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A parametrized version of the nonlinear complementarity problem is formulated. The 
existence of a continuation of a solution is investigated and sufficient and necessary con- 
ditions for the monotonicity of such a continuation are given. The notions of strong and 
uniform monotonicity, originated in the linear theory, are discussed, and the theorems of the 
linear theory are generalized. 
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I. Introduction 

The nonlinear complementarity problem (CP) is well-known. It can be stated 
as follows. 

Problem 1.1 (CP(f)). Given a continuous mapping f : R:+Rn, find an n-vector z 
such that 

A parametric version of linear CP-s (i.e., when f is affine) was formulated by 
Maier [ 5 ] .  The problem of n~onotonicity of solutions in the parametric linear C P  
was dealt with by Cottle [3] who assumed the matrix M of the parametrized 
mapping f (z ;  t )  = Mz + q + tp,  either to be positive semi-definite, or else to have 
positive principal minors. Also, the vector q was assumed to be non-negative. 
The results of Cottle have been recently generalized by Megiddo [6 ] .  

In this paper we shall be dealing with a parametric version of the nonlinear 
CP. We state the general form of this parametric complementarity problem 
(PCP) as follows. 

*The research described in this paper was carried out while the author was visiting Tokyo Institute of 
Technology under a Fellowship of Japan Society for the Promotion of Science. 
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Problem 1.2 (PCP(g)). Given a continuous mapping g : R:+'+R", solve the 
family {g(.; t): t 2 0) of non-parametric CP-s. 

Maier [5] and Cottle [3] claim that the parametric linear CP is applicable in the 
context of elastoplastic structures. Cottle also suggested that a generalization of 
his results "would find applications in structural mechanics as well as economic 
equilibrium theory [2]". 

The first problem explored in this paper is the following. Suppose that a PCP 
is solvable for some value to of the parameter. Under what conditions is this 
solution extendable into a parametric solution over a neighbourhood of to , and 
when is such a solution monotone with respect to the parameter? We answer 
these questions in Section 3. 

The notions of strong and uniform monotonicity were defined (in the context 
of parametric linear CP-s) by Cottle [3] and investigated by Cottle and by the 
author [6]. Cottle restricted his discussion to parametrized functions g(z; t) = 

Mz + q + tp where M is an (n x n)-matrix whose principal minors are positive, q 
is a non-negative n-vector, and p is any n-vector. Under these conditions, strong 
monotonicity, which means monotone solution for every p, is characterized by 

for every principal submatrix M of M and corresponding subvector c j  of 
q. Uniform monotonicity, which means monotone solution for every p and every 
non-negative q, is characterized by M's being a Minkowski matrix. 

In our general nonlinear case, the roles of q and p are played by g(0; 0) and 
aglat, respectively. Thus, one might like to define strong monotonicity as 
monotonicity which is independent of aglat. However, strong monotonicity 
should be treated as a global rather than local property because of the following 
fact. If g(0; 0) >0 ,  then the origin is a solution for to = 0 and for t in some 
neighbourhood of to. Thus, the strong monotonicity is "locally" satisfied. On the 
other hand, if g(0; 0) 3 0, then there exist values for agl3t for which a solution 
will not be monotone; this is the reason why q was assumed to be non-negative 
in the linear case (Cottle [3]). Thus, it is interesting to investigate only the 
following problem: Suppose that g(0; 0) 2 0 and z(t), 2 5 t 5 f, is a parametric 
solution of PCP(g). Under what conditions, independently of aglat, is this 
solution monotone? If we do not impose further conditions on g then usually the 
strong monotonicity will not hold. This is due to the following fact. Given a 
function g and a monotone solution z(t), 0 5  t 5 1, of PCP(g), define 8(t)  = 

min(2t, 2 - 2t), and g*(z; t) = g(z; 8(t)), and the resulting solution z*(t) = z(8(t)) 
of PCP(g*) is not monotone, unless z(t) is constant. 

The above discussion suggests that we restrict attention to linear dependency 
of g on t. In other words, we shall assume in Section 4 that PCP(g) is linearly 
parametrized, i.e., 

where f : R;-,Rn and p is an n-vector. We also assume that f is differentiable. 
In order to avoid conceptual complications, resulting from non-uniqueness of 
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solutions', we shall assume that all the principal minors of the Jacobian matrix of 
f are positive everywhere. This suffices for uniqueness (see [8]) and also 
generalizes Cottle's assumptions in the linear case. Since this assumption does 
not suffice for existence, our sufficient conditions stated below imply global 
monotonicity in the following broad sense. A function defined on a subset D of 
the real line is said to be monotone if it is monotone non-decreasing coordinate- 
wise (in the usual sense) on every connected component of D. 

In Section 4 we provide necessary and sufficient conditions for the properties 
of strong and uniform monotonicity; these generalize Cottle's theorems [3, 
Theorems 1, 21. 

2. Preliminaries 

Let N = (1,. . . , n). For every subset S of N, let xS denote the restriction2 of an 
n-vector x to the coordinates in S. The orthants of Rn will be denoted by QS 
( S  C N )  where 

We find it useful to adopt the following notation. If f is a mapping of a certain 
CP, extend f to the whole Rn by defining 

where x+, x- E Rn, x: = xi and x i  = 0 if xi 2 0, and x: = 0 and x; = xi if xi d 0. 
Similarly, if g is a mapping of a certain PCP, extend g to Rn x R: by defining 

Using the notation above, we observe that the problem CP(f) is solvable if and 
only if 0 E F(Rn).  Moreover, if F(x)  = 0 then z = x+ is a solution to CP(f) and 
conversely, if z is a solution to CP(f) then F(x)  = 0 where xi = zi if zi > 0 and 
xi = - fi(z) if zi = 0. Analogous observations on the PCP can be made using the 
extension G of g. The extension F of f has been thoroughly used in Megiddo 
and Kojima [7]. 

Throughout this paper, if A is an [n x (n + m)]-matrix (m LO), then for 
S C (1,. . . , n), denotes the principal submatrix of A corresponding to the set 
S. 

3. Existence and monotonicity of solutions 

In this section we deal with the existence and monotonicity of a parametric 
solution in a neighbourhood of some value t o  of the parameter. 

'See [6] for a treatment of the linear case without uniqueness assumptions. 

 he null vector xe is assumed to be equivalent both to the empty set and to the real number zero. 
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First, we introduce our terminology and notation. A mapping H :  U+Rn ,  
where U c Rn x RT, is said to be Qs-diflerentiable if for every (y; t) E 
( Q ~  x R:) n U there exists an [n X (n + m)]-matrix DHs = DHs(y; t)  such that 
for every Ay, At, if (y + Ay; t + At) E (QS x RT) n U then 

H is said to be continuously Qs-differentiable if DHs(y; t)  is a continuous 
function of (y; t). It can be observed that if y lies in the interior of QS then 
Qs-differentiability in the neighbourhood of (y; t)  coincides with the standard 
differentiability. Also, if H is Qs-differentiable then DHs is the matrix of 
one-sided partial derivatives of H, where the "sides" are chosen so as to stay in 
QS. In view of this we denote by DyHs the submatrix of DHs corresponding to 
the vector variable y. The following lemma is a generalization of the classical 
implicit function theorem [I]. 

Lemma 3.1. Let (YO; to) = (Y:, . . . , y;; ty,. . . , t:). Let U be a neighbourhood of 
to) and let H : U +Rn  satisfy the following conditions. 

(i) H(yO;  to) = 0. 
(ii) H is continuously Q~-differentiable a t  any (y ; t )  E ( Q ~  x Ry) n U. 

(iii) For  every S such that yo E QS, d e t [ ~ , ~ ~ ( y O ;  to)] > 0. 
Under these conditions there exists a neighbourhood T of to and a unique 
function y(t) defined in T such that y is continuous, y(tO) = yo, and H[y(t);  t] = 0 
for  all t E T. 

Proof. We prove the conclusions by induction on n. 
(a) If n = 1 then it follows from our assumptions that there exists a neigh- 

bourhood T of to such that for every t E T the function H(y ;  t)  is strictly 
monotone increasing (in the variable y). This, together with continuity, implies 
the existence of a unique function y(t) defined in T such that y(tO) = and 
H[y(t);  t] = 0. The continuity of y(t) follows as in the proof of the classical 
implicit function theorem. 

(b) Suppose n > 1 and assume that all the conclusions hold for all cases of 
smaller values of n. If y q  # 0 for all i = 1, .  . . , n, then all the conditions of the 
classical implicit function theorem are satisfied in some neighbourhood of (yo; to) 
and hence all the conclusions hold. Thus, without loss of generality, assume that 

= 0. Consider the first n - 1 equations 

It can be easily verified that this system (with y, considered as one of the 
independent variables) satisfies the assumptions of our lemma. Thus, the induc- 
tion hypothesis can be applied. It follows that there exists a neighbourhood V of 
(yt, t )  and a unique continuous function ~$(y,, t )  = (4,(y,, t), . . . , 4,..,(y,, t)) such 
that 4(y:, to) = (Y:, . . . , ~ t - 1 ) ~  (4(y,, t), Y,; t)  E U, and H[4(yn, t), Y,; tl = 0 for all 
(y,, t)  E V. Consider the following function. 
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We shall prove that there exists a neighbourhood T of to such that h(y,; t)  is 
strictly monotone w.r.t. y, for every t E T. To that end it suffices to show that 

for every (y,, t) in some neighbourhood of (yjl, to). A similar argument appeared 
in Megiddo and Kojima [7, Th. 3.31. Using essentially the same proof we can 
deduce that 

lim infdY4(l/Ay) - [h(yjl+Ay; to)- h(yO; to)] >0.  

Since h is continuous w.r.t. both t and y,, the same can be proved for points in a 
neighbourhood of to), hence (3.1) is true. The remainder of the proof is 
carried out as in the case of the classical implicit function theorem. 

Applying Lemma 3.1 to our PCP, we obtain 

Theorem 3.2. Let g : R:" +Rn  be a continuous mapping and assume the fol- 
lowing conditions. 

(i) The problem PCP(g) is solvable for  the value to of the parameter and zn is 
a solution of the resulting CP[g(.; to)]. 

(ii) The mapping g is continuously R:'l-diflerentiable in some neighbourhood 
U (w.r.t. R:") of (zo, to), 

(iii) For every S, such that {i: zq > 0) c S c {i: g,(zO; to) = O), the corresponding 
principal minor of the Jacobian matrix of g is positive, i.e., d e t ( ~ > g ~ ( z O ;  to)) > 0. 
Under these conditions there exists a neighbourhood (w.r.t. R:), T of to and a 
unique continuous solution z(t) of PCP(g) over T such that z(t0) = zO. 

Proof. Consider the extension G of g (see (2.2)). It is easy to verify that G is 
continuously Qs-differentiable (for every S) and 

II:~(x:t)/", ,  i f , i E S ,  

(DxGs(x; t))ij = 1 ,  if i = jE S, 
if i#  j& S, 

Moreover, Lemma 3.1 applied to the mapping G, implies the conclusion of the 
present theorem. 

Remark 3.3. If condition (iii) of Theorem 3.2 is replaced by negativity of the 
same principal minors, then the same conclusion holds, since the same can also 
be done in Lemma 3.1. 

The problem of monotonicity can be dealt with by using a derivation 
analogous to what is done in the implicit function theorem. 

Theorem 3.4. Let all the conditions of Theorem 3.2 be satisfied. Denote 8 = 

{i: z )>  0) and = {i: gi(zo; to) = 0). 
(i) If for  every S, 3 C S C 3, 
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then the parametric solution z ( t ) ,  assured by Theorem 3.2, is monotone non- 
decreasing (coordinate-wise) in some neighbourhood of to. 

(ii) If the parametric solution z ( t ) ,  assured by Theorem 3.2, is monotone 
non-decreasing in some neighbourhood of to  then the set S* = S U { i :  z , ( t )  is 
increasing in the neighbourhood of to} satisfies 

and if to  is positive, also 

Proof. Let T be the neighbourhood of to ,  assured by Theorem 3.2. For t E T 
define x i ( t )  = z , ( t )  if z i ( t )  > 0 and x i ( t )  = - g i ( z ( t ) ,  t )  if z i ( t )  = 0. Let xo = x( to) .  
Obviously, x = x ( t )  is the solution function of the equation G ( x ;  t )  = 0 (see (2.2)) 
in the neighbourhood of ( x o ;  to).  

(i) If i$Z 3 then gi ( z ( t ) ;  t )  > 0 for t in some neighbourhood TI of t u  ( T I  C T ) .  
Hence, for such t ,  z i ( t )  = 0. We shall prove that for i E S 

lim infdt4 ( I l A t )  [z i ( to  + A t )  - zi(to)] > 0. (3.2) 

Let { h k )  be a sequence of non-zero real numbers which converges to zero. Then 
there is an index set S and a subsequence of {hk}, which we shall still call {hk}, 
such that for all k, zi(to+ h k )  > 0 if i E S and z i ( to+ h k )  = 0 if i$Z S. It follows that 
x( to+ h k )  E Q S  and that S C S C S. By the Qs-differentiability, the limit 

d ~ s  = lim k-m ( l / h k )  - [ x ( t O  + h k )  - x( t")]  

exists. Moreover, it can be observed (see [7, Theorem 3.31) that this limit is 
independent of the particular sequence { h k )  and 

Restricting this vector equality to the coordinates in S,  and returning to the 
original function g, we obtain 

Thus, (3.2) holds. This proves (3.2). 
Suppose that i E S \  S. We claim that there exists a neighbourhood T 2  C T I  of 

to  such that for t < to in T2, z i ( t )  = 0 ;  otherwise, there is a sequence {hk};=, 
(hk<O, limk, hk = 0 )  such that zi(to+ hk)>O and x ( t O +  h k ) E Q S  (where 
S C S C S and i E S ) ,  and this contradicts (3.3). If i is such that zi(t)  = 0 for t in 
some neighbourhood of to,  then z i ( t )  is obviously monotone in such a neigh- 
bourhood. However, for every t > t o  in some neighbourhood T 3 C  T 2  of to ,  if 
z i ( t )  > 0, then 

lim infAt, (1lAt)  - [zi(t + A t )  - z i ( t ) ]  > 0 
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(since this is analogous to (3.21~. (The latter is also true for i E S.) This implies 
that zi(t) is monotone in some neighbourhood of to (for all i). 

(ii) Suppose that the parametric solution z(t) is monotone non-decreasing. If 
{hk)r=l is a sequence of positive numbers such that limk, hk = 0, then for all k 
sufficiently large, zi(to+ hk) > 0 if i E S*, and if iSf S* then zi(to+ hk) = 0. Thus, 
the corresponding function x(t)  satisfies x(to+ hk) E QS* for k sufficiently large. 
Using the same reasoning as that of part (i), we deduce that d,xs* is well-defined 
and the monotonicity implies 

Similarly, assuming to to be positive, if (hk)z=l is an appropriate sequence of 
negative numbers, then for k sufficiently large x( to+ hk) E QS (if i E S then 
xi( to+ hk) = zi(to+ hk) > 0; if i e  S then zi(to+ hk) 5 zi(to) = 0 and hence xi( to+ 
hk) 5 0). By similar arguments, 

This completes the proof of the present theorem. 

The following theorem contains a variant of part (i) of Theorem 3.4. We 
present this variant because of its applicability to Section 4. 

Theorem 3.5. Let all the conditions of Theorem 3.2 be satisfied. For  every t such 
that z(t) is defined, denote 

S( t )  = {i: zi(t) > 0) and S(t)  = {i: gi(z(t); t)  = 0). 

If for  every t in some neighbourhood of to, and S, S( t )  C S C S(t),  

[(Dzgdz(t);  t))Sl-l - ( a g ( ~ ( t ) ;  t)latY < 0 

then z(t) is monotone non-decreasing in some neighbourhood of to. 

Proof. The proof is essentially the same as that of Theorem 3.4 (part (i)) and is 
therefore omitted. It is based on the following fact. If [(t) is a continuous real 
function such that 

lim infb,4(llAt) - [[(t + At) - [(t)] Z 0 

for every t in some (open and connected) neighbourhood of to, then [(t) is 
monotone non-decreasing in that neighbourhood of to. This follows from the fact 
that &t) = 5(t) + ~t (where E > 0) is obviously monotone; thus, if t > t', then for 
every E > 0 [(t) - [(t') I ~ ( t '  - t) SO that [(t) e [(t'). 

4. On the properties of strong and uniform monotonicity 

The assumptions of this section are explained and justified in Section 1. The 

'Note that C { i :  z i ( t )  > 0) C { i :  g i ( z ( t ) ;  t )  = 0) C S. 
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first theorem generalizes Cottle's theorem on strong monotonicity in parametric 
linear CP-s ( [3 ,  Theorem I ] ) .  To simplify notation, let ~ ~ ( 2 ' )  denote the principal 
submatrix of the Jacobian matrix of f (evaluated at zO) corresponding to S. 

Theorem 4.1. Let f : R: + Rn be continuously differentiable and such that f (0 )  = 

0. Assume that the principal minors of the Jacobian matrix of f are positive 
everywhere in R:. Also, let q be any non-negative n-vector. 

Under these conditions, the solution function z ( t )  = z ( t ;  q , p )  of the problem 
PCP[f (z )  + q + t p ]  is monotone for every p if and only if for every z0 2 0 and S,  
S 3  S = { i :  zp>0}, 

Proof. (a) We shall prove the sufficiency part. Given a point z0 2 0, a direction 
p f  0 is relevant if there exists a positive to  such that z0 solves the problem 
CP[f(.) + q + t o p ] ;  the case to = 0 is trivial since it implies z0 = 0. Consider the 
problem PCP[f ( z )  + q + tp] .  A relevant p satisfies, together with the corresponding 
to,  

S = { i :  f i(zO) + qi + topi  = 0)  3 3. 
Obviously, t opS  = - [ q  + f(zo)]! Moreover, there exists a neighbourhood of to in 
which z ( t )  is defined (see Theorem 3.2) and for every t in this neighbourhood 

(see Theorem 3.5 for the definition of S( t ) ) .  It follows from (4.1) that for every 
such t and S,  S ( t ) c  S C S ( t ) ,  

Applying Theorem 3.5, we deduce that the solution function z ( t )  = z ( t ;  q ,p )  is 
monotone in a neighbourhood of to. It then follows that z ( t )  is monotone in each 
connected component of its domain. 

(b) We shall prove the necessity part. Suppose that for every p the solution 
function z ( t )  = z ( t ;  q , p )  is monotone. Let z 0 2  0 be any point. Let p = - q - f ( zO)  
and to = 1. Obviously, z0 solves the problem CP [ f ( . )  + q + top] .  By Theorem 3.4 
(Part (ii) it follows that J; ' ( zO) .  [ q  + f(zo)]" 0. Let S be any set such that S 3 S. 
Define z f  = z?+ l l k  for i E S and z f  = 0 otherwise, for k  = 1 , 2 , .  . . . According to 
what we have just proved J , ' ( z ~ ) .  [q + f ( zk ) lS  2 0. Since f is continuously 
differentiable and all the principal minors of its Jacobian matrix are positive, we 
have in the limit, as k tends to infinity, 

J;'(z') . [ q  + f (zO)lS > 0 

for all S > 3. This completes the proof. 

Remark 4.2. If f is linear, f ( z )  = Mz, then (4.1) reduces to 

( M ~ ) - '  - ( q  + Mz)S 2 0 
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for every z 2 0 and S > 8. This is equivalent to Cottle's condition - ( M ~ ) - '  . 2 
0 for all S. 

A necessary and sufficient condition for uniform monotonicity is now straight- 
forward. 

Theorem 4.3. Let f : R:+Rn be a continuously diferentiable function which 
satisfies the conditions of Theorem 4.1. Under these conditions, the solution 
function z ( t )  = t ;  q ,  p )  of the problem P C P [ f ( z )  + q + t p ]  is monotone for every 
q 2 0 and p,  if and only if for every z0 2 0 and S > S = { i :  zy > 0 )  

J,'(zO) Z 0 and J i ' ( zO)  . [ f ( zo ) l s  2 0 .  

Proof. In view of Theorem 4.1, uniform monotonicity is equivalent to 
J; l (z0) .  [q + f(zo)ls Z 0 for every q 2 0 ,  z0 2 0, and S 3 S. Thus, (4.2) is obviously 
sufficient for uniform monotonicity. On the other hand, if x is any positive 
n-vector, z O Z O ,  and S 3  S, then there exists a positive t such that q = 
tx - f ( z O )  2 0. Uniform monotonicity implies J;'(zO) . ( tx lS  2 0 .  It is easily verified 
that since the latter holds for all positive x, all the entries of Ji ' (z0)  are 
necessarily non-negative. Also, strong monotonicity for q = O  implies 
J;'(z0) - [ f (zO)ls  2 0 .  This completes the proof. 

Remark 4.4. It is easily verified that if f ( z )  = Mz, then (4.2) is equivalen, to M's  
being a Minkowski matrix (see [ 4 ] ) ,  hence Theorem 4.3 extends [3 ,  Th. 21. 
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