PARALLEL ALGORITHMS FOR FINDING THE MAXIMUM

AND THE MEDIAN ALMOST SURELY TN CONSTANT-TIME

Nimrod Megiddo®

Abstract. It is shown that the maximum and the median of a set of
n elements can be found by n processors in 0(l) time with
probability approaching 1 as n tends to infinity., The maximum-
finding algorithm runs on the WRAM model whereas the median-finding
algorithm is in the paraliel computation tree model. These models
are of course strong but, as we have shown in a previous paper,

are very useful for designing good serial algorithms based on
parallel ones. Our parallel probabilistic algorithms in this

paper yield interesting serial probabilistic algorithms,

*Carnegie-Mellon University, GSIA, Pittsburgh, PA 15213

1. Introduction

We will discuss here probabilistic algorithms that make no errors, i.e.,
algorithms which involve random moves and yet always terminate with the correct
outcome., The time-complexity is measured by the expected time that it takes to
solve the worst-case instance. Thus, the expectation is defined relative to the
internal randomization of the algorithm. 1In fact, for the algorithms presented
here we can make stronger claims regarding the (random) running time in the
worst-case. The format will be the following: The probability p(n) that the
algorithm terminates within t(n) time units tends to 1 as n approaches
infinity. Moreover, t(n) will be constant!

To our knowledge, there is no good example in serial computation where the
option of randomization leads to a significantly better time bound, given that
the correct outcome should always be produced. It is thus interesting to find
that randomization is very helpful in parallel computation. This is demonstrated
in two cases: Finding the maximum and the median. Our main motivation comes
from [M1] where we showed how to use good parallel algorithms in the design of
serial algorithms, Here we introduce a new feature which lets us produce
interesting probabilistic algorithms from parallel probabilistic ones. Applications
of the results of this paper are given in a companion paper [M2] where a dynamic
computational geometric problem is solved with the aid of our algorithm for
the maximum. An application along the same lines was also given by Zemel [Z].

Our first example is of finding the maximum. It has neen proved by
L. Valiant [V] that 1loglog n comparisons are required for n processors in
order to find the maximum in a set of n elements. Valiant also gave an
O0(loglog n) algorithm in the strong model of comparisons (later called the

parallel computation tree [BH]), which was later extended by Shiloach and

Vishkin [SV] to a weaker model. It is interesting to note that the exact maxi-
mum can be found by a randomizing algorithm in expected 0(l) time on n
processors, in the latter model.

The second example deals with the general selection problem. An open
question in parallel computation is whether selection is substantially easier

than sorting. The question was raised by Valiant [V] in the context of the

parallel computation tree model. It is not known how to deterministically sort
a set of n elements on n processors in O0(log n) time. On the other hand
an expected number of ((log n) comparisons is required for sorting on n
processors. Surprisingly, it is possible to exactly solve the selection prob-
lem in O0(l) expected time in the parallel computation tree model. So, this
is another case where randomization helps significantly.

We first let each of \n processors sample an element of the set. Since
this is done in parallel, some of the processors may sample the same elements
so this is like "sampling with replacement." The expected number of distinct
elements in the sample is \n - o((n).

In the next step we find the maximum of the sample, deterministically
in constant-time, by comparing every pair of sample elements. The details of
the implementation of this step in the WRAM mcdel (requiring concurrent reads
and writes) are in [SV].

Given the sample-~maximum, we now compare each element of the set with
this maximum and '"discard" the ones that are smaller. This is done in constant-
time (subject to concurrent read). 1If the number of the remaining elements is

smaller than \n then it takes one step of comparisons to find the maximum,

(See [SV] for the implementation). Otherwise, we again sample |n elements,
determine their maximum, and so on.

We will now prove that the probability, that we will be done after two
sampling steps, is approaching 1 when n tends to infinity.

Let Xl""’xs be independent random variables uniformly distributed over
[O,1],lwhere s = |Vn]. Let ‘Yi = [nXi1 (i = 1,...,s) so that Yi represents the

rank of the element sampled by X, - Let X denote the order

@ S S5

. - .

statistics of {Xl,...,XS} and let Y<1) <... < Y sy be the order statistics

of {Yl,...,YS}. It is well-known (see [W, p. 236]) that X(s) has the density

function f£(x) = st—l so that its mean is EEI and its variance is ————§§~——*~ .
(s+1) " (s+2)

Asymptotically, the mean of Y sy is hence n - {n and its standard

deviation is n = /7 VBZ AIVE. Thus, the probability that Y(S) > n-n1/2+€

\/ (n+1)” ([nt2)

approaches 1 for every € > 0. Equivalently, the number of remaining elements
n1/2+e

after the first step is of), with probability approaching 1, for every

e > 0. Now, consider the second step. Using the same notation, let now

Y, = Tn1/2+€-

i X;1. Thus Y, is the rank of the element sampled by X, (during

the second step), relative to the remaining set, assuming this set has n1/2+e

elements. Now the mean of Y(S) is asymptotically equal to
n1/2+€) n1/2+e

~ Vn+l

Thus the mean of the number of elements remaining after the second step is
icall € Obvi . 1/2 .
asymptotically n . viously, the actual number is less than n , with

probability approaching 1.

3. Finding the Median

The algorithm for the median is in the parallel computation tree model,
i.e., we count only comparisons as time consuming operations. The algorithm
is related to that of [FR] for serial selection.

Like in the case of the maximum, we start by sampling \|n elements.
Next, we select from the sample two elements, namely, the ones whose ranks
relative to the sample are %'VE + ne, where € >0 is a number to be determined
later.

Now, given the two elements, it takes two rounds of comparisons to find
their ranks relative to the input set, merely by comparing them with every
element. Then, it can be decided which elements may be discarded and what is
tﬁe rank of the median relative to the remainder of the set. The remainder
consists of the elements that lie between the two we have selected, with
probability approaching 1.

Assume that we are left with m elements, and we need to find our median,
which has a rank of r relative to the remainder., If m <\{n then we can
terminate in one step of comparisons. Otherwise, we again sample \n elements
from the remainder and select the ones whose ranks, relative to the sample, are

§‘¥VE + n®. The process continues in this way until we are left with less
than \n elements.

We will now prove that the probability, that we will be done after threg

sampling steps, is approaching 1 when n tends to infinity, provided

1 1
Z < e < 3 -
Let Xi’ Yi’ X(i) and Y(i) be as above., The variable X(k) has the

Tk
beta distribution B(k, s-k+1) [W, p. 236]1. As such, its mean equals paric)

while its variance is equal to ——Ejﬁékill— (see [W, p. 174]1). If s =\n
(s+1) (s4+2)

n-n® e-1/2
- n

+ 0(1—). This
Vol Vo
implies that the expected rank of the element sampled by X(k) (i.e., the mean
1/2+¢€
n

€
and k = ¢ yn - n, then the mean is

of Y(k)) is o n - is equal to

+ 0(/n). Similarly, the variance of X(k)

(@ VB-n*) (/A - o V1) _ g(l-o)
(VB+1)?(\/E+2) Vo

Thus, the standard deviation of X(k) is asymptotically equal to
V;zi—:—as-n-llé, so that the standard deviation of Y(k) is asymptotically
Vol = o3-n>/%. It thus follows that if e >21;, then the probability, that
Y(k) is less than om, is approaching 1. Analogously, for £ =qa\Vn + ne,
the probability that Y(£§ is greater than on 1is approaching 1. It thus
follows that, with probability approaching 1, the (an)-th'opder‘sﬁatistic
of the set is between the elements sampled by X(k) and X(z).

We will now consider the number of remaining elements, given that we are
left with the middle range.

Conéider the difference X(L) - X(k)' This random variable also has

_ the beta distribution (see [W, p. 238])

B(L -k, s ~ 4 +Kk-+1).

€

o 2ne—1/2

-k
Its mean equals f;i, which in our case is . The corresponding

Yo+l

number of input elements is asymptotically 2n1/2+€. The variance of X(L) - X(k)

is equal to

(L-k) (s-AHet1) _ 2n°([n-2n°+1) ~ 2n8 L
(s+1)%(s42) ([mHD) (VR+2)

The standard deviation of X(z) - X(n) is asymptotically Vﬁ-n51/2+€/2

that the standard deviation of the corresponding number of elements is

asymptotically |2 n1/2+€/2. Thus, with probability approaching 1, the number

1/2+e

of remaining elements after the first sampling step is O(n). The second

sampling step will leave us (with probability approaching 1) with only

ne-l/2 1/2+€) = O(nze) elements, Recall that this holds for e >»%. Now,

2 -0(n
a third sampling stop will leave us (with probability approaching 1) with

e-1/2 3e-1/2
n n

2 -O(nze) = 0() elgmen;s:!'Thus, if % <e < %, the third step
will leave us with less than \n elements, with probability approaching 1.

In other words, we will almost surely not need more than three sampling steps.

4, Conclusion

The main difference between the two algorithms is due to the fact that
the maximum is of course always not smaller than the sample-maximum whereas
the position of the median relative to the sample-median is not known in
advance, and requires counting the number of "winners" in a round of comparisons.
This is essentially why we cannot run our median-finding algorithm in 0(1)
time in other models. However, the power of randomization in parallel computa-
tion is surprising and the potential with respect to probabilistic serial

algorithms is very promising.

~ Acknowledgments

Discussions with W. F. Eddy, L. Rudolph and U. Vishkin are gratefully

acknowledged.

References

[BH] A. Borodin and J. E. Hopcroft, "Routing, Merging and Sorting on Parallel
Models of Computation,” Proceedings of the 14th Annual ACM Symposium |
on Theory of Computing (1982) 338-344.

[FR] R. W. Floyd and R. L. Rivest, "Expected Time Bounds for Selection."
Communications of the ACM 18 (1975) 165-172. ’

[M1] N. Megiddo, "Applying Parallel Computation Algorithms in the Design
of Serial Algorithms," Proceedings of the 22nd IEEE Symposium on
Foundations of Computer Science (1981), 399-408.

[M2] N. Megiddo, "Poly-log Parallel Algorithms for LP with an Application
to Exploding Flying Objects," preliminary report, November 1932,

[SV] Y. Shiloach and U. Vishkin, "Finding the Maximum, Merging and Sorting
in a Parallel Computation Model," J, Algorithms 2 (1981) 88-102.

[v] L. G. Valiant, "Parallelism in Comparison Problems," SIAM J. Comput. 4
(1975) 348-355,

[W] S. M. Wilks, Mathematical Statistics, John Wiley & Sons, New York, 1962.

{Z] E. Zemel, "Randomized Parallel Algorithms for Selection with Applications,"
Working paper, November 1982.

