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The weighted Euclidean 1-center problem is defined as follows. Let n 
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The weighted Euclidean 1-center problem is to find a point p* = (x*, y*) 
so as to minimize H over R2. The special case where all the w,'s equal 1 
(i.e., the unweighted 1-center problem) was proposed in 1857 by Sylvester 
and amounts to finding the smallest circle containing all the given points. 
Algorithms for the unweighted case were given in [CR, CC, EH, M4, NC, 
RT, SH, Sm]. Megiddo's algorithm [M4] runs in linear time. The 
Elzinga-Hearn algorithm [EH] is claimed to be very practical [HV]. 

The more general weighted case was introduced in [F]. It can be solved in 
0 ( n 3 )  time (by enumerating all triples of points) under a model in which 
square roots are computed in constant-time (see [CT] for a treatment 
of the square roots issues in general). Megiddo [M3] gave an 
O(n(1og n)3(loglog n)2) algorithm for the weighted problem, and later an 
improvement based on the methods in [M2] was found, whch ran in 
O(n(1og n)*). The observation of [CT] eliminates the need to compute 
square roots in these algorithms. In another paper, Chandrasekaran [Ch] 
pointed out that the weighted center problem in general dimension can be 
solved in polynomial time, with the aid of an "ellipsoid" method. The 
unweighted problem can be solved in linear time whenever the dimension is 
fixed [M5]. We note that, relative to the I,- and the I,-metrics, even the 
weighted problem can also be solved in linear time whenever the dimension 
is fixed [M5]. 

In this paper we develop a randomizing algorithm for the weighted 
problem, whose running time can be made O(n log n) with any prespecified 
probability of success (see Theorem 5.3 for a more precise statement). The 
algorithm relies on the parametric method developed by Megiddo 
[MI, M2]. The present paper builds upon ideas developed by the present 
authors in [M3, M4, Z1, 221 

To simplify the presentation, we assume all weights are distinct and, in 
general, we assume elements to be distinct whenever we need to select or 
rank in a set of numbers. This assumption is made only for the convenience 
of presentation. Similarly, whenever we deal with a number of the form an, 
where n is an integer and 0 < a < 1, we regard an as integer (thmk, e.g., of 
lanl) .  

The organization of the paper is as follows. In Section 2 we present an 
O(n) algorithm for a one-dimensional version of the problem with a 
constraint. In Section 3 we briefly discuss a randomizing version of the 
algorithm developed in Section 2. In Section 4 we present a parameterized 
version of the algorithm developed in Section 3. We show in Section 5 that 
this parameterized version solves the problem in O(n log n) time with high 
probability. 

The first version of this paper [MZ] was written in September 1983. Since 
then there have been two developments in the problem of the weighted 
1-center. Cole [Co] found a general way to save a factor of O(log n) in 
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applications of the technique presented in [M2]. He showed that his 
improvement applies to the weighted 1-center problem for which he ob- 
tained an O(n log n)  upper bound. The algorithm uses the sorting network 
of depth O(1og n) developed by Ajtai, Komlos, and Szemeredi [AKS] and 
hence this O(n log n) upper bound involves a very large constant. Dyer 
[D3] later found a way to apply the search technique of [M5] in O(n) time 
to the weighted 1-center in any fixed dimension. In the same paper Dyer 
improves the search technique itself so that his constants are more reason- 
able. 

Consider a vertical line L defined by the equation x = x', for some fixed 
x'. Suppose we add to the weighted 1-center problem a constraint that the 
center must lie on L. We now have a one-dimensional problem, namely, to 
find a value y' = y'(x') which minimizes the expression 

Note that h(y)  is convex. Let the value of y be fixed, and let i be a 
maximizer of the weighted distance, that is, 

PROPOSITION 2.1. yr(x') 2 y if and only ify, 2 y. 

Proof. The proof is easy. 

The consequence of the proposition is that the maximum distance between 
y and a point can be reduced only if y gets closer to y,. Also note that, 
given y, a maximizer i can be found in O(n) time. This implies that we can 
answer a query like "Is y I y'?" in O(n) time for any y. WI: call such 
(vertical) queries tests. 

The procedure for solving the one-dimensional constrained problem is 
essentially the same as the two-variable linear programming algorithm [M4, 
D2]. Instead of minimizing the maximum of a set of linear functions (in the 
linear programming problem), here we have to minimize the maximum of a 
set of convex parabolas. The reader may like at thls point to verify that a 
linear-time algorithm for the latter can be developed along the lines of 
[M4]. We, however, describe here an algorithm using the terminology of the 
weighted center problem. This will help us later in describing the two- 
dimensional algorithm. Consider the equation 
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This equation describes a circle C,, such that p = ( x ,  y )  is closer (in the 
weighted sense) to p, than to pJ if and only if p is inside the circle. Our 
strategy in computing y' is to identify either one or two points at which the 
weighted distance to the center p' = (x ' ,  y') is maximized. To that end, we 
eliminate points which are "dominated" in the following sense: a point p, 
is dominated by p, if the distance can be maximized at p, only if it is also 
maximized at p,. More specifically, if p' is inside the circle C,, then p, can 
be eliminated, and if p' is outside of C,, then p, can be eliminated. In 
either case the set of points is reduced. However, we need to find a way to 
acquire information about domination relations by performing a small 
number of tests. 

Consider the intersection of the circle C,, with the line L. This intersec- 
tion is either empty or equal to an interval Y,, = [ y , ; ,  y,:], possibly with 
y,; = y,:. Now, let E denote the set of pairs of points whose circles do not 
intersect the line, and let F denote the set of all other pairs. Let e = ]El and 
f = IFI. Obviously, one member of each pair in E can be eliminated 
without any further work, namely, the one with the smaller weight. Also, 
for a pair ( i ,  j )  E F we can eliminate p, if y is not inside C,, and p, 
otherwise. The query "Is y inside C,,?" can be answered by two tests, 
namely, at j,, and y,:. More efficiently, let y denote the median of the 
y,; 's. Note that if y' I y -  then for each ( k ,  I )  such that y ,  2 y -  we have 
y' I y; and hence y' is not inside C,,, so that one member from each such 
pair can be eliminated; note that there are k / 2  such pairs. If y' > y p ,  then 
consider the set Fl of pairs k ,  I in F with y,,, 2 y - .  Since y -  is the 
median, we also have IFl[ = f /2 .  Now, let y +  be the median of the y,,,'s in 
F,. A test at y +  identifies a subset F, of cardinality IF11/2 = f /4  so that 
one element can be eliminated from each pair in this set. All in all, we have 
identified at most two medians y -  and y + ,  and performed no more than 
two tests. 

LEMMA 2.2. The constrained center problem is solved in O ( n )  time by 
repeating the iteration described above until the set of points is exhausted. 

Proof. The overall effort in an iteration is O ( n ) .  In return, we eliminate 
at least e / 2  + f / 8  2 n/16 points. This implies the lemma. In fact, it is easy 
to achieve a larger fraction, n/12,  of eliminated points. 

Recall that an optimal solution for the unconstrained problem is denoted 
by ( x * ,  y*).  Once y' has been identified, we can easily decide whether or 
not x* 2 x'. The details are actually given in [M4] in the context of the 
uniform weight case. We have to look at the set P of all the points pi such 
that 
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If there is only one such point p, then, x* 2 x' if and only x, 2 x'. In 
general, we have to look at the convex hull of P. If p' is contained in the 
convex hull then p' itself is the (unconstrained) solution the 1-center 
problem. Otherwise, we need to look at the cone spanned by rays of the 
form p'  + t ( p ,  - p') (t  2 0, p, E P). The bisector of this cone points into 
the half-plane in which (x*, y*) lies. The extra work involved in finding thls 
half-plane (given x') is linear. 

We call the query "Is x 2 x*?" a (horizontal) test at x. Note that a 
horizontal test yields information as to the location of the unconstrained 
minimum p*, whereas a vertical test deals with the constrained mini- 
mum p'. 

The procedure for the constrained problem runs in linear time so there is 
no room for improvement by order of magnitude. Nevertheless, we will now 
present a randomizing version which runs in linear time with high probabil- 
ity. It is this randomizing algorithm which will be parameterized later, 
improving the solution of the unconstrained problem by order of magni- 
tude. 

The randomization enters the algorithm via the choice of y -  and y+. 
Rather than picking y -  as the median of the set of y, 's, we simply pick 
y to be any element with the same probability. This means that the 
number of points eliminated in each iteration is a random variable. We note 
that the situation in our algorithm looks like an extension of the FIND 
algorithm [HI where the kth element a* of an ordered (but not sorted) set 
{a , ,  . . . , a,,)  is selected by repeating the following step: pick a random 
element a ,  of the current set and eliminate all those elements which are 
separated by a ,  from the kth element of the original set. In this algorithm 
the k th  element is unknown throughout but it can easily be decided 
whether or not a ,  I a*, so we can eliminate all those elements a, such that 
a ,  is between a, and a*. The expected number of comparisons that 
algorithm FIND makes was analyzed by Knuth [K] for any combination of 
n and k. Our problem seems much more complicated for such an anlysis, 
since it cannot be characterized by an ordered set (of fixed cardinality) of 
numbers. In particular, in our algorithm, after points have been eliminated, 
new pairs are formed which add new values to the domain we are searching. 
Thus, we will evaluate upper bounds on the expected time. In Section 5 we 
show that the expected time for running the one-dimensional search this 
way is linear and in fact for any positive E there is a constant C (indepen- 
dent of n)  such that the running time is less than Cn with probability 
greater than 1 - E. Of course, this result is not SO significant for the 
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one-dimensional problem alone. The significance is that it improves the 
running time of the algorithm for the weighted center problem. 

As we have said before, the weighted 1-center problem can be viewed as a 
problem of searching for an optimal point p* = (x* ,  y*). Now, if x* is 
known then we can find y* in additional O ( n )  time, using the one-dimen- 
sional search procedure of Section 2. The general idea of Megiddo's 
parametric method [MI, M2] is to perform the one-dimensional search with 
x* being indeterminate. The parametric algorithm frequently pauses and 
requests information which helps reduce the interval of indeterminacy, to 
enable proceeding with the execution. The reader is advised to gain better 
idea of this method from the previous papers. When the parametric search 
ends, the algorithm has produced an interval which contains x* along with 
sufficient information for computing both x* and y* in essentially one 
step. We will explain in detail how this is carried out. 

We will first review the basic steps of a single iteration of the one-dimen- 
sional search. Later, we will specify how these steps can be carried out with 
x* being indeterminate. While reading the following description, the reader 
is advised to consider x* as an indeterminate, which is known to belong to 
a certain interval. 

Algorithm. One-dimensional search. 

(1) [Pairing] Form disjoint pairs of points ( i ,  j )  and compute the 
equations of the circles C,,. 

( 2 )  [Classify pairs] Identify the set E of pairs ( i ,  j )  whose circles C,, 
do not intersect the line x = x*. Denote by F the set of the remaining pairs. 
For each pair in E, eliminate the point with the smaller weight. 

( 3 )  [First Sample-and-Test] Pick a random pair (i, j )  E F and perform 
a vertical test at y -  = y;. The test amounts to finding a point p, at which 
the weighted distance is maximized, that is 

(4 )  [First Elimination] If yr 5 y -  then for each pair (k, I)  E F such 
that y, 2 y - ,  eliminate the point with the smaller weight and terminate the 
current iteration. 

( 5 )  [Second Sample-and-Test] If yr > y -  then pick a random pair (i, j )  
from the set F, of pairs (i, j )  such that y; I y -  and perform a vertical test 
at y +  = y,:. 
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LEMMA 5.1. For any problem instance, regardless of the past history of the 
algorithm, the expected number of points eliminated during any iteration of the 
one-dimensional and the parametric algorithm is at least nr/20. 

Proof: The analysis is identical for the one-dimensional and the para- 
metric algorithms. Obviously, one point from each pair (i, j )  E E is always 
eliminated, so it suffices to consider the set F. For simplicity, let us index 
the pairs of points in F with a E (1,. . . , f ), where f = 1 FJ. Thus, quanti- 
ties like y,- are well-defined whenever x is fixed. For the purpose of the 
discussion let us fix x = x*, even though x *  is of course not known at the 
current stage. Without loss of generality, assume that 1 I a _< /3 I f im- 
plies y,- s y;. Now, let k denote the rank of the number y* in the set 
{yap: a = 1,. . . , f ), that is, y; < y* < y, + 1. Note that k is completely 
determined by the past history of the execution, even though it is not 
known at the current stage, since y*  is not known. At this point the 
algorithm picks a random pair from F. The rank of the corresponding y -  
value in the set ( y;, . . . , yf ), which we denote by K, is a random variable 
which is uniformly distributed over (1,. . . , f ). Recall that if K > k then, 
for every pair whose rank is greater than or equal to K, we eliminate one 
point. Thus, f - K + 1 points are eliminated in ths  case. Otherwise when 
K I k, we proceed to the next step with corresponding K pairs, that is, 
those with a I K. Once again, for convenience, let us rename these K pairs 
and index them so as to conform with the y +  values, that is, 1 I a I P < K 
implies yJ 5 y:. Let r denote the rank of y*  in the set {y : ,  . . . , y;) .  As 
was the case with k, the rank r is determined at the current stage, yet 
unknown to the algorithm. Now the algorithm picks a random pair whose 
rank R is uniformly distributed over (1,. . . , K }. If R I r then R points 
are eliminated. Otherwise, K - R points are eliminated. 

Consider the case where K I k. Given the value of K, the expected 
number of points eliminated during the second step is at least K/4. This 
follows from the fact that even if an adversary could change the value of y* 
after R had been picked, then the most he could achieve would be that the 
smaller of the two sets determined by R be eliminated. The expected 
cardinality of the smaller set determined by a uniformly distributed R is 
equal to one quarter of the cardinality of the grand set. 

On the other hand, if K > k then f - K + 1 points are eliminated. It 
follows that the expected number of points eliminated altogether is 

Even if an adversary could freely change the value of k, then the expected 
number of points eliminated would be at least the minimum of the 
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we go to step (5)). We now need to eliminate the point of the smaller weight 
from each pair (k, 1) such that y; s y;, where both yiT and y, are 
functions of x*. Once again, this can be carried out even though we do not 
know the exact value of x*. We consider the half-circles D,,. There are at 
most n intersection points of such arcs with the half-circle Djj .  By O(1og n) 
horizontal tests we can locate x* within the set of x-values of these 
intersection points, and thus we can eliminate one point per pair for (k, 1) 
such that y, I y,;. 

We have shown that each of the steps of the one-dimensional search can 
be carried out in O(n log n) time even if x* is not known, since we can 
always find the necessary information about x* by performing O(1og n) 
horizontal tests, at the cost of O(n) per test. 

An iteration of the parametric algorithm for the 1-center problem con- 
sists of steps (1)-(6) of the one-dimensional search with x* unknown. At 
each iteration the number of points (which still needs to be considered) is 
reduced by elimination of dominated points. Lemma 4.1 asserts that a 
single iteration of the parametric algorithm takes no more than CN,log N, 
time, where N j  is the number of points remaining at the start of the ith 
iteration, and C is a constant independent of the random elements. The 
choice of the random elements affects only the number of iterations and not 
the cost of a single one, given the number N,. The progress of the sequence 
of N,'s is considered in the next section. 

We now obtain an upper bound on the expected time required by the 
algorithm. Notice that we are interested in the expected time for the 
worst-case instance and the expectation is only relative to the internal 
randomization of the algorithm. 

We first find an upper bound on the expected number of points eliminated 
during a single iteration. At any instant of time during the execution of the 
algorithm the input points can be classified as active or inactive. At the 
beginning all are active and during the execution each becomes inactive at 
some stage. Let us consider a single iteration of the algorithm and denote 
by n' the current number of active points. For convenience, let us rename 
the active points to be p, (i = 1,. . . , n'). At the end of the current iteration 
certain active points become inactive. Let us denote by S the cardinality of 
the subset of these points. Note that S is a random variable whose 
distribution depends on the past history of the execution of the algorithm. 
However, it is possible to bound the expectation of S (as a function of n') 
from below in a useful way, regardless of that past history. 
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quadratic function of k we have just calculated. The minimum is attained 
at k = 4 f / 5  and is equal to f/10. Now recall that one point is eliminated 
from each pair ( i ,  j )  E E.  Thus, the expected number of points eliminated 
is at least [El + f/10. Note that IEl + f = n f / 2 .  It follows that altogether 
we eliminate an expected number of at least n'/20 points during each 
iteration. 

COROLLARY 5.2. The expected running time of the one-dimensional search 
algorithm is linear, and the expected running time of the parametric algorithm 
is O(n log n ) .  

ProoJ: The linear upper bound is established by considering the perfor- 
mance of the algorithm against an adversary who is able to change the 
value of k between iterations. Let denote the number of active points 
after the ith iteration. In particular, No = n. Consider the ratios Y, = 

N,/N,- , ,  i = 1 , 2 . .  . . If the algorithm is run against the said adversary then 
the random variables Y,, Y,, . . . are independent and each has expectation 
of at most z.  The effort in performing an iteration starting with points 
is bounded by C'N, where C' is a certain constant. Thus, the expected 
effort in performing the i-th iteration is bounded by C'nb[Y,Y, . - Y, - 11 
(where & stands for expectation), which is bounded by C'n(E)'- l .  It 
follows that the expected total effort is bounded from above by 20C'n. 

Finally, the expected time required for solving the weighted center 
problem is O(n log n )  by an analogous argument. The effort of performing 
an iteration starting with n points is bounded from above by C"n log n and 
hence the topal effort has an expected value less than 20C"n log n. As a 
matter of fact, the result of Corollary 5.2 can be sharpened by slightly 
tightening the analysis (cf. [Zl] for details). This yields the following 
theorem. 

THEOREM 5.3. For every E > 0 there exists a constant C = C ( E )  such that 
for every n and every problem with n points, the probability of the parametric 
algorithm running for longer than Cn log n steps is less than E .  
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