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Abstract. It is NP-complete to recognize whether two sets of points in general 
space can be separated by two hyperplanes. It is NP-complete to recognize whether 
two sets of points in the plane can be separated with k lines. For every fixed k in 
any fixed dimension, it takes polynomial time to recognize whether two sets of 
points can be separated with k hyperplanes. 

1. Introduction 

The following problem is well known in computational geometry. 

Problem (Linear Separability). Given two sets of points with integer coordinates 
P = { T I ,  . . . , r P }  c R" and Q = { p ' ,  . . . , p q )  c Rd,  recognize whether there exists 
a hyperplane H = { z  E R d  : zTx = x,} (characterized by a nonzero vector x  E R d  
and a scalar x,) that separates the sets P and Q in the sense that for each point 
T ' E  P, r r T x ' < x O  and for each point Q, p T x ' > x O .  

It is obvious that the linear separability problem can be formulated as a linear 
programming problem, and hence is solvable in polynomial time. When two sets 
cannot be separated by a hyperplane, a natural problem is to find the minimum 
number of hyperplanes that is required for the separation. Very interesting results 
were recently obtained by Edelsbrunner and Preparata [3] for the convex two- 
dimensional case, that is, for the problem of separating two sets of points in the 
plane by a convex polygon with a minimum number of edges. Also, [ I ]  deals 
with the problem of separating two nested convex polygons by a polygon with 
a minimum number of edges. The problem of separating two sets of points in 
R' by a circle was first considered in [4]. It turns out that separability of two 
sets of points in Rd by a sphere can be decided in linear time if d is fixed [8], 
using methods like the one in [5] and [6]. 
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It is interesting to examine the generalization of linear separability where one 
is interested in separating two sets of points with k hyperplanes rather than one. 
We discuss the general case later but first we consider the case k = 2. 

Problem (2-Linear Separability). Given two sets of points with integer coordin- 
ates P = {TI, . . . , T ~ }  c R d  and Q = {p' , . . . , pq} c Rd,  recognize whether there 
exist two hyperplanes H, = {z: xTz = x,) and H,  = {z: =yo} (x, y E Rd,  x0, yo E 

R )  that separate the sets P and Q in the sense expressed by the following 
conditions: 

(i) For each point T' E P, both ( ~ ' ) ~ x  <xo and ( T ' ) ~ ~  < yo. 
(ii) For each point p'  E Q, either (p ') 'X > xO or (p l )  > yo. 

Note that in the definition of 2-linear separability the sets P and Q do not 
play symmetric roles- Surprisingly, the 2-linear separability problem is NP- 
complete as we show in Section 2. Next we consider the general case of k 
hyperplanes (a precise definition is given in Section 3). We show that already in 
R2 the problem of separating two sets of points by k lines (not necessarily forming 
a convex polygon) is NP-complete. We then argue that separability with any 
fixed number of hyperplanes (not necessarily forming a convex polyhedron) in 
any fixed dimension can be decided in polynomial time. 

2. Separability with Two Hyperplanes 

It is easy to show that if two sets of points in R d  with integer coordinates are 
separable by two hyperplanes then there exist such separating hyperplanes with 
rational coefficients, so that the size of the binary representation of the hyperplanes 
is bounded by a polynomial in the size of the binary representation of the points. 
Thus it is obvious that 2-linear separability is in NP. 

To prove the NP-completeness of 2-linear separability, we first introduce a 
subclass of satisfiability problems, which we call reversible satisfiability. 

Definition. Let cp be a boolean formula and let cp denote the formula obtained 
from cp by negating each' variable. For example, if cp = (x v J v z) A ( 3  v 2 )  then 
cp = ( 3  v y v 5 )  A (X v 2). The formula cp is called reversible if either both cp and cp 
are satisfiable or both are not satisfiable. 

An obvious example of a reversible formula is (x v y v z) A (3 v j v 2 ) .  The 
reversible satisfiability problem is to recognize the satisfiability of reversible for- 
mulae in conjunctive normal form (CNF). It is easy to prove that the reversible 
satisfiability problem is NP-complete. 

Proposition 1. The reversible satisjability problem with six literals per clause is 
NP-complete. 
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Pro05 We show that the regular satisfiability problem for CNF formulae with 
three literals per clause is reducible to the satisfiability problem of reversible 
CNF formulae with six literals per clause ("reversible 6-SAT"). The reduction 
goes as follows. For each variable x, replace each occurrence of x by (x, v x,) A 

(2, v 2,). Similarly, replace each occurrence of f by (2, v x,) A (x, v f,). Thus, a 
clause of the form x v J v z is replaced by 

which is equivalent to 

This establishes our claim. 

Proposition 2. The 2-linear separability problem is NP-complete. 

Pro05 The proof goes by reduction from reversible 6-SAT. Let (5: v 51 v (5 v 5; v 
5; v 5;) ( i  = 1, . . . , m) be the clauses of the reversible 6-SAT problem, where 
6; E U = {u, , . . . , u,, GI,. . . , U,) ( i  = 1,. . . , m, k = 1,  . . . ,6). We first note that a 
reversible 6-SAT problem can be formulated as follows. Let x , ,  . . . , x, denote 
variables such that for each j, 6 <  \xi\ < 7 ,  with the interpretation that u, is true 
if and only if x, > 0. The clauses are then formulated as linear inequalities as 
shown in the following example. Consider the clause u, v i12 v u, v u4 v a, v u,. 
This clause can be represented by the inequality x, - x2 + x, + x, - x5 + x, > -30. 
If the clause is false then x,,  x,, x,, x,< 0 and x,, x,> 0. Since 6 < lx,l < 7,  we 
have x, - x2 + x, + x, - x, + x6 < -36. On the other hand, if the clause is true then 
x, - x, + x, + x4 - x, + x6 > -29. We now relate the constraint 6 < [xi( < 7 to the 
2-linear separability problem. Let e, denote the unit n-vector with 1 in the jth 
position and 0's in all other positions. Together with every u, we associate two 
points in the set P, namely, (S)ej and -(S)ej, and two points in the set Q, namely, 
(i)e, and -(i)ej. Also, we include the origin in the set P. Now, if there exist 
hyperplanes HI and H, as required (see the definitions of 2-linear separability), 
then xo and yo are positive since 0 E P. Without loss of generality, we may assume 
x, = yo = 1. Since (f)e, E P, we have x, < 7 and yj < 7. Similarly, -(f)ej E P implies 
x, > -7 and yj > -7. On the other hand, since (i)e, E Q, we have either x, > 6 or 
y, > 6 and, since -(i)e, E Q, either xj < -6 or y, < -6. It follows that .either 
-7 < x, < -6 and 6 < y, < 7 or -7 < y, < -6 and 6 < x, < 7. This means that the y,'s 
actually represent the negations of the corresponding x,'s. Of course, we also 
include in the set P one point per each clause as in the following example. Given 
the clause u, v ii, v u, v u, v ii, v u,, consider the inequality x, - x, + x, + x, - x, + 
x6> -30. This inequality can be stated as the requirement that the point 
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(&I(-1, 1, -1, -1,1, -1,0, . . . , o ) ~  belongs to P. Notice that if this point belongs 
to P then we must also have y ,  - y,+ y,+ y4 -  y,+ y,> -30. We have argued 
before that the yj's represent the negations of the corresponding x,'s. However, 
since the formula is reversible, we may assume without loss of generality that 
the clause ii, v u2 v ii, v ii4 v u, v u, is also one of the conjuncts so the constraint 
y ,  - y2 + y, + y4 - y, + y, > -30 does not affect the set of feasible solutions. To 
summarize the reduction, we associate with each variable two points in P and 
two points in Q. Also, O E  P, and also with each clause we associate one more 
point in P. 0 

3. Separability with Many Lines in the Plane 

We now turn to the k-polyhedral separability problem with a general k. The 
problem can be formulated as follows. 

Problem (k-Polyhedral Separability). Given two sets of points with integer 
coordinates P = {TI, . . . , , r r P }  c R d  and Q = ip l ,  . . . , pq} c Rd, and an integer k, 
recognize whether there exist k hyperplanes Hj = { z :  ( X ' ) ~ Z  = xi} (x '  E R ~ ,  x i  E 

R, j = 1, .  . . , k) that separate the sets P and Q through a boolean formula as 
follows. Associate with each hyperplane H, a boolean variable 6,. The variable 
6, is true at a point z if ( X ' ) ~ Z >  x i  and false if (xJ)'z< x i .  It is not defined at 
points lying on the hyperplane itself. A boolean formula cp = ~ ( 5 ,  , . . . , &) separ- 
ates the sets P and Q if cp is true at each of the points T', . . . , , r rP and false at 
each of the points . . , pq. 

Notice that we can distinguish here two types of problems, depending on 
whether the boolean formula is given or not. In the latter case we ask whether 
there exist a formula and hyperplanes that establish the separation. The NP- 
completeness of the case of a given formula (in general dimension with k fixed) 
follows from NP-completeness of the 2-linear separability problem. The other 
case can be proven NP-complete using similar methods and a characterization 
given below the 2-linear separability problem and is hence NP-complete in 
general dimension. It is interesting to consider the complexity of this problem 
also in fixed dimension. We first prove that already in two dimensions the problem 
with general k is NP-complete. 

Proposition 3. The hyperplanes H I ,  . . . , Hk separate the sets P and Q in'the sense 
of k-polyhedral separability through some boolean formula i f  and only if for every 
pair of points, .rr E P and p E Q, there exists an 1 (1 5 15 k) such that rr and p lie 
on diferent sides of the hyperplane H,. 

Proof: Given the hyperplanes H I , .  . . , Hk, consider the boolean variables 
t l , .  . . , tk used in the definition of k-polyhedral separability. If two points z', 
z2 lie on the same side of each of the hyperplanes then the truth values of these 
boolean variables are the same for both of the points. If the hyperplanes separate 
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the sets P and Q in the sense of the definition then for any two points .rrr, pJ 
there is at least one of the variables that has different truth values at .rri and 
This implies that at least one of the hyperplanes separates the two points. We 
now prove the converse. Suppose every two points .rri, p' are separated by at 
least one hyperplane. Let 6 be any point in P u Q. Let i ,  , . . . , i, denote the indices 
of the variables 5, which are true at 6, and let i,,, , . . . , i, denote the indices of 
those which are false at [ ( O  5 s 5 k ) .  Let 

denote a boolean formula associated with 6. Obviously, cpi is true at 6. Consider 
the formula 

Obviously, cp is true at each point of P. On the other hand, for every p E Q, cp, 
is false at p for every .rr E P since at least one of the variables has different truth 
values at .rr and p. In other words, the formula 

is true at every p E Q. This proves that the sets P and Q are separated in the 
sense of the definition through the formula cp. 0 

We now discuss the complexity of separability in the plane. We are interested 
in recognizing whether two sets of points in the plane can be separated by k 
straight lines. A related problem was considered in [7]: 

Problem (Point Covering). Given a finite set of points in the plane and a number 
k, recognize whether there exist k straight lines such that each point lies on at 
least one of the lines. 

The point covering problem was shown in [7] to be NP-complete. The proof 
can be adapted to establish the following: 

Proposition 4. The problem of recognizing whether two sets of points in the plane 
are separable by k lines is NP-complete. 

ProoJ: Membership in N P  follows from the fact that if two sets are separable 
then there exist separating lines where the length of the binary representation of 
the coefficients is bounded by a polynomial in the length of the binary representa- 
tion of the input points. The proof of completeness for NP will be established 
by the construction described in the remainder of the present section. 0 

Proposition 3 hints that the point covering problem is closely related to the 
separation problem with k lines. The construction here is in a sense an adaptation 
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of the construction of [7]. The reduction is from the 3-satisfiability problem. 
Consider a formula (P = El A a a A Em where El = x, v y, v z,, {x , ,  y,, z,} c 
{ u l ,  U 1 , .  . . , u,, e n ) ,  j = 1 , .  . . , m. Without loss of generality, assume that none of 
the clauses contains both u, and 8, for any i. We shall construct a family of points 
and lines in the plane. Throughout the construction process, whenever a new 
point has to be picked (rather than be determined by the previously constructed 
objects), it is chosen to be in general position relative to the previously constructed 
objects. The exact sense of general position is explained later. We first describe 
the construction for the point covering problem. It is convenient to separate the 
process into steps: 

1. The first step is to pick 2(m + n) "locations" as follows. Together with every 
clause E, ( j  = 1 , .  . . , m), we associate a point T, E R * .  We also associate 
with each clause E, another point r, E R* whose role is explained later. 
Similarly, for every variable u, ( i  = 1, .  . . , n), we associate a point a, E R2 
with u, and a point 6, E R~ with 8 , .  

2 .  The second step is to determine lines L, and L, as follows. For every z 
( i =  1 , .  . . , n) and j ( j =  1, .  . . , m), if u , E { x , ,  y,, z,) then L ,  is the line 
determined by u, and TI;; otherwise, L, is the line determined by a, and 
7,. Analogously, if 8, E (x, ,  y,, z,} then L, is the line determined by 6, and 
n,; otherwise L,, is the line determined by @, and 7,. 

3. The third step is to determine for every i ( i  = 1,. . . , n) a grid of m2 points 
as follows. For every j ( j  = 1, .  . . , m) and k ( k  = 1 , .  . . , m), denote by 
the point of intersection of the line L ,  with the line c,. 

We require that all the points of the type n:, and T, be in general position 
(subject to the rules above) in the sense that, except for the lines of the types L,  
and 4, no other line in the plane contains more than two of these points, and 
none of these points lies on any line of those types unless it is required to by 
definition. It is easy to satisfy these requirements, for example, by small perturba- 
tions. Note that the locations are constructed so that for every J ( j  = 1, .  . . , m), 
the location T, lies on a line L,, if and only if j = k and u, E {x,, y,, z,}; the location 
T, lies on a line L,, if and only if j = k and 8, E {x,, y,, 2,). It turns out that the 
minimum number of lines required to cover the locations 6, (in the sense that 
each location belongs to at least one line) is precisely mn. The covering lines 
have to be of the types L ,  and &,, where for each i a unique type of line has to 
be chosen, that is, either { L , ,  , . . . , L,,) or { & , ,  . . . , L,,). It follows that the entire 
collection of locations (that is, including the locations of the type q) can be 
covered by mn lines if and only if the given formula is satisfiable. A satisfying 
assignment corresponds to the choice of type of lines for each of the "grids." It 
is shown in [7] that the locations can be constructed so that their coordinates 
are bounded by a polynomial in m and n. So far we have essentially repeated 
the reduction of 3-satisfiability to point covering. 

For the separability problem we do as follows. We have to construct two sets 
of points P and Q and consider the problem of separating them with a given 
number of lines. We use the convention that points denoted with the letter .rr 
belong to the set P while those denoted with the letter p belong to the set Q. 
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Intuitively, the covering problem can be related to the separability problem by 
splitting points of the covering problem into pairs of points to be separated. 
However, the requirement in the separation problem is that every point of P be 
separated from every point of Q and this necessitates several modifications and 
additions to the construction. 

Suppose we have constructed N '  = m + nm2 points T ,  , . . . , T, as explained 
above for the reduction of 3-satisfiability to the covering problem. We split each 
point .TG into two points q and p, close to the previous q. A solution to the 
covering problem will yield a set of lines that separate every pair (q, p,) but not 
necessarily every pair (T ,  P,). To overcome this difficulty, we use auxiliary sets 
of points P O  and Q O  such that a family of lines separating PO and Qo also separates 
every q from every pk such that k  # j. 

Without loss of generality, suppose the coordinates of all the points are 
divisible by 6  and are pairwise distinct. We now construct auxiliary points as 
follows. Let N = 2 N ' .  Let U = 6 u  denote an upper bound on the absolute value 
of the coordinates of any point rr,. Also, define a sequence {d,) by setting 
d l  = U +6 and d,,, = 3d j  + 2  U + 5.  The set P O  consists of all points of the 
forms ( + ( 6 k  - 3 ) ,  +d,) or (+d,, * ( 6 k  -3)), where 1 5  k  5 u + 1  and 1 5  j  5 N. 
We also construct the set Q' of all the points of one of the following 
forms: ( i ( 6 k - 4 ) ,  *d,),  (*(6k  - 2 ) ,  * d j ) ,  ( kd , ,  * ( 6 k  - 4 ) ) ,  and ( i d , ,  + ( 6 k - 2 ) )  
with k  and j  as above (see Figs. 1 and 2). 

We refer below to groups of intervals which we call the auxiliary intervals. A 
group of auxiliary intervals is of one of the four types listed below. Each group 
contains 4 N  intervals and includes for a fixed k  ( k  = 1, . . . , u  + 1 )  all the intervals 
of one of the forms defining the type. The types are as follows: 

T h + ( k ) = { ( ( 6 k - 4 , d J ) , ( 6 k - 3 , d , ) ) : j = 1  ,..., N )  

u ( ( ( 6 k - 3 ,  d , ) , ( 6 k - 2 , d l ) ) :  j = 1 , .  .., N )  

u ( ( ( 6 k - 4 ,  -d,), ( 6 k - 3 ,  - d l ) ) :  j =  1 , .  . . , N }  

u ( ( ( 6 k - 3 , - d l ) , ( 6 k - 2 , - d , ) ) : j = l ,  . . . ,  N }  ( k = l , . .  

T h - ( k )  = { ( ( - 6 k + 4 ,  d,), ( - 6k  +3 ,  d,)): j  = 1, . . . , N )  

u { ( ( - 6 k + 3 ,  d l ) ,  ( - 6k+2 ,  d l ) ) :  j =  1 , .  . . , N }  

u { ( ( - 6 k + 4 ,  -d l ) ,  ( - 6k+3 ,  - d l ) ) :  j =  1 , .  . . , N }  

u { ( ( - 6 k + 3 ,  -d l ) ,  ( - 6k+2 ,  - d l ) ) :  j =  1,. . . , N )  ( k =  1 ,  

T ,+(k )={ ( (d , ,  6 k - 4 ) ,  (d,, 6 k - 3 ) ) :  j =  1 , .  . . , N }  

u {((d, ,  6 k  - 3 ) ,  (d,, 6 k  - 2 ) ) :  j  = 1 , .  . . , N )  

u {((-d, ,  6 k  - 4 ) ,  ( - d l ,  6 k  - 3 ) ) :  j  = 1 , .  . . , N )  

u { ( ( - d , ,  6 k - 3 ) ,  ( - d l , 6 k - 2 ) ) :  j =  1 , .  . . , N )  ( k =  1 , .  . . , u +  I ) ,  

T , , _ ( k )  = {((d, ,  - 6 k - 4 ) ,  (d,, - 6 k + 3 ) ) :  j = 1 , .  . . , N l  

u {( (d , ,  -6k - 3 ) ,  (d,, - 6 k + 2 ) ) :  j  = 1 , .  . . , N )  

u {((-d, ,  - 6k+4) ,  (-d,,  - 6 k + 3 ) ) :  j = 1 , .  . . , N )  

~{((-d,,-6k+3),(-d,,-6k+2)):j=l, . . . ,  N )  ( k = l ,  . . . ,  u + l ) .  



Fig. 1 

Fig. 2 
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Note that altogether we have 4(u + 1) pairwise disjoint groups, each consisting 
of 4 N  auxiliary intervals. 

Proposition 5. 

(i) 8(u + 1) straight lines are both necessary and suficient for separating the 
sets PO and QO. 

(ii) For every family of 8(u + 1) lines separating PO from Q0 and for each of 
the 4(u + 1) groups of auxiliary intervals T,+(k), th-(k), T,+(k), and T,_(k) 
(k = 1 , .  . . , u + I) ,  all the 4 N  auxiliary intervals in the group must be inter- 
sected by the same two lines of the family. 

Proof: (i) First, the 8(u + 1) lines {(x, y): x = *(6k -3.5)), {(x, y): x = 

*(6k-2.5)),{(x, y): y=*(6k-3.5)),and{(x, y): y=*(6k-2.5)) ( k = l , . .  ., u +  
1) separate these points so 8(u+ 1) lines suffice. On the other hand, the union 
of these groups of intervals consists of 16N(u + 1) intervals all of which must be 
intersected. It is easy to see that there exists no straight line which intersects 
more than 2 N  of these intervals and hence at least 8(u + 1) lines are required. 

(ii) Altogether we have 16N(u+ 1) intervals which must be intersected by 
8(u + 1) lines. No line can intersect more than 2 N  intervals. Thus, each line must 
intersect exactly 2 N  auxiliary intervals. It is easy to verify that if a straight line 
intersects 2 N  auxiliary intervals then all these intersected intervals must either 
be parallel to the x-axis and have pairwise distinct y-coordinates or be parallel 
to the y-axis and b.ave pairwise distinct x-coordinates. It is also easy to check 
that if a straight line intersects 2 N  intervals then the same value of the index k 
must be involved in the specification of all of these intervals as described above. 
This completes the proof. 0 

The roles of the sets Po and Qo will become clear later. Recall that we have 
constructed points 'rrj = (t,, 7,) for the covering problem and have assumed that 
the coordinates of these points are divisible by 6 and are pairwise distinct. We 
now split each such point in two. Before we continue with the construction it is 
essential first to prove the following fact about the point covering problem. 

Proposition 6. Let S be a set of points in the plane whose coordinates are integers 
between -K and K. Suppose the minimum number of lines required for covering 
all the points of S is s. For each point p E S, let Ip denote a small line segment of 
length E < 1/(12K +6) centered at p. Under these conditions, the minimum number 
of lines required to intersect all the segments I, is also equal to s. 

Proof: It is trivial that s lines suffice. Moreover, if all the line segments are 
sufficiently small then s lines are necessary. It remains to show that E < 
1/(12K +6) is sufficiently small. It suffices to show that for every three noncol- 
linear points p , ,  p,, p, E S, every three points pj  E Ip, ( i  = 1,2,3) are noncollinear. 
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Suppose p, = ( a i ,  b i )  ( i  = 1 , 2 , 3 )  are not collinear. Since the coordinates are integer, 
we may assume without loss of generality that 

Consider points of the form pj = ( a ,  + e l , ,  bi + E, , )  ( i  = 1 , 2 , 3 ) .  In order for these 
points to be noncollinear, it is necessary and sufficient that 

If I E then this determinant is not less than 1  -6.5, - 1 2 K ~  and hence positive. 
This completes the proof. 0 

Let us now fix 

Without loss of generality, assume none of the lines participating in the solution 
of the point covering problem has slope 1. For each j, let p, = (6, - E ,  - E )  and 
let us redefine q = (5 ,  + E, l)i + E ) .  Denote the set of these new points q by P' 
and the set of the points p, by Q ' .  

Proposition 7. For any set of 8 (u  + 1 )  lines separating the set P O  and Qo,  and for 
every j # k (1 5 j, k I N ) ,  the point T, is separated from all the points pk by at least 
one of the lines in the family. 

Proof: The proof follows from the construction. 

Consider the problem of separating the sets P = Po u P' and Q = QO u Q1 with 
a minimum number of lines. We know that it takes 8(u  + 1 )  lines to separate P O  

from Q O .  Moreover, such lines also separate Po from Q' and Q o  from PI. Also, 
they separate points of P 1  from points of Q' provided they have distinct indices. 
Thus, it remains to separate points of P' from points of Q 1  with the same index. 
The problem of separating such pairs is equivalent to the covering problem. We 
know it takes at least mn lines in any case. Moreover, mn lines suffice if and 
only if the given formula is satisfiable. It is important to notice that the 8(u  + 1 )  
lines that separate P O  and Qo are of no help in separating points of P' and Q 1  
with the same index. To see this, notice that it follows from our choice of the 
sequence {d , }  that if a straight line intersects an interval of the form (n,, p i )  then 
it cannot intersect more than two of the auxiliary intervals. The separation problem 
is related to the satisfiability problem as follows. We will prove that the given 
formula is satisfiable if and only if 8(u  + 1 )  + mn lines suffice for separating the 
sets P and Q. 
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Proposition 8. 

(i) If the formula cp is satisjiable then the set P can be separated from the set 
Q with 8 ( u  + 1) + mn lines. 

(ii) If L 5 8 ( u  + 1) + mn lines separate P from Q then necessarily 8 ( u  + 1) of 
them separate Po from QO and mn of them separate P' from Q ' ,  so 
L = 8(u  + 1) + mn and the formula cp is satisjiable. 

Proof: The proof of (i) is obvious. We now prove (ii). Suppose we designate 1 
of the L lines to intersect intervals of the type (q, p,). Since there are only N '  
such intervals, we may assume without loss of generality that 1s N' .  Each such 
line can intersect at most two of the auxiliary intervals. Thus, the designated 
lines intersect at most 21 auxiliary intervals. We are therefore left with at least 
1 6 N ( u  + 1) - 21 auxiliary intervals which require at least 

lines to intersect all of them. But the auxiliary intervals require this number 
of lines to intersect all of them in any case. Moreover, no line can intersect 
more than 2 N  auxiliary intervals and 2 1 5  N. It follows that each of these 
8 ( u +  1) lines must intersect at least N auxiliary intervals and hence cannot 
intersect any interval of the form (T,, pi ) .  However, we know that the latter intervals 
require at least mn lines to intersect all of them and this is feasible if and only 
if the formula cp is satisfiable. This completes the proof. 0 

The proof of Proposition 4 is now established. 

4. Separability with a Fixed Number of Hyperplanes in 
a Fixed Dimension 

It is interesting to note that if both the dimension of the space and the number 
k are fixed then the k-polyhedral separability problem is solvable in polynomial 
time. This is what we prove in the present section. 

Recall that separation throughout this paper is in the strong sense, namely, 
two sets of points A, B c  Rd are separated by the hyperplane H =  
{ z  E Rd : zTx = xo} if for every a E A, a Tx < x,  and for every b E B, b Tx > x,, or 
vice versa. 

Proposition 9. Suppose A and B are sets of points in Rd with integer coordinates, 
and suppose there exists a hyperplane H = { z  E R : yTz = yo} that separates A from 
B, assuming yTa <yo for a E A. Under these conditions, there exist a hyperplane 
H = { z  E Rd : zTx = x,), a positive rational number r, and integers j,, jB ( jA,  jB 2 

I ,  jA + jR 5 d + 1 )  such thar: 

( i )  For every ~ E A ,  x T a 5 x o - r .  
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(ii) For every b~ B, x T b r x o + r .  
(iii) For at least jA points a E A, xTa = xo - r, and for at least j, points b E B, 

xTb = x,+ r. 

Proof: Consider the following linear programming problem where the unknowns 
are the vector x E Rd and the scalars xo and r:  

( P )  Maximize r 

subject to xTa 5 xo- r ( a  E A), 

x T b ~ x 0 + r  ( b ~  B), 

- l z ~ x , ~ l  ( j = l ,  . . . ,  d ) ,  

r ~ 0 .  

First, note that the existence of a feasible solution for ( P )  with r > 0 follows from 
the assumption of existence of a separating hyperplane. Also, (P) is obviously 
bounded and hence has an optimal solution. Moreover, there exists a basic 
optimal solution, that is, an optimal solution where d + 2  linearly independent 
constraints are satisfied as equalities. At any optimal solution at least one equality 
of the form x, = *1 ( 1  5 j s  d )  has to hold, since otherwise we could increase r 
by multiplying all the inequalities by some number greater than 1. Similarly, 
at least one of the constraints corresponding to A and at least one of the 
constraints corresponding to B have to be satisfied as equalities. This completes 
the proof. 0 

Proposition 10. For every fixed k and d, the k-polyhedral separability problem in 
Rd can be solved in polynomial time. 

Proof: If two sets P, Q c R~ are separable with k hyperplanes then there exist 
k pairs of complementary subsets A,,  B, c Pu Q (that is, A, u B, = P u Q, i = 

1 , .  . . , k) and k hyperplanes H, ( i  = 1 , .  . . , k) such that H, separates A, from B,. 
From the proof of Proposition 9, it follows that there exist such hyperplanes that 
satisfy equalities as stated in that proposition, and, moreover, the separating 
hyperplanes can be chosen from a finite set. Each of the candidate hyperplanes 
is determined (see the proof of Proposition 9) by some set of at most d + 1 points, 
together with a choice of at most d equalities x, = + 1 .  The number of such sets 
of at most d + 1 points is of course polynomial in the cardinality of P u Q. Thus, 
the number of combinations of k such sets is also polynomial. It follows that 
we can enumerate in polynomial time all the relevant configurations of hyper- 
planes. Furthermore, it takes polynomial time to check whether a given con- 
figuration actually separates P from Q (see Proposition 3).  This establishes 
the proof. 

Note that Proposition 10 does not rely on the fact that the linear programming 
problem is solvable in polynomial time. In fact, here we have polynomial 
time in the strong sense that it is valid also under the real number model of 
computation. 
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