
MATHEMATICS OF OPERATIONS RESEARCH
Vol. 4. No. 4. November 1979
Printed in U S A .

COMBINATORIAL OPTIMIZATION WITH RATIONAL
OBJECTIVE FUNCTIONS*

NIMROD MEGIDDO

Tel Auiu University

Let A be the problem of minimizing c l x l + . . . + c,x, subject to certain constraints on
x = (x , , . . . , x,), and let B be the problem of minimizing (a , + a , x l + . . . + o,,x,)/(b, +
b ,x , + . . . + b,x,) subject to the same constraints, assuming the denominator is always
positive. It is shown that if A is solvable within O [p (n)] comparisons and O[q(n)] additions,
then B is solvable in time O[p(n)(q(n) +p (n))] . This applies to most of the "network"
algorithms. Consequently, minimum ratio cycles, minimum ratio spanning trees, minimum
ratio (simple) paths, maximum ratio weighted matchings, etc., can be computed withing
polynomial-time in the number of variables. This improves a result of E. L. Lawler, namely, - -
that a minimum ratio cycle can be computed within a time bound which is polynomial in the
number of bits required to specify an instance of the problem. A recent result on minimum
ratio spanning trees by R. Chandrasekaran is also improved by the general arguments
presented in this paper. Algorithms of time-complexity O(IEJ . I vJ2. log1 VJ) for a minimum
ratio cycle and O(IE1. log21 VJ .log IoglVI) for a minimum ratio spanning tree are devel-
oped.

1. Introduction. Numerous combinatorial optimization problems can be formu-
lated as linear minimization problems subject to certain constraints. Let us denote

Problem A:
Minimize c , x , + . . . + cnxn
s.t. x = (xl, . . . , x,,) E D.

As examples we might mention the problems of the shortest (simple) path, the
minimum spanning tree, the maximum weighted matching, the minimum cut, the
traveling salesman, the Chinese postman, and a variety of scheduling problems.

In view of the examples given above, the following generalization of A is interesting
both from the applicative and the theoretical aspects. We denote

Problem B:

Minimize (a,, + a,xl + . . . + a,,x,)/(b, + blxl + . . . + bnx,,)

s.t. X E D

(assuming the denominator is always positive).
One example of a practical ratio minimization is that of minimizing cost-to-time

ratio. Dantzig, Blattner and Rao [5] and Lawler [8] introduced the problem of the
minimum cost-to-time ratio cycle in a graph. This problem applies to finding optimal
ship routing.

Our general result in this paper relates the time complexity of problem B to that of
problem A. It turns out that whenever A has a good algorithm, then the same is true
for B.

An algorithm for the minimum ratio cycle problem is given by Lawler 19, Chapter
3, $131. The time bound for Lawler's algorithm depends on the numerical values of

Received November 18, 1977; revised October 20, 1978.
AMS 1970 subjecr classificalion. Primary 90C30. Secondary W 3 5 .
IAOR I973 subject classification. Main: Fractional programming. Cross reference: Network programming.
O R / M S Index 1978 subject classification. Primary: 623 Programming, fractional. Secondary: 481 Net-
works/graphs; 652 ~ r o ~ r a m m i n ~ , kquiva~ence/transfomations.
Key worh. Fractional programming, computational complexity, polynomial running time; minimum-ratio
cycles, spanning trees, paths, weighted matchings.

414
0364-765X/79/04OQ/O414$01.25

Copyr~ght 0 1979, The Institute of Management Sc~ences

the parameters, namely, "the number of computational steps is bounded by a
polynomial function in the number of bits required to specify an instance of the
problem." The theorem proved in the present paper provides improved algorithms, in
the sense that the time bound is a polynomial function in the number of the variables
and does not depend on the numerical values of the parameters. Karp [7] solves the
minimum cycle mean problem (i.e., the special case of the minimum cost-to-time ratio
cycle, when all times bV are equal) in time O(I E I . / VI), where E is the edge set and V
is the vertex set of the graph. The theorem proved in this paper implies an o (I E) ~ .
IvI2) for the general minimum ratio cycle. This is reduced further to O(IE1.
1 v l 2 log1 VI) by considering special features of the negative cycle algorithms.

In a recent paper, Chandrasekaran [3] computes a minimum ratio spanning tree in
time O(IEIZ log1 VJ). His argument is specific to the spanning tree problem, even
though it can be extended to finding bases in matroids, minimizing ratio functions.
Our theorem improves this bound, yielding 0 [I E (* . (log log1 v This is reduced
further to 0(IEllog2J Vjlog log1 Vl) by considering special features of minimum span-
ning tree algorithms.

Additional references for ratio minimization can be found in Lawler's book [9, p.
1071. This paper is organized as follows. In $2 we prove a basic theorem, providing a
general algorithm for problem B. An example of the general idea is presented in $3. In
54 we discuss ways of accelerating the algorithm, and the case where problem A has a
comparisons algorithm is discussed in $5. In $56 and 7 we provide algorithms for the
minimum ratio spanning tree and the minimum ratio cycle, respectively, which are
based on the acceleration techniques. In an appendix we provide an algorithm for
finding the minimum of n linear functions in time O(n log n). This algorithm turns
out to be useful in accelerating the general algorithm for ratio minimization.

2. The general algorithm. Our main result here is the following theorem.

THEOREM. If problem A is solvable within O(p(n)) comparisons and O(q(n))
additions then problem B is solvable in time O(p(n)(q(n) + p(n))).

PROOF. A rather standard trick for solving ratio minimization problems is as
follows. Given problem B, pick a real number t and solve problem A with c, = a, - tb,
(i = 1, . . . , n) under the same constraints.

Suppose that u is the optimal value of problem A. If o turns out to be equal to
tb, - a, then t is the optimal value of problem B and the optimal solution x of
problem A (with respect to t) is also an optimal solution of problem B. On the other
hand, if u < tb, - a, then a smaller t should be tested and if u > tb, - a, then a
greater t should be tested. This procedure continues until the "correct" value t* (t* is
characterized by the property that the optimal value u(t*) of problem A w.r.t. t*
equals t*b, - a,) is found. The key question is how many values of t have to be tested
before the "correct" one t* is found. We shall prove that the number of these tests is
not greater than the number of comparisons made by the algorithm which is available
for problem A. We refer to this algorithm as the A-algorithm.

Given the data for problem B, consider the different paths, depending on the value
of t, that the A-algorithm may follow when solving problem A with c, = ai - tb,,
i = 1, . . . , n. These paths form a directed tree where branching points correspond to
comparisons made by the algorithm.

At the start the data are linear functions (possibly constants) of t , defined over the
entire real line. Additions generate some more linear functions of t. Consider the first
comparison made by the algorithm. Since the algorithm compares two linear func-
tions of t, the outcome of the comparison may depend on t. However, in any case
there will be at most one critical value t,, say, such that for all t < t,, one of the

416 NIMROD MEGIDDO

functions compared is greater than or equal to the other, and for t > t , the other
function is greater than or equal to the first one. Thus, the comparison may partition
the real line into two rays of values which are equivalent from the point of view of the
outcome of the comparison. The comparison corresponds to a branching point with
an outgoing degree of 2, and the two subtrees correspond to the rays [- a , t,] and
It,, GO]. All the functions previously generated by the algorithm are linear over these
rays. Even if a function g(t) = Min(f ,(t), f2(t)) is generated at the point of compari-
son, then g(t) is still linear over [- oo, t,] and [t,, oo]. Additions made after the flrst
comparison but prior to the second one will generate functions which are linear over
the two rays.

By induction, every branching point corresponds to a comparison between two
functions of t which are linear over some interval [e, fl (- oo < e < f < oo) which is
associated with the branching point. Thus, there is at most one critical value t' in the
interval. The outgoing degree of the branching point is 2 and the two complementary
subintervals [e, t'] and [r', fl correspond to the two subtrees rooted at the branching
point. All functions generated prior to the next comparison (in either subtree) are
linear over the respective subinterval. Furthermore the endpoints are also associated
with intervals and the optimal solution given at any endpoint is in fact a linear
function of t over the interval associated with the endpoint.

Our observation gives rise to the following algorithm for problem B. Essentially, the
algorithm solves problem A parametrically over an interval, which reduces throughout
the computation, searching for the "correct" value t*. At each branching point
reached in the tree of the A-algorithm, the corresponding critical value of t is tested
by running the A-algorithm with t fixed at the critical value. Then the appropriate
branch is selected and the next branching point is considered. At the end, the optimal
value of problem A will be given in the form of a linear function v(t) defined over an
interval [e , n which contains t*. The value t* is then calculated by solving v(t*)
= t*b, - a,.

Following is a detailed description of an algorithm for problem B.
The description is quite general. However, we will illustrate particular cases in

which it will be clear how the general principle is implemented. For the convenience
of notation we write [- oo, oo] = (x : - oo < x < oo) and, similarly, if d E [- oo, oo]
then[-oo ,d]={x : - w < x d d) a n d [d , o o] = (x : d < x < m) .

The B-algorithm.
0. Initialize with [e, f] = [- oo, oo] and define c,(t) = a, - tb,, i = 1, . . . , n.
1. Follow the A-algorithm for minimizing c,(t)x, + . . . + c,(t)x, (x E D), simul-

taneously for all t in [e,fl, from the start or from the recent point of resumption, to
the next point of comparison. If there are no more comparisons and the A-algorithm
terminates then go to 5; otherwise, let the A-algorithm make a pause at the point of
comparison and go to 2.

2. If gl(t) and g,(t) are the two linear functions that have to be compared over
[e, f], then solve the equation g,(t) = g,(t). If there is no unique solution in [e, f] then
resume the A-algorithm and go to 1 (the outcome of the comparison is independent of
t over [e, f]); otherwise go to 3.

3. Let r' denote the unique solution of g,(t) = g,(t) over [e, f]. Solve the problem:
minimize c,(tl)x, + . . . + c,,(tf)x, ..ibject to x E D by employing the regular A-
algorithm (all data are constant). If the optimal value o equals t'b, - a, then
terminate (x is an optimal solution for B and t* = 0); otherwise set f = I' if u < t'b, -
a, and set e = t' if u > t'b, - a,.

4. Resume the A-algorithm for the parametric problem over [e, fl and go to 1.
5. The optimal value of problem A is a linear function u(t) over [e, f]. The correct

value t* may be found by solving o(t*) = t*b, - a,. Optimal solutions x (t) are given

COMBINATORIAL OPTIMIZATION WITH RATIONAL OBJECTIVE FUNCTIONS 4 17

in the form of a linear function over [e, f]. An optimal solution for problem B will be
X* = ~ (t *) .

Obviously, the number of critical values of t tested by the A-algorithm is bounded
by the total number of comparisons made during one run of the A-algorithm itself.
This completes the proof of the theorem.

3. An example: Finding a minimum ratio cycle. The general B-algorithm will be
demonstrated by the problem of the minimum cost-to-time ratio in a directed graph.

Let aii and bii denote the cost and time, respectively, of traversing an arc (i, j)
(bv > 0 for i # j, aii = bii = 0, i = 1, . . . , n). We wish to find a directed cycle such
that the ratio of the total cost to the total time of traversing the cycle is minimized.
The corresponding A-problem is to find the shortest simple cycle in a directed graph
with distances cii. The distances may take negative values.

This problem could be formulated as minimizing 2 cgxy where x = (xq) is a
zero-one matrix and minimization is taken with respect to the set D of all zero-one
matrices, such that the arcs (I , j) for which xii = 1 form a simple directed cycle.
Floyd's algorithm for all-pairs shortest paths (see [9]) could be employed as the
A-algorithm in this case. Essentially Floyd's algorithm will be used as a negative
cycles detector. Negative cycles can be detected in time O(l E 1 . 1 VI) (see [6], [7], [9])
and hence an upperbound of o (I E ~ ~ . I v(*) for the minimum ratio cycle is implied.
However, we will later derive an O(IE I - (vI2 log1 VI) bound.

Define u;'")(t) to be the length (with respect to the distances ck,(t) = a,, - tb,,) of a
shortest simple path from i to j allowing only nodes in the set (1, . . . , m - 1) to serve
as intermediate nodes. The corresponding B-algorithm is the following (all bookkeep-
ing with respect to the actual paths and cycles found is omitted).

An 0(n6) algorithm for minimum ratio cycles:
0. Initiate with [e, f] = [- oo, oo] and uj1)(t) = a,. - tb,. (1 < i , j < n). Set i = j = m

= 1.
1. Solve UJ .~) (~) = u$)(t) + u$)(t).
2. If there is a unique solution t' in [e,fl then go to 3; otherwise go to 4.
3. Test the graph with distances c,,(t') for negative cycles. If there is a zero cycle

and no negative cycles then terminate (the zero cycle is a minimum ratio cycle);
otherwise, let f = t' if there is a negative cycle and let e = t' if all cycles are positive.

4. Set uim+')(t) = Min[u$")(t), u$')(t) + u,$)(t)]. (This is effective and u$'"''')(t) will
be linear over [e, f].)

5. I f j < n s e t j = j + l a n d g o t o 1 ; i f j S n a n d i < n s e t j = l , i = i + 1 ,andgoto
l ; i f i = j = n a n d m < n s e t i = j = l , m = m + l , a n d g o t o l ; i f i = j = n a n d m = n
then go to 6.

6. Find k such that u$+')(f) < 0 and terminate. (The minimum ratio cycle is the
shortest (w.r.t. c,(f)) simple cycle which contains k; the "correct" t* is precisely e.)

The claim in step 6 follows from the fact that for each i, u$'+')(t) is linear over
[e,fl. Moreover, uF+')(e) = 0, uF+')(f) < 0 (i = 1, . . . , n) and for some k (1 < k
< n) u$+')(f) < 0. Thus, the maximum value of t for which there is no negative cycle
is precisely e. The cycle found by the algorithm has zero length (w.r.t. c,(t)) if t = e.

Since Floyd's algorithm runs in time 0(n3), it follows that the B-algorithm based on
it runs in time 0(n6).

4. Accelerating the B-algorithm. The general idea of the B-algorithm could be
summarized as follows. The A-algorithm is employed parametrically over an interval
[e, f]. Whenever a comparison between two linear functions c,(t), c2(t) has to be
made, an updating of the interval is considered. The result of the comparison could be
a piecewise linear function, c,(t) = Min{c,(t), c2(t)), say, over [e, f]. The function c,(t)
could have one breaking-point at most. If there is such a point, then it is tested by

418 NIMROD MEGIDDO

running the regular A-algorithm at that point, and the appropriate subinterval of
linearity is selected. Thus, the number of test-runs of the A-algorithm may be as large
as the number of comparisons performed by the A-algorithm.

As a matter of fact, in many cases we do not need so many test-runs of the
A-algorithm. A test at a breaking point could be postponed for a while in the
following manner. The parametric A-algorithm could be decomposed into stages. At
the beginning of a stage all the functions are linear over some interval [e, fl. During
the stage some more linear functions may be generated, and also some piecewise
linear functions over [e, fl are generated. The parametric A-algorithm should make a
pause when, for the first time, a piecewise linear function, generated previously during
the present stage, has to be compared to some other function.

If e = to < t, < . . . < tk = f are all the breaking-points of piecewise linear func-
tions generated during the present stage, then all of our functions are linear over each
subinterval [ti.- ,, ti] (i = 1, . . . , k). It will not be necessary to test all of these points,
provided that they are already sorted, since the subinterval [t,- ,, t,] that contains t*
(see 93) can be found by a binary search. This amounts to only OOog k) test-runs of
the A-algorithm. Then the interval is updated: [e, f] = [t, - ,, t,] and the following stage
starts. Similarly, when the parametric A-algorithm terminates, the appropriate subin-
terval [t,- ,, t,] of the final [e, fl, which contains t*, is found by means of a binary
search.

The idea of storing critical values is especially simple to implement when the
regular A-algorithm itself has the structure of stages or iterations. For example,
Floyd's algorithm for alLpairs shortest paths, which we used to detect negative cycles,
has an adequate structure of n iterations. The piecewise linear functions generated
during one iteration do not have to be compared to any function before the following
iteration starts. Thus, an accelerated B-algorithm for a minimum ratio cycle could
operate as follows.

Start with [e,fl = [- m, oo] and uf)(t) = a, - tbV. Assume, by induction, that for
some m (1 < m < n) all the functions u$")(t) (i = 1, . . . , n, j = 1, . . . , n) are linear
over an interval [e, fl which is known to contain t* (t* < f). Compute all solutions of
the equations uF)(t) = uz)(t) + u,$')(t) over [e, f]. This requires 0(n2) time. Sort the
set of solutions to form a sequence e = to < t, < . . . < t, = f, spending no more than
0(n210g n) time. Search for the first I (1 < I < k) such that t* < t,. This requires
O(1og n) test-runs of Floyd's algorithm and hence 0(n310g n) time. Obviously, the
functions uij."+')(t) are linear over [t,-,, t,], which will serve as the interval [e,fl
during the next iteration. Since there are altogether n iterations, the overall time
bound is 0(n410g n).

We have been using Floyd's algorithm just for demonstrating the general idea. An
upper-bound of O(I E I . I v12 log1 VI) for the minimum ratio cycle problem will be
derived later.

5. Comparison algorithms. Another way of accelerating the B-algorithm applies
to cases where the A-algorithm uses only comparisons of input elements. In such a
case, we start from n linear functions, and all of the breaking-points of piecewise
linear functions that might be generated by the algorithm are contained in the set of
at most n(n - 1)/2 intersection points of the original functions. Thus, one could
compute all of these intersection poin's beforehand, sort them, and then search for the
interval which contains t* and over which all of the functions will be linear during the
entire computation. The computation and sorting of the breaking-points require
0(n210g n) time, while the search requires O(log n) test-runs of the A-algorithm.
If T(n) is a time bound for the A-algorithm, then an overall time bound is
O(Max[T(n), nZ] . log n).

We might note further that the set S of intersection points does not have to be

COMBINATORIAL. OPTIMIZATION WITH RATIONAL OBJECTIVE FUNCTIONS 4 1 9

sorted. If a linear-time median-finding procedure (see [2]) may be used, then the
appropriate interval could be found as follows. Find the median t' of S and run the
A-algorithm at t'. Then, according to the result of the test-run, drop a half of S and
find the median of the remaining half. Repeat this process until only two elements of
S are left. This procedure requires no more than O(1og n) test-runs of the A-
algorithm. The rest of the computation consists of computing the intersection points
and median-findings in sets of sizes smaller than n2, f n2, $ n2, etc. All these require
0(n2) time, and hence an overall time bound is 0(Max[n2, T(n)log n]).

As an example for the application of the acceleration technique presented in this
section, we might mention the problem of finding a minimum ratio spanning tree [3].
Here we start with the linear functions a,, - tb,, associated with the edges (u, u) E E
of an undirected connected graph. The number of intersection points is bounded by
I E 12. The minimum spanning tree problem has many algorithms using only compari-

P sons (see [4], [lo]). Since O(IE llogl VI) is an upper bound for the minimum spanning
tree, the time bound for the minimum ratio problem that follows from our technique
in the present section is o (IE~~) . The algorithm which supports this time bound
coincides essentially with Chandrasekaran's algorithm [3], the only difference being
the idea of using linear-time median-finding repeatedly, instead of presorting the set
of intersection points. The latter yields an o(I E 1210gl vI) bound. However, in the
following section we beat these bounds down to ~ (I ~ l l o g ~ J Vllog log1 V /) .

6. Minimum ratio spanning trees. An efficient algorithm for a minimum ratio
spanning tree is obtained if Sollin's algorithm [l, p. 1791 is employed as the parametric
A-algorithm. Test-runs could be made by any O(I E (log log) VI) minimum spanning
tree algorithm (see [4], [101).

Sollin's algorithm consists of at most O(log1 VI) iterations and in each one of them
the minimum weight edge incident upon a vertex has to be found for each vertex.
When employed parametrically, Sollin's algorithm generates at each vertex u a
function which is equal to the minimum of an edge-weight in E, (E, is the set of edges
incident upon v) linear functions. The amount of time required for computing all
intersection points of these linear functions, i.e., o (/ E ~ ~) , dominates the relatively low
upper-bound of the minimum spanning tree problem. However, we show in the
Appendix that the calculation of all breaking-points of the minimum of n linear
functions could be carried out in time O(n log n). This implies that one can find all
breaking-points of the functions, representing the minimum weight edges incident
upon all vertices, in time O(I Ellog1 VI). Thus, a minimum ratio spanning tree can be
found as follows.

For every edge (u, u) E E let c,,(t) = a,, - tb,,. At the first stage find all breaking-
points of the functions g,(t) = Min{c,,(t) : (u, u) E E) (u E V). Merge all sequences
of breaking-points associated with the different vertices, to form a sequence - oo = I,

< t, < . . . < t, = m. Search for the first I such that the minimum spanning tree with
respect to the weights cv,(t,) has a negative total weight, and set e = t,- ,, f = t,. For
each v identify an edge (a, u) such that g,(t) = cv,(t) for every t, t,-, < t < 1,. These
edges (except some that might have to be removed in order to prevent possible cycles)
will belong to the minimum ratio spanning tree. Identify the groups of vertices that
are connected by these edges. By induction, during the computation we have a forest
consisting of subtrees T,, . . . , T,. If m = 1 then the forest is the tree sought. For
every component T., let g,(t) (e < t < f) denote the minimum weight (with respect to
c,,(t)) of an edge linking T, to another component. Find all breaking-points of the
g,(t)'s (i = 1, . . . , m) over [e, f] and merge the m sequences to a sequence e = to
< . . . < t, =f. Search for the appropriate subinterval It,_,, t,], identify the cor-
responding edges, and update [e, f] = [t,- ,, t,]. From the set of new edges delete one
per each cycle (of new edges) and add the rest to the forest. The number of

420 NIMROD MEGIDDO

components of the new tree will be at most a half times the number of components of
the previous one. The process is repeated until the forest has a unique component, in
which case it is the minimum spanning tree with respect to the weights c,,(t), for every
t in the final interval [e, f] . Thus, this tree has zero weight with respect to c,,(t*), and
hence minimizes the given rational objective function.
In procedure MRST, the set T collects the edges of the final spanning tree. The set

VS contains the vertex sets corresponding to the connected components of the
spanning tree found so far. E(W) is the set of edges linking th vertex set W to some
other vertex sets. ES is the collection of the E(W)'s. MST(t) is a procedure that
returns the weight of a minimum spanning tree with respect to c,, = a, - tb,,.

Procedure MRST;
begin T t G ; V S t G ; E S t Q) ;
for each vertex u E V do

begin
add the singleton set { u) to VS;
add the edge set E ({ o))
= {all the edges incident upon u) to ES;

end
e c - c o ; f t c o ;
while I VS I > 1 do
begin
for each vertex set W E VS do

begin
for each edge (v , u') E E(W) if u' E W
then delete (u, u') from E(W) ;
construct the sequence BP(W) of
breaking-points of the function
gw(t) = Min{a,, - tb,, : (u, u) E E (W))
in the interval [e , f l (procedure PMIN);

end
merge the sequences BP(W) (W E V S) into
a sequence BP;
search BP for the first t' such that
MST(t') < 0;
f t t'; e t the predecessor of t' in BP;
T ' c Q) ;
for each vertex set W E VS do

begin
find the edge (u, 0') in E(W) such
that g,(t) = a,, -- tb,, for every
t in [e, f l ;
add (o, v') to T';

end
for each edge (u, 0') E T' do

begin
if the set W E VS containing o and
the set W' E VS containing c' are
distinct then do
begin
in VS, replace W and W' by W u W ' ;
in ES, replace E(W) and E (W 1) by

COMBINATORIAL OPTIMIZATION WITH RATIONAL OBJECTIVE FUNCTIONS 42 1

E(W) U E(W');
add (v, v') to T;

end
end

end
output T;

end MRST.

The number of iterations is bounded by O(log1 VI). In every iteration the computa-
tion of all breaking-points, as well as merging the sequences, does not require more
than O(IE1. logJVI) time. The search involves O(loglVl) test-runs of a minimum
spanning tree procedure, and hence amounts to O(I E I . log1 V1- log log1 VI) computa-
tional steps. Thus, the overall time bound is O(IE I log2/ V(. log log1 VI).

To summarize, procedure MRST calls MST(t) 0(log21 VI) times. Chandrasekaran's
algorithm calls MST(t) O(log1 V() times, but on the other hand has to spend at least
O(J E 12) time for some other steps.

7. Minimum ratio cycles. Procedure MRC for finding a minimum ratio cycle is
based on Karp [7]. The given graph may be assumed to be strongly connected, since
otherwise the strongly connected components can be found in time O(1 VI + /El),
which is dominated by the overall time bound obtained in any case, and then each
component could be handled independently.

A vertex s is chosen arbitrarily, and for every vertex v E V and k (i = 0, 1, . . . , n
= I VI) we denote by Fk(o; t) the minimum weight (with respect to c,,(t) = a,, - tb,,)
of an edge progression of length k from s to u (Fk(v; t) = oo if no such edge
progression exists). I t is proved in [7] that the graph with the weights c,,(t) contains a
negative cycle if and only if there is a vertex o such that for every k (0 < k < n - 1)
Fn(v; t) < Fk(u; 1). If this is the case then the minimum-weight edge progression of
length n from s to v contains a negative cycle.

If t is confined to an interval over which Fk(v; t) is a linear function of t, then we
represent Fk (v; t) = Gk(v) + t - Hk(v) Also, if the edge progression corresponding to
F,(v; t) is independent of t over the interval under consideration then we denote by
Ik(v) the predecessor of u in that edge progression.

The values Fk(o; t) can be computed by Fk(u; t) = Min{Fk-,(u; t) + a,, -
tb,, : (u, o) E E) (k = 1, . . . , n), starting from F,(s; t) = 0 and Fdv; t) = oo for
v # s. Whenever Fk(v; t) will have to be computed, t will have already been confined
to an interval over which each Fk- ,(u; t) ((u, u) E E) is linear. Then, all breaking-
points of the functions Fk(v; t) over that interval of t could be found in time
O(IEl1ogl VO.

Procedure NCD(t) is a negative cycle detector that returns YES if the graph with
the weights c,,(t) contains a negative cycle, and NO otherwise. Procedure MRC
computes the functions Fk(r;; t) (k = 0, 1, . . . , n, u E V) in an interval [e, f] over
which each one of them is linear, and which is also known to contain the critical
number t* = Max{t : NCD(r) = NO). Moreover, the edge progression corresponding
to F,(v; t) is independent of t over [e, f]. This interval is then narrowed further, using
a similar type of technique, to an interval [e, f] which contains t * (t* < f), and such
that Fn(v; t) does not intersect Fk(v; t) in [e, f] (excluding the possibility of coinci-
dence over the entire interval) for every vertex u and k, k = 0, 1, . . . , n - 1. Since
r* < f, it follows that there is a vertex o* such that Fn(u*; f) < Fk(o*; f) for every k,
k = 0, 1, . . . , n - 1. This implies that Fn(v*; t*) < Fk(c*; t*) for every such k. How-
ever, the edge progression corresponding to Fn(o* ; t *) certainly contains a cycle. It
follows that this cycle must be of weight zero with respect to c,,(t*). Thus, this cycle is
a minimum ratio cycle.

422 NIMROD MEGIDDO

Procedure MRC ;
begin e t - cc ; f c oo ; Go(s) t 0; Ho(s) t 0;
for each vertex v # s do

begin
Go(t;) t oo ; Ho(c) t 0 ;

end
for k t 1 until n do

begin
for each vertex u E V construct the sequence
BP(v) of all breaking-points of the function
g,(t) = Min{Gk-,(u) + a, + t[Hk-,(u) - b,,]:
(u , v) E E) in [e, fl (procedure PMIN);
merge the sequences BP(v) (u E V) into a
sequence BP
search BP for the first t' such that
NCD(tl) = YES;
f t t'; e c the predecessor of t' in BP;
for each vertex v E V do

begin
identify the vertex u such that
g,(t) = Gk- ,(u) + a,, + dHk- ,(u) - b,1
for t E [e, fl;
Gk(v)+ G k - l (~) + a,;
Hk(v)+Hk- , (4 - bu,;
Ik(v)+ U ;

end
end

S + { e , f >
for each vertex v E V do

begin
for k c 0 until n - I do

begin
if Hn(v) # Hk(v) then do
begin
t t [Gk(v) - Gn(u)I/[Hn(v) - Hk(v)l;
if t E [e, f] then add t to S ;

end
end

end
sort S ;
search S for the first t' such that
NCD(t') = YES; f t t ' ; e c the predecessor of
1' in S ;
for each vertex v do

begin
while x = 0 and k < n - 1 do
begin
if Gn (v) + fHn (0) > Gk (v) + fHk (0)

then x t 1 ;
k t k + 1

end
i f x = O then go to 1

COMBINATORIAL. OPTIMIZATION WITH RATIONAL OBJECTIVE FUNCTIONS 423

end
1 S t { u) ; x t O ; u , t v ; k c n + 1;

while x = 0 do
begin k t k - 1 ;
uk- 1 +- Ik(uk);
i f u k - , $ S t h e n a d d u k - , t o S e l s e x t 1 ; .

end
identify 1 (k 4 1 4 n) such that uk-, = u,;
output U k - ,, U k , . . . , u,;

end MRC.

The computation of Gk(u) and Hk(v) for all vertices and some fixed k requires
O(IE(log(V J) time for finding the sequence of breaking-points, and then O(log1 VI)
test-runs of a negative cycle detector are required for narrowing the interval. Thus, all
the quantities of the form Gk(u) and H,(u) are computed in time O (I E I . ~ V ~ ~ .
log/ VI). The terminal narrowing of the interval requires the computation of O(I vI2)
values and O(log1 VI) test-runs. Thus, the overall bound is O(IE1 . (~ 1 ' . log] VI).

Appendix: An O(n log n) algorithm for the minimum of n linear functions. Let
a,, . . . , a,, b,, . . . , b, be given real numbers and let g(t) = Min{ g(t; i) = air + b, : i
= 1 , . . . , n) . Obviously, g(t) is concave and piecewise linear with at most n linear
pieces. In order to describe g(t) completely, it suffices to specify all of its breaking-
points - oo = to < t , < . . . < $+, = 00, together with indices k, , . . . , k,+,, such that
g(t) = g(t; k,) for all t and i (i = 1, . . . , j + 1) satisfying ti-, < t < ti.

The following algorithm is based on the fact that the slopes of the linear pieces of
g(t) form a monotone decreasing sequence. The first step requires sorting the set
{(a,, b,), . . . , (a,, b,)) according to the order >, defined by (a,, 6,) > (a,, b,) if and

I only if either a, > aj or a, = a, and b, < $. Then we may assume that a , > a, > . . .
> a,. Denote g(m)(t) = Min{g(t; i) : i = 1, . . . , m) , m = 1 , 2, . . . , n. Suppose that
for some m < n all the breaking-points - oo = to < t , < . . . < $+, = oo of g@)(t) are
known, together with indices k, , . . . , k,+ , such that g(m)(t) = g(t; k,) for t i - , < t < ti.

I

The graph of g,+,(t) either intersects the graph of g(m)(t) at most at one point, or
coincides with its rightmost linear piece. If g(m)($) = ak,$ + bk, < gm+,(r,) then the
intersection point t* (if at all) of g(m)(t) and g,, ,(t) is the rightmost breaking-point of
g("+')(t). In fact, g("'+I)(t) coincides with g(")(t) over [- oo, t*], and with g,+ ,(t) over
[t*, oo]. If g(,)(t,) = gm+ ,($) then g("+')(t) coincides with g(m)(t) over [- cv, $1 and
with g,+,(t) over [$, oo]. The remaining case is g(m)($) > g,,,+,($). In this case a
binary search over 1, . . . , j finds the first i such that g(m)(t,) > g,,,, ,(ti). The intersec-
tion point t* of g(")(t) and g,+,(t) lies in this case in [ti-,, t,]. Again g(m+')(t)
coincides with g(")(t) over [- oo, t*] and with g,+ ,(t) over [I*, oo].

Procedure PMIN ;
begin
sort {(a, , b,), . . . , (a,, b,,)) according to the
order > defined by (aibi) > (a,, b,) if
either a, > a, or a, = 9 and bi < b,;
j t O ; k c 1;
for m t 2 until n do

begin
if j = 0 then do
begin
if a,,, # a , then do
begin
j t 1; k,+-m; t , t (b , - b,)/(a, - a,);

NIMROD MEGIDDO

end
else go to 1 ;

end
else if am # a,, + , then do
begin
x t a , t + bk,; yta,,,i', + b,:
i/ x <$ then do
begin

$ + I +(bm - bkl+l)/(akl+l - am);
k,+,+-m; j t j + 1;

end
else if x > y then do
begin
search for the first i such that
a,t, + b, > amt, + b,;
j t i ; k,,, t m

end
end

1 end
end PMIN.

Procedure PMIN runs in O(n log n) time. We note that the data structure for
PMIN could simply be an array with a pointer, since all deletions are of terminal
portions of a set and all insertions are made at the end of the set.

We also note that any algorithm for finding the minimum of n linear functions,
using only comparisons, requires O(n log n) time. This is implied by the fact that the
sorting problem is reducible to minimum finding problem in the following manner.
Suppose that a set S = { a , , . . . , a,,) of real numbers has to be sorted, and assume
that all the elements of S are distinct. Let g,(t) = ait + a:, i = 1, . . . , n. If i # j then
g,(t) intersects ~ (t) at the point -ai - a,. This implies that g (t) = Min{ g, (t) : i
- - 1, . . . , n) consists of precisely n linear pieces whose slopes constitute a monotone
decreasing sequence. This sequence is in fact the sorted set S.

References
[I] Berge, C. and Ghouila-Houri, A. (1965). Programming, Games and Transportation Networks. Wiley,

New York.
[2] Blum, M., Floyd, R. W., Pratt, R., Rivest, R. L. and Tarjan, R. E. (1972). Time Bounds for Selection.

J. Compur. System Sci. 7 448-461.
[3] Chandrasekaran, R. (1977). Minimum Ratio Spanning Trees. Networks. 7 335-342.
[4] Cheriton, D. and Tajan, R. E. (1976). Finding Minimum Spanning Trees. SIAM J. Comput. 5

724-742.
[5] Dantzig, G. B., Blattner, W. and Rao, M. R. (1967). Finding a Cycle in a Graph with Minimum Cost

to Time Ratio with Appl~cation to a Sh:p Routing Problem. In Theov of Graphs, P. Rosenstiehl, ed.
Dunod, Paris, and Gordon and Breach, New York. 77-84.

[6] Johnson, D. 9 . (1973). Algorithms for Shorest Paths. Ph.D. dissertation, Cornell University, Ithaca,
New York.

[7] Karp, R. M. (June 1977). A Characterization of the Minimum Cycle Mean in a Digraph. Memoran-
dum No. UCB/ERL M77/47, Electronic Research Laboratory, College of Engineering, University
of California at Berkeley.

(81 Lawler, E. L. (1967). Optimal Cycles i I Doubly Weighted Linear Graphs. In Theory o j Graphs, P.
Rosenstiehl, ed. Dunod, Paris, and Gordon and Breach, New York. 209-214.

PI -- . (1976). Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston,
New York.

(101 Yao, A. C. (1975). An O(lE(10g log/ V () Algorithm for Finding Minimum Spanning Trees. Informarion
Processing Lett. 4 21-23.

TEL AVIV UNIVERSITY, TEL AVIV, ISRAEL

