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The concept of an optimal flow in a multiple source, multiple sink network is defined. It 
generalizes maximal flow in a single source, single sink network. An existence proof and an algo- 
rithm are given. 

1. Introduction 

In their famous book, Ford and Fulkerson [ 3 ]  state that the situa- 
tion in which there are multiple sources and sinks, with flow permitted 
from any source to  any sink, presents nothing new. They claim that a 
multiple source, multiple sink network reduces to a single source, single 
sink network by the adjunction of a supersource, a supersink, and several 
arcs. That is of course true if only a maximization of the total flow 
through the network is desired. However, under certain circumstances, 
especially in economical applications, one wishes not only to  maximize 
the total flow but also to  distribute it "fairly" among the sinks or the 
sources. For instance, it might be desirable to  maximize the minimum 
amount supplied to individual sinks ' or, alternatively, delivered from 
individual sources. On the other hand, the labelling method for solving 
maximal flow problems [21 very often generates "unfair" flows, in the 
sense that most of the flow comes from one source, or goes to one sink. 
In fact, this is the nature of the labelling method. 

'r 
In this paper, we introduce an "optimal" solution to  the fair maximum 

flow problem in a network with several sources and sinks. It is based on 
lexicographical maximization of the vectors of individual flows, separat- 
ely for the sources and the sinks. 

This problem is easily handled by making use of the supply-demand theorem 13, Theorem 
11, 1.11. 
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2. Definitions 

A network is a triplet 9'2 = (N, 94, c), where N is a nonempty finite 
set whose elements are the nodes, d is a set of ordered pairs (called arcs) 
of nodes, and c is a function from 94 to the nonnegative reals, called the 
capacity function. The network is assumed to be connected, i.e., for 
every pair of nodes x, y there is a sequence x = x0, x l ,  ..., xm = y such 
that for every i, 1 < i G m ,  either (xi-,, xi) or (xi, xi-l) is an arc. 

We use the following conventional notation. For every pair of sub- 
sets X, Y C N, 

A pair of the form (X, N-f! X) is called a cut. If g is a function from d to 
the reals, denote 

and for every node x denote 

Let S c N be the set of the sources and let T c N \ S be the set of the 
sinks in the network. Aflow is a function f from sQ to the nonnegative 
reals such that 

f k  Y)  G Y) (2.4) 

for all arcs (x, y )  and for every node x 

GO i f x ~ S ,  

2 0  i f x E T ,  

= 0 otherwise. 

We denote the class of all the flows by 7 
Given a flow f, let T(f) denote the ITI-tuple of the numbers net (L t), 

t E T, arranged in order of increasing magnitude. Analogously, let S(f) 
denote the IS[-tuple of the numbers net (f, s), s E S,  arranged in order of 
decreasing magnitude. 

Definition 2.1. (i) A flowfX is called sink-optimal (source-optimal) if for 
every f E F; , T p )  ( S F ) )  is lexicographically greater (less) than or 
equal to  TCf) ( S o ) .  
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(ii) A flow f* is called optimal if it is both sink-optimal and source- 
optimal. 

Definition 2.2. Let 92 = (N, d , c )  be a network and let X be a non- 
empty subset of N. The X-condensed network 92 Ix = (N*, sQ *, c*) is 
defined as follows. Let x* be a new node (x* 6 N) and define 

N* = (N \ X )  U {x*) ,  (2.6) 

\c({x}, X }  if y = x *  and x E N \ X .  

Lemma 2.3. Let f be agow  in 'Yc = (N, d , c) ,  suppose X 3 S, N \ X 3 T, 
and let f be a flow in % /, defined by 

f ( x , y )  i f x , y E N \ X ,  

f(X, { y ) )  if x = s and y E N \ X ,  (2.9) 

f ({x} ,  X )  if y = s and x E N \ X ,  

where s is the new node, being the single source of % Ix. Under these 
conditions, f isa sink-optimal flow in % if and only i f y i s  a sink-optimal 
flow in % 1,. 

Proof. The proof follows immediately from the fact that 

T f l =  TV). (2.1 0 )  

Obviously, an analogous result can be stated for source-optimal flows. 
Without loss of generality, whenever a sink-optimal flow is discussed, the 
network is assumed to have a single source s. It can be easily verified 
that the sink-optimal flow problem in a single source network is equiv- 
alent to the source-optimal flow problem in a single sink network. 

Definition 2.4. The characteristic function of a network is a real-valued 
function v : 2T -, R such that for every A c T 
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v(A) = max Cf(N, A)  - f(A, N): f E 7) .  

Also, if g is a [TI-tuple we denote 

3. On the characteristic function 

The network in this section is assumed to  have a single source and a 
set Tof sinks. An analogous theory can be developed for multiple source, 
single sink networks. 

Remark 3.1. It can be easily derived from the max-flow min-cut theorem 
(see [3, p. 1 I ] )  that for every A c T 

v(A) = min {c(X, N \ X): s E X, A c N \ X), (3.1) 

i.e., v(A) is the minimum capacity of a cut separating A from the source. 

Lemma 3.2. The characteristic function v is 
(i) monotonic: 

(ii) concave: 

V(A u B) G V(A) + V(B) - V(A n B). 

Proof. (i) Suppose that A c B c T. Then, 

v(B) = max Cf(N, B) - f(B, N): f E 3' } 

> max Cf(N, A) -f(A, N): f E 9 ) = v(A). (3.4) 

(ii) Let A and B be any two subsets of T. Let (X, N \ X) and (Y, N \ Y) 
be minimal cuts separating the source from A and B, respectively. 
Thus, s E X n Y, A c N \ X, B c N \ Y, v(A) = c(X, N \ X), and 
v(B) = c(Y, N \ Y). Denote X n Y = P, X \ Y = Q, Y \ X = R,and 
N \ (X u Y) = W. It follows that 
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Corollary 3.3. (i) I f  A c B c T and v(A) = v(B) then for every C c T 

v(A u C) =v(B u C). (3.6) 

(ii) If A and B are disjoint subsets of T such that 

v(A u B) = v(A) + v(B), (3.7) 

then for every A* c A and B* c B, 

v(A * u B*) = v(A *) + v(B*). (3.8) 

Proof. (i) For such A and B, 

and that proves (3.6). 
(ii) Suppose, per absurdum, that A* c A is a subset such that 

v(A *) + v(B) > v(A * u B). 
Then 

v(A u B) = v(B) + v(A) 

in contradiction to the concavity proved in Lemma 3.2. The contradic- 
tion implies that for every A* c A and B* c B 

v(A*) + v(B*) = v(A* u B*). (3.12) 

Remark 3.4. Lemma 3.2 and Corollary 3.3 simplify the computation 
of the characteristic function of a network. Since the characteristic 
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function can be calculated by considering minimal cuts (Remark 3.1), 
it is known that simplified networks may be used [ l  and 41. Specific- 
ally, if (X, N  \ X) is a minimal cut separating A c T from the source s 
and if B c A c C c T, then there are minimal cuts (Y, N \ Y) and 
(Z,  N \ Z )  separating the source from B and C ,  respectively, such that 
Y > X > Z  [4] .  Moreover, in order to find Y, we may use the X-con- 
densed network (see Definition 2.2) rather than the original network, 
and a similar simplification holds for Z .  Also, the union of all the sets X 
such that (X, N  \ X) defines a minimal cut separating the source from A 
is also such a minimal cut [3, p. 131, and the same is true with the inter- 
section of these sets. Thus, in order to find Y we may condense $he 
union and in order to find Z we may condense the complement of the 
intersection. Notice that these extreme cuts can be found directly by an 
appropriate formulation of a labelling algorithm. 

4. Optimal flows 

Lemma 4.1. Let (gt),,T be a ITI-tuple of non-negative real numbers, 
and let v be the characteristic function o f  a single source, multiple sink 
network. A necessary and sufficient condition for the existence of  a 
flow f such that for each t E T 

g, = net OC, t )  (4.1) 

is that for every A c T 

g(A d v(A ). (4.2) 

Proof. Necessity is immediate since 

v ( ~ ) = m a x { C  ~ E A  n e t c  t ) :  f~ 9 ) .  

To prove sufficiency, we adjunct a super-sink as follows. Let t* be a 
new node ( t* E N) and let Cn* = ( N * ,  d *, c*)  be a network, where 

This is also a special case of the second version of the supply-demand theorem [3,  Corol- 
lary 11, 1.2.1. 
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N* = N u  {t*} ,  d *  = d U { ( t ,  t*):  t  E 73, and 

if (x. Y )  = (t ,  t*) ,  
c*(x, Y )  = 

if (x ,  y )  E 94 . 

Suppose that t* is the single sink in '72 *. We claim that (N, { t * ) )  is a 
minimal cut in 72 * separating s  from t*. For let X c N* be such that 
s  E X and t* E X.  It  follows that 

c*(X, N* \ X )  = c*(X, N  \ X )  + c*(X n T, { t* } )  

2 g(T)  = c*(N, { t*)) .  (4.5) 

Now let fM be a maximal flow through 9l *. Necessarily, 

for every t  E T. Thus, i f f  is the restriction off* to  sQ , then for every 
t E  T 

net df, t )  = f"(N, t )  - p ( t ,  N )  = net Cf*, t )  +f*(t, t * )  

=f*( t ,  t* )  =g t .  (4.7) 

Lemma 4.2. Let f be a  flow and for every t  E T denote net Cf, t )  = g,. 
I f  A l ,  ..., Ak are subsets o f  T  such that 

and A = u:=~ then also 

Proof. Without loss of generality we assume that k  = 2. It  follows that 

v ( A ) > g ( A )  =g(Al)+g(A2)-g(Al  n A 2 )  

2 v(A,) + v(A,) - v(A, n A,) 2 v (A)  (4.10) 

and that of course implies (4.9). 

Lemma 4.3. A sink-optimal flow f* is necessarily a maximal flow, ie . ,  
for every f  E 7 ,  

C net C f * ,  t )  Z C net Cf, t ) .  (4.1 1 )  
t € T  t €  T 
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Proof. First, we claim that i f p  is a sink-optimal flow, then for every 
u E T there is a subset A, c T such that u E A, and 

C net p ,  t) = v(A,) .  
t r A ,  

For if this is not true, then according to Lemma 4.1 there is another 
flow f such that 

net u; u) > net p ,  u )  (4.13) 

and for every t E T (t f u) 

net Cf, t )  = net d f * ,  t), 

in contradiction to  the sink-optimality off* .  Now, since T = UUETAu, 
it follows from Lemma 4.2 that 

C net p ,  t) = u(T) .  (4.15) 
tr T 

That, of course, proves maximality. 

Theorem 4.4. For every pair of a sink-optimal flow flT) and a source- 
optimal flow fls), through a network 92 = (N, s4 , c), there is an optimal 
flow f* through this network, such that for every s E S 

net Cr:, s)  = net Cf'('), s), (4.16) 

and for every t E T 

net p, t )  = net ( f ( T ) ,  t). 

Proof. 4 '  Let (X, N \ X) be a minimal cut separating S from T. It follows 
from Lemma 2.3, Lemma 4.3, and the max-flow min-cut theorem that 
for every (x, y )  E (X, N \ X), 

f%, Y > = f ' T ' ( ~ ,  Y = ~ ( x .  Y 1, (4.18) 

This can also be deduced from the labelling procedure. 
This is also a consequence of the symmetric supply-demand theorem [ 3 ,  Corollary 11, 2.21. 
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Notice that the previous results could be stated for source-optimal flows 
as well. Now define for every (x, y )  E d , 

J''~'(X, Y i f x  E X, 
j' * = x ,  y if x j x .  

It is easy to  verify that j'* is a flow indeed (notice (4.1 8), (4.1 9)). Also, 
(4.20) implies (4.16), (4.17), and therefore f* is both source-optimal 
and sink-optimal. 

Remark 4.5. Denote 

and let 8 : RIT I -+ RITI be the function that rearranges the components 
of each vector in order of increasing magnitude. I t  follows from Lemma, 
4.1 that the calculation of a vector g*  E G such that 8(g*) is lexicogra- 
phically maximal in B(G) yields a sink-optimal flow. Analogously, a cal- 
culation in the set G' = {g' = (gl)sES : ...) yields a source-optimal flow. 
An optimal flow can than be constructed via Theorem 4.4. 

The next theorem suggests a direct method for obtaining this g* 

Theorem 4.6. Let To = @ a d  for every A c T let wo(A) = v(A). For 
every k > 0 such that Tk # T, define recursively 

ak = min {wk(A)/IAl: 0 + A c T  \ T k ) ,  (4.22) 

w ~ + ~  (A) = min {v(A U B)-g(B): B C Tk+l )  

Under these conditions there is ko, 1 < ko < [TI, such that Tko = T 
(Hence g,Y: is well-defined for each t E T) and B(g*) is thelexicographical 
maximum of 8(G) (see Remark 4.5). 
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Proof. Obviously, 

so that there exists k o  as specified in the theorem. First, we prove that 
g* E G. Let A be any nonempty subset of T. Let k be the greatest in- 
dex such that A k  -- A n (Tk+l \ Tk) # @. Denote B = A \ Ak. It follows 
that 

Thus, g* E G. 
Note that {ak} is an increasing sequence. For let A C T\ Tk+l, 

B c Tk+l \ Tk, and C c Tk be subsets such that 

It follows that 

Suppose, per absurdum, that there is g E G such that B(g) is lexico- 
graphically greater than 8(g*). For every A C T, 

g(A) < v(A). (4.30) 

Thus, 

m i n { g t : t ~ ~ < m i n { v ( A ) / l A ~ : q J # A c T ) = a 0 .  (4.31) 

On the other hand, 8(g) is lexicographically greater than B(g*) and, 
therefore, 

min {g,: t~ 7')> min{gT: t~ 7')=a0. (4.32) 

Moreover, since 

T1 =U{A : v(A)=aOIAl) (4.33) 

it follows from (4.30) and (4.33) that for every t E Tp 

g, = a, = g;. (4.34) 
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Assume, inductively, that for every t E Tk, 

gt = g:: 

For every A c T \ Tk and B c Tk, 

g(A)  < v(A u B )  - g(B) = v(A u B )  - g*(B). . 
Thus, 

min {gt : T\ Tk} < 
< min {(v(A u B) - g*(B))/IAI: A c T \  Tk, B c Tk} 

On the other hand, since (4.35) holds for every t E Tk , and 0(g) is lexi- 
cographically greater than O(gX), it follows that 

Moreover, it follows from (4.23) and (4.36) that for every t E Tk+l\Tk,  

Thus, (4.35) holds for every t E Tk+l and therefore, inductively, for 
every t E T. In other words, 0(g*) =B(g) and hence, a contradiction. 
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