
SIAM J. COMPUT.
Vol. 12, No. 4, November 1983

@ 1983 Sockety for Industrial and Applied Mathematics
0097-5397/83/1204-0011 $01.2510

NEW RESULTS ON THE COMPLEXITY OF p-CENTER PROBLEMS*

NIMROD MEG1DDO:I AND ARIE TAMIR?

Abstract. An O(n log3 n) algorithm for the continuous p-center problem on a tree is presented.
Following a sequence of previous algorithms, ours is the first one whose time bound in uniform in p and
less than quadratic in n. We also present an O(n log2 n log log n) algorithm for a weighted discrete p-center
problem.

Key words. location, p-centers, parallel computation, tree partitioning, parametric combinatoriai
optimization

1. Introduction. The p-center problems are defined on a weighted undirected
graph G = (V, E). Each edge (i, j) has a positive length dip An edge is identified with
a line segment of length dij so that we can refer to any "point" on (i, j) at a distance
of t from i and dij - t from j (0 5 t 5 di j) . The set of all such points of the graph is
denoted, by A. If x, y E A then by d (x , y) we mean the length of the shortest path
from x to y.

The continuous p-center problem is to find p points yl, . . , y, E A so as to
minimize

Max Min d(x, yj).
x c A I S j S p

Intuitively, we wish to locate p "centers" anywhere on the graph so as to minimize
the maximum distance between any point and its respective nearest center. An optimal
solution y l , . , y, is called a p-center and the corresponding largest distance is
denoted r, and is called the p- radius. Results on other versions of the p-center problem
in which the supply points must be located on vertices can be found in [6], [7], [8],
[9], [lo], [l l] , [12], [13], [16]. Such problems have been shown to be NP-hard on
general graphs [13] and it has been conjectured that the continuous p-center problem
should be "difficult" on general graphs and, indeed, we include in the last section a
proof of its NP-hardness. Our discussion here is hence limited to tree graphs. Our
main result in this paper is a substantial improvement of the upper bound on the
complexity of the continuous p-center problem on a tree. We devise in this paper an
algorithm which runs in O(n log3 n) time, n = I VI. As is apparent from Table 1, the

TABLE 1
Algorithms for the continuous p-center problem on a tree.

Reference Bound

(1) Handler [I l l , [I21 O(n) forp 5 2
(2) Chandrasekaran & Daughety [2] polynomial, not specified
(3) Chandrasekaran & Tamir [41 O(min (n2 log2 p, n2 log n + p log2 n))
(4) Megiddo, Tamir, Zemel &

Chandrasekaran 1161 O(min (n2 log p, pn log2 n))
(5) Chandrasekaran & Daughety [3] 0(n210gp)
(6) Frederickson & Johnson [61, [71, [81 O(n min (P, n) log (max (E
(7) Megiddo & Tamir O(n log%)

* Received by the editors November 13, 1981, and in final form November 5, 1982.
+ Department of Statistics, Tel Aviv University, Tel Aviv, Israel.
t The work of this author was partially supported by the National Science Foundation under grant

ECS-8121741. Currently visiting Department of Computer Science, Stanford University, Stanford,
California 94305.

752 NIMROD MEGIDDO AND ARIE TAMIR

improvement is in two respects. First, our bound is the only one which is uniform
with respect to p, while all previous algorithms run in time which tends to infinity
with log p, even when the tree is fixed. Secondly, all previous bounds are at least
quadratic with n (for general p) while ours is o(nl") for any E > O ; however, for
values of p that are O((1og n)2), Frederickson and Johnson's algorithm is better.

In order to explain the contribution of the present paper, we start with an overview
of the previous results. The first polynomial algorithm was given by Chandrasekaran
and Daughety [2]. This algorithm is in fact an application of a general method of
solving parametric combinatorial problems presented in Megiddo [14]. The para-
metrization enters here in the following way. Consider the problem P(r) of locating
a minimum number of "centers", M(r) , so that every point is within a distance r from
at least one center. The p-center problem is to minimize the value of the parameter
r subject to M(r) S p . The function M(r) is a step function and the problem P(r) is
solvable in O(n) time for a fixed r [2]. The method presented in [14] simulates the
computation of M(r) where r belongs to a certain interval and is not just fixed at a
unique value. The interval is repeatedly narrowed, always containing the minimal r
such that M (r) S p . It then finds that minimal r exactly. The details are further
developed throughout the present paper.

Chandrasekaran and Tamir [4] proved that the jump points of M (r) are of the
form d(x, y)/21 where 1 is integral and x, y are vertices of degree 1. In particular,
the p-radius r, belongs to the set

Chandrasekaran and Tamir's algorithm is based on that fundamental result. Note that
the cardinality of R is 0 (n 2 p) . However, R has a special structure which enables
searching in R without generating the entire set in advance. Indeed, Megiddo, Tamir,
Zemel and Chandrasekaran [16] found a succinct representation of all the distances
d(x, y), which allows for finding the kth longest path in the tree as well as solving
discrete p-center problems in O(n log2 n) time despite the cardinality of {d(x, y))
being ~ (n '1. This representation also yielded the O(min (n2 log p, pn log2 n)) bound
for the continuous p-center problem. Later, Frederickson and Johnson [S] , [6], [7],
[8] found an even better representation which yielded an O(n log n) algorithm for
the unweighted discrete problems as well as the O(n min (n, p) log (max (pln, n/p)))
algorithm for the continuous p-center problem. Our algorithm in this paper is based
on a more efficient search in the set R which exploits both the special structure of
the set {d(x, y)} and the monotonicity with respect to I (see the definition of R). The
search employs parallel computation algorithms along the lines suggested in Megiddo
[W.

Another related problem which we attack in the present paper is the following
weighted discrete p-center problem on a tree. Assuming that every vertex i has a
positive weight w i associated with it, find p points y l , . , y , E A so as to minimize

Max Min wid(i, yj).
i cV 1 S j S p

This problem is solved in [13] in 0 (n 2 log n) time. A better implementation yielding
an 0(n2) bound appears in [4]. The optimal value of the objective function (i.e. the
analogue or r,,) is known [13] to belong to the set

NEW RESULTS O N COMPLEXITY OF p-CENTER PROBLEMS 753

which is of cardinality O (n ' 1 . Applying methods similar to those used in the continuous
case, we find the solution in this case in O (n log2 n log log n) time. We remark that
the case where the p-centers may be established only at the vertices is solved in [16]
in O (n log2 n) time.

2. The continuous problem.
2.1. An overview. It has been pointed out earlier that the p-radius is of the form

d(x , y)/21 where x, y E V and I d 1 S p . It will be convenient for us to deal with the
set R of all these candidates for rp by looking at the functions kx,(r), defined for all
X , y E V :

Obviously, k,, is a step function with jumps at ld(x, y) /21] , 1 = 1, 2, We will
determine an interval [a, b] such that M (a) >p 2 M (b) and such that all the kx,'s are
constant over (a , b] . These characteristics imply that a < r p S b (since rp =
Min {r: M (r) S p)) and hence rp = b, since at least one of the functions k,, must jump
at rp.

The determination of the final interval is carried out in two phases. During the
first phase an interval [ao, bo] is found such that ao<rp 5 b o and at least the kij(r) 's
corresponding to edges (i, j) are constant over (ao, bo]. During the second phase the
set of pairs (x , y) for which k,, (r) is constant is gradually increased (while the interval
is gradually narrowed down) until we reach the final interval. The second phase is
organized in the form of O(1og n) stages determined by a centroid decomposition
[16], [6] of the tree. During each stage we consider 0 (n 2) pairs of vertices, however,
only 0(log2 n) jump points are tested, i.e., M (r) is evaluated at no more than 0(log2 n)
jump points.

2.2. Phase 1. Let the tree be rooted at an arbitrary vertex u. We will use the
convention that if (i, j) is an edge such that j is closer to u than i, then i belongs to
the set of points of (i, j) while j does not. Thus every vertex except for u belongs
precisely to one edge.

Consider the related problem P(r) (see 9 1) . It is easy to verify the truth of the
following:

ASSERTION 1. In order for every point to be within a distance of r from at least
one center, at least k i j (r) centers must be located on the edge (i , j) (including exactly
one endpoint).

ASSERTION 2. In order to satisfy the requirement mentioned in Assertion 1 with
respect to points of the edge (i , j) it is sufficient to allocate ki j (r) + 1 centers to that edge.

COROLLARY. I f f (r) = C(i , j)EE ki j (r) then

Consider the case r = rp. First, by definition M (r p) S p . We also claim that p -
(n - 1) < M(rp) . For if M (r p) + (n - 1) 5 p then rp 5 ~ M (~ ,) + (~ - I) and ~ M (~ ,) + (~ - I) < kr,)
since by adding one more center per edge the radius certainly decreases. On the other
hand, obviously r ~ (~ ,) = rp and a contradiction has been reached. It now follows that

For every r the function f jumps at r if and only if one of the kij7s jumps at r.
Consider the number r' = & C(i,j)EE d(i , j) . By the definition of f, f (r ') s
C(i , j)EE d(i , j) /2rf = p. Also f (r ') > C(i,j),E ((d(i , j) /2r f) - 1) = p - (n - 1). We have, thus,

754 NIMROD MEGIDDO AND ARIE TAMlR

obtained the following bounds,

Compute M(r l) to determine whether r' 2 r, or r '< rp. Suppose first that r ' 2 rp and
imagine that we continuously decrease r, starting from r = r' until we reach f (r) = p + 1.
It follows from the above discussion that we will approach at most p + 1 - f (r') < n
jump points of f. All these jumps are at points of the form $dij/(kii(r1)+[) where
1 5 l d p + 1 - f(rl) . As a matter of fact, these jumps occur at the p + 1 - f (r l) largest
elements of the set

Since R o is naturally partitioned into n - 1 sorted subsets, corresponding to the n - 1
edges, we can find and sort all these jumps in O(n + (p + 1 -f(r1)) log n) =
O(n +min (n,p) log n) time using a standard priority queue [I]. Similarly, if r1<rP
imagine that we continuously increase r, starting with r = r l until we reach f(r) =
max (0, p -2(n - 1)). It follows that we will approach at most f(r l)-
max (0, p - 2(n - 1)) 5 min (2n, p) jump points of f. Using the scheme of the previous
case, all these jumps are found in O(n + (f(r l) -max (0, p - 2(n - 1)) log n)) time. In
any case, the effort so far is O(n +min (n, p) log n).

Once we have all the jumps in the relevant domain (depending on whether r' < r,
or r' 2 r,), we can search for two consecutive jump points ao, bo such that a. < r, S bo.
The search amounts to O(1og (min (n,p))) evaluations of the function M (r) . This
completes Phase 1, at the end of which we have the interval (ao, bo] such that kij(r),
(i, j)EE, is constant for all rE(ao, bo]. The total effort during this phase uses
O(q log n + n log q) time where q = min (n, p) . We note in passing that at this point,
when we have kij(rp), (i, j) E E, rp can be found in 0 (n 2) time using the method of [14]
as described in 0 1; this is because the evaluation of M(r) takes O(n) time and the
method of [14] always leads to no more than the squared amount of time of the
master algorithm used. We note that the number of centers on (i, j) is either kii(rp) or
kii(rp) + 1 so that the value of M(r) is computed O(n) times.

2.3. Phase 2. When the second phase starts, we have an interval (ao, bo] such
that a. < rp 5 bo, over which the functions kij(r) (for (i, j) E E) are constant; we have
to narrow this interval down until all the k,,(r)'s become constant. We will describe
the algorithm here in a recursive way.

Given is a tree T together with an interval (a, P] such that a <rp 5 P and the
functions ki,(r) ((i, j) E E) are known to be constant over (a, PI. Our recursive routine
in the present subsection will produce the following: A subinterval (a ' , P']
(a 5 a ' < rp S p' 5 p) will be found such that all the functions k,, (r) (for any vertices
x , y of T) will be constant on (a ' , P'].

Let c be a centroid of T, i.e., T can be represented as a union of two subtrees
TI and T2 whose only common vertex is c, such that each has at most of the vertices
of T. Such a vertex can be found in linear time [lo], [13], [16]. We call this partition
a centroid decomposition [7], [16]. The decomposition may proceed into the subtrees
and their components and so on, and that whole hierarchy (done in O(1og n) phases)
will be called a total centroid decomposition.

We first apply the routine recursively to the trees TI and T2. We thus obtain an
interval (aO, Po] (aO< rp 5PO) such that k,,(r) is constant on ((YO, Po] whenever x and

NEW RESULTS ON COMPLEXITY O F p-CENTER PROBLEMS 755

y are in the same subtree (either T1 or T2). It takes linear time to find all the distances
d(x, c) and d(c, y) (x E T I , y E T2), and hence the constant value over (ao, Po] of kXc(r)
for x E TI and of kc,(r) for y E T2 is also assumed to be known. Moreover, kXc(r) +
kc, (r) 5 k,, (r) 5 k,, (r) + kc, (r) + 1. Thus, the function k,, (r) (x E TI, y E T2) may have
at most one jump in the interval (ao, Po], namely, when it jumps from kXc(r) + kc,(r) + 1
to kxC(r) + kc, (r). This occurs at the value

Denote a, = id(x, c), by = &d(c, y), c, = kxC(r) and d, = kc, (r) + 1. As a matter of fact,
we now have to search for r, within the set

In other words, we look for a ' , P 'E R'U {ao, Po) such that CYO S a t< r,, S p f S p o
and (a' , p') fl R' = 0. It is explained in the Appendix how to perform this search in
O(n log2 n) time. It follows from the definition of the centroid that the total centroid
decomposition consists of O(1og n) phases. Therefore our routine runs in O(n log3 n)
time.

This implies that the continuous p-center problem is solvable by our algorithm
in O(n log3 n) time.

3. The weighted discrete case. As pointed out in the Introduction the weighted
discrete case is equivalent to searching for the optimal value, denoted here by r*, in
the set R* = {d(x, y)/(w;' + w ; I) : x, y E V). The solution process here is quite similar
to that of the continuous case. It is easy to see that an adaptation of Phase 2 to the
present problem solves the problem in O(n log3 n). However, a further improvement
is yet possible.

All the intervertex distances d(x, y) can be organized in the form d(x, y) =
d (x , ci) +d(ci, y) where ci is a centroid in the total decomposition of our tree (see
P 2.3 and [7], [16]). Let I denote the index set of these centroids ci and let T! and
T? denote the two subtrees given by the decomposition of a previous subtree as
induced by ci (see •˜ 2.3). We then have to search for r* in a collection of sets of the
form

i E I, where Cis, IT! / = O(n log n) and Ci,,/T: I = O(n log n).
The search procedure employed here is similar to the two-stage scheme described

in the Appendix. In the first stage we identify an interval [sl, tl] such that s l < r* 5 tl
and such that for each i, the linear order induced on the vertices of T! by the numbers
w i l r -d(x, ci) is independent of r provided r E [sl, tl]. For each i E I we employ IT! I
"processors" for sorting {wilr - d(x, ci): x E T!), We use Valiant's [18] parallel sorting
algorithm which takes O(log IT! / log log IT: 1) time. Thus, C IT: I = O(n log n) pro-
cessors suffice for parallel sorting of each of the 111 sequences {wilr -d(x, ci): x E T! }
in 0 (log n log log n) time.

As in the Appendix, a single step of the parallel sorting scheme gives n log n
critical values for the parameter r. Given these n log n values, and an interval (so, to]
which contains r*, we can in O(n log n) time (as in the Appendix) narrow down the
interval so that it will still contain r* but none of the above n log n critical values in

756 NIMROD MEGIDDO AND ARIE TAMIR

its interior. Hence, the total time for the first stage is O((C,,,IT! I +
n log n) log n log log n) = O(n log2 n log log n).

The second stage is the same as Stage 2 of the Appendix, with the exception that
here we use c ~ , , I T T I = O(n log n) processors. However, the total effort for this stage
still remains O(n log2 n). Thus, the total effort involved in finding r* is
O(n log2 n loglogn).

We note that if the tree is a path connecting two vertices v l and u, then r* is an
element of the set

Therefore, using the scheme described in the Appendix, r* is found in O(n log2 n) time.

4. NP-hardness of the continuous p-center problem. The result of the present
section was not particularly hard to achieve even though it has not been previously
proved to our knowledge. The NP-completeness of other versions of p-center problems
was proved in [13].

In order to establish that the p-center problem is NP-hard on general graphs,
we will reduce the minimum dominating set problem (see [9]) to the following problem:
Given a graph G = (V, E), all of whose edges are of unit length, find out whether
there exists a set of p "centers" (anywhere on the edges of G) such that every point
of G is within a distance of 2 from some center. We should remark that it may be
necessary to locate centers in the interior of an edge in order to solve the latter
problem (see Fig. 1).

The reduction is as follows. Suppose that G = (V, E) is a graph for which we
have to recognize whether there exists a dominating set of cardinality p. Let G' denote
a graph obtained from G by adjoining one vertex u' per each vertex v of G, such
that v ' is adjacent only to v. All the edges of G' will be of unit length. We consider
the problem of p centers on G'. Obviously, a dominating set for G will solve the
center problem. Conversely, suppose that we have p centers on G' such that every
vertex is at distance not greater than 2 from some center. Clearly, every vertex of the
original graph G is within unit distance from some center. If we translate every center
to one of its respective nearest vertices, then every vertex of G still has a center within
unit distance from it. We thus have a dominating set of the appropriate cardinality.

Finally, we remark that since the dominating set problem is NP-complete even
on bipartite planar graphs of maximum degree 3 (see [13, proof of Lemma 3.1]), then
the above reduction implies NP-hardness of the continuous p-center problem even
on bipartite planar graphs of maximum degree 4.

NEW RESULTS O N COMPLEXITY OF p-CENTER PROBLEMS 757

Appendix. Searching in {(al +bj)l(ci +dl)} . In this appendix we describe how to
search for the number r, within a set of the form S = {(ai + bj)/(ci + di): 1 S i, j 5 n}.
Thus there will be given 4n numbers, ai, b,, ci, dj (1 %i, j d n) , and we will have to
find two elements s, t E S such that s < r p S t and no element of S is strictly between
s and t.

We first note that the set S consists of the points of intersection of straight lines
y = (cix -ai)+(djx - bj) with the x-axis. The search will be conducted in two stages.
During the first stage we will identify an interval [sl, tl] such that s l < rp 5 tl and such
that the linear order induced on (1, . . . , n) by the numbers cix -a l is independent of
x provided x E [sl, tl]. The rest of the work is done in Stage 2.

Stage 1. An equivalent description of Stage 1 is that we search for rp among the
points of intersection of lines y = clx - a i with each other. The method was introduced
in [15]. It is based on Preparata's [17] parallel sorting scheme. This scheme employs
n log n "processors" during O(1og n) steps. Imagine that we sort the set (1, - , n)
by the (cix -ai)'s, where x is not known yet. Whenever a processor in Preparata's
scheme has to compare some clx -a l with cjx -aj, we will in our algorithm compute
the critical value xlj = (ai - ai)/(cl - cj). Thus, a single step in Preparata's scheme gives
rise to the production of n log n points of intersection of lines y = cix -a l with each
other. Given these n log n points and an interval (so, to] which contains rp, we can in
O(n logn) time narrow down the interval so that it will still contain rp but no
intersection point in its interior. This requires the finding of medians in sets of
cardinalities n log n, in log n, $n log n, . - plus O(log n) evaluations of M(r) . We then
proceed to the next step in Preparata's scheme. We note that since the outcomes of
the comparisons so far are independent of x in the updated interval, we can proceed
with the sorting even though x is not specified. The effort per step is hence O(n log n)
and the entire Stage 1 takes O(n log2 n) time.

Stage 2. When the second stage starts we can assume without loss of generality
that for x E[SI, t l] cix -a i S C ~ + ~ X -ai+l , i = 1 , . . a , n -1. Let j (1 S j S n) be fixed and
consider the set S, of n lines Si = {y = cix - a i + dix - b,, i = 1, . . , n). Since Sj is "sorted"
over [sl, tl], we can obviously find in O(log n) evaluations of M(r) a subinterval [s(, t (]
such that s(< rp S t(, and such that no member of Si intersects the x-axis in the interior
of this interval. We will, however, work on the S,'s in parallel. Specifically, there will
be O(log n) steps. During a typical step, the median of the remainder of every Sj is
selected (in constant time) and its intersection point with the x-axis is computed. The
set of these n points is then searched for r, and the interval is updated accordingly.
This enables us to discard a half from each Si. Clearly a single step lasts O(n log n)
time and the entire stage is carried out in O(n log2 n) time.

At the end of the second stage we have the values {si) and {ti}, j = 1, . . , n.
Defining s = maxlSj,, {si) and t = minlcisn {ti} we obtain s < r, % t, and no element
of S is strictly between s and t.

REFERENCES

[I] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1976.

[2] R. CHANDRASEKARAN A N D A. DAUGHETY, Problems of location on trees, Discussion Paper, 357 ,
Center for Mathematical Studies in Economics and Management, Northwestern Univ., Evanston,
IL, 1978.

Dl - , Location on tree networks: p-center and n-dispersion problems, Math. Oper. Res., 6(1981) , pp.
50-57.

[4] R. C H A N D ~ ~ A S E K A R A N A N D A. TAMIR, A n O ((n log p) 2) algorithm for the continuous p-center on
a tree, SIAM J . Alg. Disc. Meth., 1(1980), pp. 370-375.

758 NIMROD MEGIDDO AND ARIE TAMIR

[5] G. N. FREDERICKSON AND D. B. JOHNSON, Generalizedselection and ranking, in Proc. 12th Annual
ACM Symposium on Theory of Computing, Los Angeles, April 1980, Assoc. Comput. Mach.,
New York, 1980, pp. 420428.

C61 - , Generating and searching sets induced by networks, in Proc. 7th EATCS Colloquium on
Automatic Languages and Programming, Noordwijkerhout, the Netherlands, July 1980, Lecture
Notes in Computer Science, 85, Springer-Verlag, Berlin, 1980, pp. 221-233.

F'I - , Generating and searching sets for path selection and p-center location, Computer Science
Department, Pennsylvania State Univ., University Park, PA, August 1981.

[81 - Finding k-th paths andp-centers by generating and searching good data structures, J. Algorithms,
to appear.

[9] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

[lo] A. J. GOLDMAN, Optimalcenter location insimple networks, Transportation Sci., 5 (1971), pp. 212-221.
[I l l G. Y. HANDLER, Minimax location of a facility in an undirected tree graph, Transportation Sci., 7

(1973), pp. 287-293.
[I21 - , Finding two-centers of a tree: The continuous case, Transportation Sci., 12(1978), pp. 1-15.
[13] 0. KARIV AND S. L. HAKIMI, A n algorithmic approach to network location problems, Part I. The

p-centers, SIAM J. Appl. Math, 37(1979), pp. 513-538.
[14] N. MEGIDDO, Combinntorial optimization with rational objective function, Math. Oper. Res., 4(1979),

pp. 414-424.
[I51 - , Applying parallel computation algorithms in the design of serial algorithms, in Proc. 22nd

Annual IEEE Symposium on Foundations of Computer Science, 1981, IEEE Computer Society
Press, Los Angeles, 1981, pp. 399-408; J. Assoc. Comput. Math., to appear.

[16] N. MEGIDDO, A. TAMIR, E. ZEMEL AND R. CHANDRASEKARAN, A n O (n logZ n) algorithm for
the k-th longest path in a tree with applications to location problems, this Journal, 10(1981), pp.
328-337.

[17] F. P. PREPARATA, New parallel-sorting schemes, IEEE Trans. Comput., C-27(1978), pp. 669-673.
[IS] L. G. VALIANT, Parallelism in comparison problems, this Journal, 4(1975), pp. 348-355.

