987. Communicated by F. Thomson Leighton.

512 N. Megiddo

and compute t* directly. This can be seen as follows. For simplicity, assume all
the coefficients are integers of absolute value less than M. Then the binary search
is for a positive rational number whose numerator and denominator are bounded
by L and nM, respectively. This implies that O(log L+log M +log n) queries
suffice. Such an approach yields a polynomial algorithm which is not strongly
polynomial. The naive binary search is an "inherently sequential" operation. It
does not seem that this algorithm can be parallelized to run in less than
p,(log n, log log L, log log M) time with less than p,(n, log L, log M) processors,
where p, and p, are polynomials. However, we develop NC algorithms for
problems of this kind. These are usually NC algorithms in a strong sense that
the number of processors does not depend on the numerical values (provided
we do not have to parallelize the execution of the arithmetic operations). These
algorithms are also strongly polynomial as sequential algorithms.

2. Preliminaries. We find it convenient to work with the model of computation
of a circuit (that is, a directed acyclic graph) consisting of gates which perform
the operations +, -, x, +, MAX and MIN, and gates which tell whether a number
is positive. The treatment of the latter in the extension of the circuit is analogous
to that of the MAX and MIN gates. Henceforth we omit this type of a gate from
the discussion. We call these circuits arithmetic circuits.

We say that input I of the circuit is involved in gate G (resp. wire w) if there
is a path in the circuit leading from I into G (resp. w). A set of inputs is involved
in a gate or a wire if at least one of the members of the set is involved in that
gate or wire.

The input gates are usually fed with rational numbers but the basic idea of
our technique applies to computation over any ordered field. The extension of
the algorithm corresponds to feeding some of the input gates with linear functions
of a single parameter, and then searching for some well-defined value of the
parameter.

A concrete example of a problem to which the technique applies is the
parametric shortest-path problem discussed in Section 1. Suppose the input gates
of a circuit correspond to edges of a graph, and they are fed with the lengths of
these edges. The circuit computes a shortest path between two designated vertices.
Suppose the lengths of the edges are monotone increasing with time and we
would like to compute the time at which the length of the shortest path exceeds
a certain given threshold L. We show that since the shortest-path problem can
be solved by a polynomial-size circuit of poly-log depth, this parametric problem
can also be solved by such a circuit.

Many algorithms in combinatorial optimization can be carried out without
multiplications or divisions. If a circuit has neither multiplication nor division
gates then we can parametrize the entire set of inputs. In general, we use the
notion of a parametrizable set of input gates defined as follows.

DEFINITION 2.1. A set S of inputs is parametrizable if it is not involved in any

Extending NC and RNC Algorithms 513

division gate, and for every multiplication gate G there is at most one wire w
going into G such that S is involved in w.

The idea behind this definition is as follows. If we feed members of S with
linear functions of a certain parameter t then, since we neither divide by a
function of t nor multiply two functions of t, all the wires carry piecewise linear
functions t.

The sense of the extension of the problem is that we can feed the members of
a parametrizable set of inputs with linear functions of a parameter, and solve for
the value of the parameter at which a certain value of the output is attained. This
extension unifies many optimization problems, in particular max-min and min-
ratio problems arising in location and scheduling (see [M2] and the references
thereof).

3. Extensions of NC Algorithms. In this section we explain the extension
operation. Consider an arithmetic circuit C with a certain parametrizable set S
of inputs. For each input gate Ii, let xi = xi(t) = ait + bi denote some linear function
(of an indeterminate t representing, say, time) associated with Ii, such that ai = 0
for Ii E S. Suppose we feed each Ii with the value xi(to) where to is any value of
t, the same for all i. Obviously, the number carried by any wire can be described
by a piecewise linear function of t.

The functions carried by the wires may in general have a large number of
breakpoints, so a simultaneous implementation of the circuit at all the values of
t may require a large number of gates. However, there are many applications
where we are interested in implementing the circuit at some well-defined value
t = t* which is not given explicitly. Furthermore, we are actually interested in
computing t*.

It is easy to operate on linear (rather than piecewise linear) functions. Suppose
G is an ADD gate with inputs u and v and output w = u + v. If u and v are
linear functions of t, u = a t + b, v = ct + d, then it is trivial to replace the gate G
by two ADD gates G, and G, that add a + c and b + d, respectively. Similarly,
if H multiplies u and z, where z is a constant, then H can be replaced by two
gates H, and H, that multiply a x z and b x z, respectively. The more interesting
case is of course that of MAX gates.

A MAX gate receives two numbers as input. It outputs the maximum. We first
explain the basic idea of the algorithm and then show how to carry it out in a
circuit. We use for a while the terminology of processors. Suppose P processors
attempt to run a parallel algorithm with numerical inputs which are given as
linear functions of t. Suppose t is involved in the algorithm only in additions,
subtractions, multiplications by constants, and comparisons. Also, suppose one
of the outputs of the algorithm, F = F(t) is a monotone function of t, and the
value of F(t*) is known even though t* is not known. We would like to compute
t* and all the other outputs at t*. The extended algorithm maintains throughout
the execution an interval [j , f] that is guaranteed to contain t*. The current values
of all the "program variables" are linear functions of t over the interval [A i].

514 N. Megiddo

When a processor has to compare two such functions, the outcome may not be
uniform on the entire interval [A i]. In such a case the processor can at least
compute a point t', such that the outcome of the comparison would be uniform
over each of the intervals [j, t'] and [t', I]. Now, by setting t to t' and running
the original algorithm, we can tell whether t r < t*, t' = t*, or t'> t*. If this is done
then the interval [f f] can be replaced by one of the intervals [I , t'] and [t', i],
and the processor can continue, so that all the variables remain linear functions
of t over the revised interval. At the end all the outputs are linear functions of
t, over some interval that contains t*, so that t* and all the outputs at t* can be
computed directly.

We now explain how to extend a circuit to carry out the idea of the preceding
paragraph. Assume we are given an arithmetic circuit C with a parametrizable
set S of input gates. Also, assume there exists an output gate whose value would
be a monotone function of t if the gates in S were fed with linear functions of
t (and the other ones with constants). We specify how to replace each gate of C
by some arithmetic circuit. First, all the input and output gates that have to carry
linear functions of t are each replaced by a pair of gates, so that they can carry
the two coefficients of the function. Then ADD, SUBTRACT, and MULTIPLY
gates are replaced by suitable circuits of fixed small size that (respectively) add
or subtract linear functions of t, or multiply linear functions of t by constants.
DIVIDE gates stay as they are since they operate on constants. Also note that,
by assumption, MULTIPLY gates never multiply two linear functions of t. The
more interesting part of the construction is the case of MAX gates.

Let G be a MAX gate. We replace G by a circuit G(C) as follows. First, let
C, (see Figure 1) denote a circuit, which is essentially the same as C except that
it contains a "front-end"; this portion of the circuit amounts to two input gates
per each input gate of C in the set S, and also one more input gate, through
which it receives a value of t. The circuit C, receives as inputs linear functions
of t and a specific value of t. It then computes specific inputs for the copy of C
contained therein. The input gates of each copy of C, are appropriately linked
to the input gates of the extended circuit (that is, two gates per input gate of
the original circuit which is in S). To keep the fan-out bounded, this linkage is
indirect, using a standard binary tree structure. The circuit G (C) (see Figure 2)
contains a copy of the circuit C,. Besides the inputs of C,, it also has four other
input gates through which it receives the coefficients of the linear functions of t

Fig. 1

Extending NC and RNC Algorithms

Fig. 2

it has to compare. The circuit G(c) first computes the intersection point t' of
the two linear functions it receives (the cases of parallel or identical lines are
trivial and hence omitted from our discussion). This value t' is sent to the copy
of C, contained in G(C) so that the problem is solved at t'. The resulting value
F(t l) is compared with F(t*) (which is given as input to the grand circuit).
Finally, G (c) has two outputs carrying the coefficients of the input function
which is identified as the maximum (relative to function values at t*). Thus, in
this construction each MAX gate solves the entire problem at some value t',
which it first computes from its inputs, and then carries out one comparison and
forwards the result.

The dimensions of the extended circuit are related to the original one as follows.
Let m and d denote the total number of gates and the depth of C, respectively.
The extended circuit is obtained by replacing each gate G of C by a circuit
G(c) of size O(m) and depth O(d), and also adding a communication network
(that is, wires and joints) of size 0 (m 2) and depth O(1og m) for linking
every d (C) to the inputs. Thus, the extended circuit has size 0 (m2) and depth
0(d2+log m). Hence, if C is an NC circuit then so is the extended circuit. We
can state the result as follows.

THEOREM 3.1. Let C be an arithmetic circuit of size m and depth d. Suppose C
has a certain output gate whose result is a monotone function F (t) of the parameter
t if the inputs (in a parametrizable set of input gates) are values of linear functions

516 N. Megiddo

oft. Under these conditions, there exists an arithmetic circuit of size 0 (m 2) and
depth 0 (d2+ log m) that solves the equation F (t) = L for any L.

Usually a more efficient extended circuit can be constructed. Obviously, it is
not necessary that each gate will have its own copy of the original circuit. As
argued in [M2], it can also be shown here that critical values produced by different
gates can be tested in a binary search fashion. This would reduce the size of the
circuit at the expense of increasing its depth (which remains poly-log though).
The idea is as follows. We say that gate G is at depth k if k is the length of the
longest path connecting any input to G. Let C(k) and m, denote the set of
all MAX gates of C at depth k and the number of these gates, respectively
(k = 1 , . . . , d). It suffices to use only O(log m,) copies of C for all the gates in
C(k) . These copies (connected in series) can be used to search for t* in a set of
m, values. More precisely, let C (k) denote a circuit that receives m, inputs,
t,, . . . , t,,, and then outputs two values a, b E i t l , . . . , t,, -a, a}, such that
a 5 t* 5 b, and there is no tl such that a < t, < b. The circuit C (k) can be assumed
to have size O(m log m,) and depth O(d log m,) (these figures include a sorter
for the inputs of c (k)) . Now, each MAX gate G at depth k is extended into a
circuit that computes a critical value t,, sends it to C(k) , and then receives from
c (k) the outcome of the comparison between t , and t*. With this information,
G can perform the comparison for which it is responsible. The new construction
has size O(m C, log m,) and depth O(d C, log m,). In any case we have the
following theorem:

THEOREM 3.2. Under the conditions of Theorem 3.1, there exists an arithmetic
circuit of size O(md log m) and depth 0 (d 2 log m) that does the same.

Depending on the relative importance of depth and size, we can construct
hybrids of the approaches that led to Theorems 3.1 and 3.2, so that even more
efficient circuits can be designed for accomplishing the same task.

Theorems 3.1 and 3.2 can be used to show that many parametric versions of
problems in NC are also in NC. An interesting example is the minimum cost-to-
time ratio cycle in a network with edge-costs c, and edge-time T, > 0. The problem
is to find a simple cycle over which the ratio of total cost to total time is minimized
relative to all simple cycles. It is well known that this problem is equivalent to
finding the smallest t for which the network with edge-lengths d,(t) = c, - r,t
contains a cycle of total length less than or equal to zero. The problem of deciding
whether a network has a cycle of total nonpositive length is in NC, since it can
be solved by the all-pair shortest-path algorithm. This algorithm can easily be
realized in a circuit with only ADD and MIN gates. Thus we have

COROLLARY 3.3. The minimum-ratio-cycle problem is in NC.

Other applications are parametric versions of spanning-tree problems, certain
problems of computational geometry, linear programming in bounded dimension,
and specializations of hard combinatorial optimization problems to trees (see
the references of [M2] for more detail).

Extending NC and RNC Algorithms 517

4. Extensions of RNC Algorithms. A probabilistic circuit is one that, besides
the usual gates, also has gates that "toss coins." An RNC algorithm for a problem
is a probabilistic circuit of polynomial size and poly-log depth, where one of the
output gates indicates "success" or "failure"; the circuit computes the "correct"
solution to the problem (and indicates success) with probability of at least $.
Obviously, if the problem is processed by the circuit k times independently, the
probability of (at least one) success is at least 1 -2-k.

Consider an extension of such an RNC algorithm where each MAX gate G is
replaced by a copy of the original circuit C, as described in the preceding section.
The probability that all the copies of C succeed may be as small as 2-", if there
are m copies of C. If one copy fails then the entire circuit may fail. However,
this is not a serious difficulty. All we have to do is run each such copy K times,
that is, use K copies instead of one for each MAX gate. The gate succeeds if at
least one of these copies succeeds. Thus the entire circuit succeeds with probability
of at least (1 - 2 - K) m . We choose K so that this probability is at least 3. Obviously
this results in depth o (K ~ ~) and size O (K ~ ~) . It is easy to see that a suitable
K is O(1og m) so the depth remains poly-log and the size remains polynomial.

References

[MI] N. Megiddo, Combinatorial optimization with rational objective functions, Math. Oper. Res.
4 (1979) 414-424.

[M2] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms,
J. Assoc. Comput. Mach. 30, 4 (1983) 337-341.

[MTl] N. Megiddo and A. Tamir, Finding least-distances lines, SIAM J. Algebraic Discrete Methods
4 , 2 (1983) 207-211.

[MT2] N. Megiddo and A. Tamir, New results on the complexity of p-center problems, SIAM J.
Comput. 12, 4 (1983) 751-758.

[MZ] N. Megiddo and E. Zemel, A randomizing O(n log n) algorithm for the weighted 1-center
problem, J. Algorithms 7 (1986) 358-368.

