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Abstract 
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complexity (Note), Theoretical Computer Science 81 (1991) 317-324. 

wondeterministic multivalued functions with values that are polynomially verifiable and guaran- 
teed to exist form an interesting complexity class between P and NP. We show that this class, 
which we call TFNP, contains a host of important problems, whose membership in P is currently 
not known. These include, besides factoring, local optimization, Brouwer's fixed points, a computa- 
tional version of Sperner's Lemma, bimatrix equilibria in games, and linear complementarity for 
P-matrices. 

1. The class TFNP 

Let 2 be an alphabet with two or more symbols, and suppose that R G E* x 2" 
is a polynomial-time recognizable relation which is polynomially balanced, that is, 
(x ,  y)  E R implies that lyl s p ( l x ( )  for some polynomial p. 
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The relation R defines the following computational problem IIR: given an x E E*, 
find any y E E* such that (x, y)  E R, if such a y exists, and reply "no" otherwise. 
The class of all such problems is denoted FNP. The subset of FNP that can be 
solved in polynomial time is called FP. At present it is not known whether FP = FNP; 
this question is equivalent to the P = NP question. 

We call R total if, for every x E X*, there is always a y E X* such that ( x ,  y )  E R. 
We let TFNP (for total functions from NP) be the class FNP restricted to total 
relations R. In this note we point out that TFNP contains unexpectedly many natural 
and diverse problems that are not known to be in FP. 

The class TFNP is not unfamiliar. It could be called F(NP n coNP), as it includes 
factoring and similar problems that are functional variants of problems in N P n  
coNP. Consider two polynomially balanced relations R, and R2 in P such that for 
each x either there is a y with (x, l y )  E R , ,  or there is a z with (x, 22) E R,. Here 1 
and 2 are symbols used to differentiate between the "certificates" of the two kinds. 
A typical problem in F(NP n coNP) asks, given x, to find a y or a z, as appropriate. 

Notice that TFNP coincides with F(NP n coNP). One inclusion takes R = R, u R,, 
and the other takes R l  = R and R2 = 0. Clearly, factoring is in TFNP, as each integer 
possesses a unique decomposition into primes, each with a certificate A la Pratt [13]. 
A related problem is that of the discrete logarithm modulo a (certified) prime p of 
a (certified) primitive root x of p. Notice that both of these problems are in fact 
both in the class TFNP and in the class FUP of unambiguous functions in NP [18] 
(the subset of FNP that consists of all those "multivalued" functions that are known 
to have either one solution or none). We should also mention that TFNP is somewhat 
related to the "one-way function" problem: The inverse of any one-way function 
is in TFNP i f  we restrict our inputs to the range of the one-way function. This latter 
condition makes this problem into a sort of "promise problem" and thus removes 
it from our scope. 

Besides these problems, familiar to the complexity community from cryptography 
theory, TFNP contains many more problems, that do not belong in FUP, and are 
not known to be in FP. Each member Il, of TFNP possesses a different kind of 
guarantee for the totality of R. For some, as with the class PLS [6] recalled below, 
the guarantee is very simple, based on the existence of local optima. For others, 
the guarantee is the consequence of some "polynomially nonconstructive" existence 
proof, such as Sperner's Lemma, Brouwer's Fixed Point Theorem [5,4], or the 
convergence of Lemke's algorithm [lo, 21 in certain cases. We list some of them 
below. 

1.2. The class PLS 

Local optimality is a very rich source of problems in TFNP. The class PLS of 
polynomial local search problems was introduced in [6]. Any problem in this class, 
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is based on an optimization problem. The input to the optimization problem is a 
set of data (e.g., for the traveling salesman problem (TSP), the distance matrix). 
Given such an input x, we can always produce in polynomial time a feasible solution 
(for the TSP, say, the identity permutation of the cities). Also, using the input x, 
we can decide in polynomial time whether a string y E E* is feasible (in the TSP, 
a tour), and calculate its integer cost (in the TSP example, the total length of the 
tour). Finally, we assume that we have defined a polynomial neighborhood structure, 
that is, for some polynomial p, given a feasible solution y and an integer k ~ p ( l x l ) ,  
we can produce in polynomial time the k-th neighbor of y, a feasible solution z of 
x. The problem in PLS is this: given an input x, find a feasible solution which has 
cost no worse than any of its neighbors, that is, a local optimum. 

It is immediate that all problems in PLS are in TFNP, as the existence of local 
optima is guaranteed by the finiteness of the solution space. In [6] several PLS 
problems were shown to be PLS-complete. There are now new, and perhaps more 
interesting, PLS-complete problems [9, 161, including finding a local optimum under 
the Lin-Kernighan local search heuristic [14]. 

As was pointed out in [6], there are problems in PLS that are not the result of 
compromising for a local instead of a global optimum, but in which any local 
optimum is the actual desired result. An example, due to Knuth, is the following: 
given an m x n matrix A, m < n, we are looking for an n x n submatrix B such that 
B-'A contains elements with absolute values at most 1. This is tantamout to finding 
a submatrix which is a local maximum, with cost the absolute value of the deter- 
minant, if any two such submatrices are considered neighbors whenever they differ 
by one column. 

1.3. Brouwer's $xed points 

Brouwer's Theorem states that if D is homeomorphic to a simplex and f :  D+ D 
is continuous, then f has a fixed point, i.e., there exists an x E D such that f (x )  = x. 
An interesting computational problem is as follows. Suppose f is continuous with 
Lipschitz constant 1, i.e., (f (x)  - f(y)l s lx - yl, and let E > 0 be given. Find an 
&-approximate jixed point, i.e., an x such that I f (x )  - XI< E. It was shown in [4,5] 
that any algorithm which uses f as an oracle takes S1(1/&) steps to calculate an 
&-approximate fixed point. 

Needless to say, Brouwer's Theorem guarantees that the following problem is in 
TFNP: given the description of a Turing machine which computes f and an E > 0, 
find an &-approximate fixed point. The results in [4,5] do not provide an exponential 
lower bound for this problem, as an algorithm may examine the structure of the 
machine in generating a solution. 

To guarantee that the Turing machine indeed computes a continuous function 
with Lipschitz constant 1, we can restrict our functions to such ones that interpolate 
between values computed at points whose coordinates are integer multiples of E, 

and such that no two such values differ by more than E. The difficulty of the problem 
is preserved (and the lower bounds of [4,5] still hold). 
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1.4. Sperner's Lemma 

For simplicity we discuss here only the two-dimensional case. Consider a triangle 
with vertices labeled 1, 2, 3, and any triangulation of its area (say, the standard 
n x n triangulation depicted in Fig. 1). Suppose we label the nodes of the triangula- 
tion by 1, 2 or 3, with the only restriction that 1 does not appear on any node on 
the edge (2,3) of the original triangle, 2 does not appear on (1,3), and 3 does not 
appear on (1,2). Sperner's Lemma states that there is always a triangle of the 
triangulation whose vertices are labeled 1, 2, 3. The proof of Sperner's Lemma is 
constructive, albeit by an algorithm that takes 0 ( n 2 )  steps. Sperner's Lemma can 
be used in turn to provide a constructive proof of Brouwer's Fixed Point Theorem 
(the original proof by Brouwer was nonconstructive in a way that he considered 
appalling). The associated computational problem, which we call TRICHROMATIC 

TRIANGLE, is as follows. Given a number n, the nodes of the triangulation correspond 
to triples (i, j, k) (i, j, k Z 0, i + j +  k = n). Given the description of a polynomial-time 
Turing machine that assigns to any point (i, j, k) in the triangulation a label respecting 
the restriction on the sides (i.e., a Sperner labeling), find a trichromatic triangle 
(that is, one with all three labels). The problem is obviously in TFNP. 

Fig. 1. Sperner's Lemma. 

1.5. Bimatrix equilibrium points 

A two-person game is played by two players, A and B. Player A has m (pure) 
strategies 1, . . . , m, and player B has n (pure) strategies 1, . . . , n. For each strategy 
i of player A and j of player B, we are given the payoffs Aij and Bij to A and B, 
respectively. 

A mixed (or randomized) strategy for player A is a vector x = (x,, . . . , x,)~(x 3 O), 
C xi = 1) of probabilities assigned to the pure strategies of A. Similarly, a mixed 
strategy for B is a vector y = (y, , . . . , y,)T (y 3 0, C y, = 1). The expected payoffs to 
A and B, associated with a pair of mixed strategies (x, y),  are x T ~ y  and X ~ B ~ ,  
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respectively. A pair (x,  y )  is called a Nash-equilibrium if x T ~ y  3 ( x ' ) ~ A ~  and xTBy 
xTBy' for all other mixed strategies x' and y'. Brouwer's Fixed Point Theorem implies 
Nash's celebrated result that every game has a mixed strategy equilibrium. This 
equilibrium is in fact a "basic feasible solution", see [lo], and thus it has a rational 
number representation of acceptable length.' 

In our opinion, an important open problem in complexity theory is whether there 
exists a polynomial-time algorithm for computing a mixed strategy equilibrium for 
a two-person game. The problem is obviously in TFNP. 

1.6. Linear complementarity 

Suppose that we are given an n x n integer matrix M and an integer n-vector q. 
We are asking for vectors x and y such that 

Notice that the latter condition requires that x and y be complementary, i.e., for 
every j, if x, # 0, then y, = 0. Hence, this problem is called the Linear Complementarity 
Problem (LCP). The LCP generalizes the convex quadratic programming problem 
(including the linear programming problem) and (0, 1)-programming. Thus, it is 
NP-complete in general [12]. However, it can be solved in polynomial time by the 
ellipsoid method if M is positive semidefinite [12]. 

There is an important case of the LCP whose complexity is unknown: Suppose 
that M is a P-matrix, i.e., all of its principal minors2 are positive. In this case, the 
LCP is guaranteed to have a unique solution [15]. Moreover, this solution can be 
found in exponential time by Lemke's algorithm [lo] or simply by a complete 
enumeration of bases; it follows that it too has a reasonably long rational representa- 
tion. Other algorithms for this problem were recently developed in [7,8], with 
complexity bounds which depend on certain condition numbers of the matrix M. 

It is not known at present how to solve the LCP with a P-matrix in polynomial 
time. Neither is it known how to tell in subexponential time whether a matrix is a 
P-matrix. 

The following problem (see [ I l l ) ,  which we call P-LCP, is in TFNP: given an 
instance M, q of the LCP, produce either a nonpositive principal minor of M or a 
solution of the LCP. It would be extremely interesting if the problem P-LCP were 
in FP. 

This concludes our list of important and most intriguing problems that are in 
TFNP, and for which membership in FP would be very interesting, but is open. 
However, there are more examples one could list. An interesting graph-theoretic 
one was pointed out to us by S. Poljak. It is well-known (see [I]) that in any cubic 
graph, there is an even number of Hamiltonian circuits through each edge. The 

This result is true for any finite number of players. However, with more than two players we need 
a different model of computation to discuss the interesting computational question. 

A principal minor of M is a determinant of a submatrix Mss of M obtained by deleting from M 
all the rows and columns with indices not in a certain subset S_c {I, .  . . . , n). 
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proof is constructive, but goes through a possible exponential number of Hamiltonian 
paths to find the "mate" of a given Hamiltonian circuit. The interesting problem is 
this: given a cubic graph, an edge and a Hamiltonian circuit through the edge, find 
another Hamiltonian circuit through this edge. 

We should point out here the difference between the problems we discuss in this 
note and some other problems where solutions are not only guaranteed to exist, 
but are in abundance, placing those problems in random polynomial time (example: 
concentrators with n nodes, n in unary). The existence of solutions in our problems 
above is not established by a probabilistic argument, and solutions are not, generally, 
in abundance. 

2. On completeness 

It is worth examining whether there are notions of completeness that may shed 
light on the complexity of these problems. A reduction from problem 17, to problem 
l7, is a pair of polynomially computable functions f and g such that, for any x E I*, 
(x, g ( ~ ) )  E R iff (f(x),  y)  E S. We call a problem complete for class FC if it is in 
FC, and all problems in FC reduce to it. As expected, we can preclude using the 
notion of NP-completeness for showing that such problems are intractable, as 
expressed in the following theorem. 

Theorem 2.1. There is an FNP-complete problem in TFNP ifand only if NP = coNP. 

Proof. The "if" part is trivial: if NP= coNP, then any FNP-complete problem is 
in TFNP (recall that TFNP= F(NPn  coNP)). Suppose now that an FNP-complete 
problem IIR is in TFNP, and that the functional version of SATISFIABILITY, denoted 
FSAT, reduces to IIR via f and g. Then any unsatisfiable Boolean formula B has 
a certificate of unsatisfiability, namely, the string y (guaranteed to exist by the fact 
that l7, E TFNP) such that (f(B), y) E R and g ( y )  = "no". 

Several specialized cases of this argument have been used elsewhere [6,11]. 
It is quite interesting, in view of Theorem 2.1, that in some cases of problems in 

TFNP, if together with the input we are also given one of the solutions that are 
guaranteed to exist, then the problem indeed becomes NP-complete. Consider, for 
example, the following variant of the computational problem associated with Sper- 
ner's Lemma (see Subsection 1.4 above), which we call SECOND TRICHROMATIC 

TRIANGLE: given an integer n, a polynomial-time Turing machine which computes 
a Sperner label for each vertex (i, j, k), and a trichromatic triangle, recognize whether 
there exists another trichromatic triangle. 

Theorem 2.2. The problem SECOND TRICHROMATIC TRIANGLE is NP-complete. 

Proof. We only sketch the proof here. Given a Boolean formula B with m variables, 
we construct a Sperner labeling of the triangle, where n = 2m+4. It will be apparent 
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Fig. 2. The construction for Theorem 2.2. 

that a polynomial-time Turing machine that assigns the appropriate labels can be 
constructed. The labeling is shown schematically in Fig. 2, in terms of the areas of 
the triangle labeled 1, 2, and 3. All "narrow areas" have width two units. There is 
an obvious point where the three colors meet, called x in the figure. All other 
trichromatic points will be of the form (i, j, j )  (i.e., lying on the height of the triangle 
from vertex I),  such that the binary description of i l l 6  or ( i - 8 ) / 1 6  is a satisfying 
truth assignment. 

A similar result can be shown for the variant of the Brouwer fixed-point problem, 
where we are asking for an approximate fixed point not in the neighborhood of the 
given one. 

Related results with regard to the Nash-equilibrium problem can be found in [3]. 
Finally, can we hope to have TFNP-complete problems? As with other classes 

(such as NPncoNP, R, BPP, etc.) whose machine-based definition is semantic 
instead of syntactic (i.e., depends on a property that the machine exhibits when 
computing on any input), we do not expect such problems to exist. 
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