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In the classical secretary problem� n objects from an ordered set arrive in random order� and
one has to accept k of them so that the �nal decision about each object is made only on the
basis of its rank relative to the ones already seen� Variants of the problem depend on the goal�
either maximize the probability of accepting the best k objects� or minimize the expectation
of the sum of the ranks �or powers of ranks� of the accepted objects� The problem and its
generalizations are at the core of tasks with a large data set� in which it may be impractical to
backtrack and select previous choices�

Optimal algorithms for the special case of k � � are well known� Partial solutions for the �rst
variant with general k are also known� In contrast� an explicit solution for the second variant with
general k has not been known� even the question of whether or not the expected sum of powers
of the ranks of selected items tends to in�nity with n has been unresolved� We answer the above
open questions by obtaining explicit algorithms� For each z � �� the resulting expected sum of
the zth powers of the ranks of the selected objects is at most� kz����z	 ��	C�z� �kz���� log k�
whereas the best possible value at all is kz����z 	 �� 	 O�kz�� Our methods are very intuitive
and apply to some generalizations� We also derive a lower bound on the trade
o� between the
probability of selecting the best object and the expected rank of the selected object�
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�� Introduction

In the classical secretary problem� n items or options are presented one by one in random order
�i�e�� all n� possible orders being equally likely�� If we could observe them all� we could rank them
totally with no ties� from best �rank �� to worst �rank n�� However� when the ith object appears�
we can observe only its rank relative to the previous i� � objects	 the relative rank is equal to one
plus the number of the predecessors of i which are preferred to i� We must accept or reject each
object� irrevocably� on the basis of its rank relative to the objects already seen� and we are required
to select k objects� The problem has two main variants� In the 
rst� the goal is to maximize the
probability of obtaining the best k objects� In the second� the goal is to minimize the expectation
of the sum of the ranks of the selected objects or� more generally� for a given positive integer z�
minimize the expectation of the sum of the zth powers of the ranks�

Solutions to the classical problem apply also in variety of more general situations� Examples
include �i� the case where objects are drawn from some probability distribution	 the interesting
feature of this variant is that the decisions of the algorithms may be based not only on the relative
rank of the item but also on an absolute �grade� that the item receives� �ii� the number of objects is
not known in advance� �iii� objects arrive at random times� �iv� some limited backtracking is allowed
objects that were rejected may be recalled� �v� the acceptance algorithm has limited memory� and
also combinations of these situations� In addition to providing intuition and upper and lower
bounds for the above important generalizations of the problem� solutions to the classical problem
also provide in many cases very good approximations� or even exact solutions �see ��� ��� ��� for
survey and also ����� Our methods can also be directly extended to apply for these generalizations�

The obvious application to choosing a best applicant for a job gives the problem its common
name� although the problem �and our results� has a number of other applications in computer
science� For any problem with a very large data set� it may be impractical to backtrack and select
previous choices� For example� in the context of data mining� selecting records with best 
t to
requirements� or retrieving images from digital libraries� In such applications limited backtracking
may be possible� and in fact this is one of the generalizations mentioned above� Another important
application is when one needs to choose an appropriate sample from a population for the pur�
pose of some study� In other applications the items may be jobs for scheduling� opportunities for
investment� objects for fellowships� etc�

��� Background and Intuition

The problem has been extensively studied in the probability and statistics literature �see ��� ��� ���
for surveys and also ������

The case of k � �

Let us 
rst review the case of k � �� i�e�� only one object has to be selected� Since the observer
cannot go back and choose a previously presented object which� in retrospect� turns out to be the
best� it clearly has to balance the risk of stopping too soon and accepting an apparently desirable
object when an even better one might still arrive� against the risk of waiting for too long and then

nd that the best item had been rejected earlier�
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It is easy to see that the optimal probability of selecting the best item does not tend to zero as
n tends to in
nity	 consider the following stopping rule reject the 
rst half of the objects and then
select the 
rst relatively best one �if any�� This rule chooses the best object whenever the latter is
among the second half of the objects while the second best object is among the 
rst half� Hence�
for every n� this rule succeeds with probability greater than ���� Indeed� it has been established
���� �� ��� �see below� that there exists an optimal rule that has the following form reject the

rst r � � objects and then select the 
rst relatively best one or� if none has been chosen through
the end� accept the last object� When n tends to in
nity� the optimal value of r tends to n�e�
and the probability of selecting the best is approximately ��e� �Lindley showed the above using
backward induction ���� Later� Gilbert and Mosteller provided a slightly more accurate bound for
r ���� Dynkin established the result as an application of the theory of Markov stopping times �����

It is not as easy to see that the optimal expected rank of the selected object tends to a 
nite
limit as n tends to in
nity� Observe that the above algorithm �for maximizing the probability of
selecting the best object� yields an expected rank of n���e� for the selected item	 the argument is
as follows� With probability ��e� the best item is among the 
rst n�e items� and in this case the
algorithm selects the last item� The conditional expectation of the rank of the last object in this
case is approximately n��� Thus� the expected rank for the selected object in this algorithm tends
to in
nity with n� Indeed� in this paper we show that� surprisingly� the two goals are in fact in
con�ict �see Section �����

It can be proven by backward induction that there exists an optimal policy for minimizing the
expected rank of selected item that has the following form accept an object if and only if its
rank relative to the previously seen objects exceeds a certain threshold �depending on the number
of objects seen so far�� Note that while the optimal algorithm for maximizing the probability
of selecting the best has to remember only the best object seen so far� the threshold algorithm
has to remember all the previous objects� �See ���� for solutions where the observer is allowed
to remember only one of the previously presented items�� This fact suggests that minimizing the
expected rank is harder� Thus� not surprisingly� 
nding an approximate solution for the dynamic
programming recurrence for this problem seems signi
cantly harder than in the case of the 
rst
variant of the problem� i�e�� when the goal is to maximize the probability of selecting the best�
Chow� Moriguti� Robbins� and Samuels� ��� showed that the optimal expected rank of the selected
object is approximately ������� The question of whether higher powers of the rank of the selected
object tend to 
nite limits as n tends to in
nity was resolved in ����� It has also been shown that if
the order of arrivals is determined by an adversary� then no algorithm can yield an expected rank
better than n�� �����

The case of a general k

There has been much interest in the case where more than one object has to be selected� It is not
hard to see that for every 
xed k� the maximum probability of selecting the best k objects does not
tend to zero as n tends to in
nity� The proof is as follows� Partition the sequence of n objects into
k disjoint intervals� each containing n�k consecutive items� Apply the algorithm for maximizing the
probability of selecting the best object to each set independently� The resulting algorithm� selects
the best item in each interval with probability e�k � The probability that the best k objects belong
to distinct intervals tends to k��kk as n tends to in
nity� For this 
rst variant of the problem� the
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case of k � � was considered in ����	 Vanderbei ����� and independently Glasser� Holzager� and
Barron ���� considered the problem for general k� They showed that there is an optimal policy with
the following threshold form accept an object with a given relative rank if and only the number
of observations exceeds a critical number that depends on the number of items selected so far	 in
addition� an object which is worse than any of the already rejected objects need not be considered�
Notice that this means that not all previously seen items have to be remembered� but only those
that were already selected and the best among all those that were already rejected� This property
is analogous to what happened in the k � � case� where the goal was to maximize the probability of
selecting the best item� Both papers derive recursive relations using backward induction� General
solutions to their recurrences are not known� but the authors give explicit solutions �i�e�� critical
values and probability� for the case of n � �k ��� ��� and n � �k�� ���� Vanderbei ���� also presents
certain asymptotic results as n tends to in
nity and k is 
xed and also as both k and n tend to
in
nity so that ��k� n��

p
n remains 
nite�

In analogy to the case of k � �� bounding the optimal expected sum of ranks of k selected items
appears to be considerably harder than minimizing the probability of selecting the best k items�
Also� here it is not obvious to see whether or not this sum tends to a 
nite limit when n tends to
in
nity� Backward induction gives recurrences that seem even harder to solve than those derived
for the case of maximizing the probability of selecting the best k� Such equations were presented
by Henke ���� but he was unable to approximate their general solutions�

Thus� the question of whether the expected sum of ranks of selected items tends to in
nity with
n has been open� There has not been any explicit solution for obtaining a bounded expected sum�
Thus the second� possibly more realistic� variant of the secretary problem has remained open�

��� Our Results

In this paper we present a family of explicit algorithms for the secretary problem such that for each
positive integer z� the family includes an algorithm for accepting items� where for all values of n
and k� the resulting expected sum of the zth powers of the ranks of the accepted items is at most

kz��

z � �
� C�z� � kz���� log k �

where C�z� is a constant��

Clearly� the sum of ranks of the zth powers of the best k objects is kz����z � �� � O�kz��
Thus� the sum achieved by our algorithms is not only bounded by a value independent of n� but
also di�ers from the best possible sum only by a relatively small amount� For every 
xed k� this
expected sum is bounded by a constant� Thus we resolve the above open questions regarding the
expected sum of ranks and� in general� zth powers of ranks� of the selected objects�

Our approach is very di�erent from the dynamic programming approach taken in most of the
papers mentioned above� It has been more successful in obtaining explicit solutions to this classical
problem� and can more easily be used to obtain explicit solutions for numerous generalizations�

�log k � maxf�� log� kg�
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We remark that our approach does not partition the items into k groups and select one item in
each� Such a method is suboptimal since with high probability� a constant fraction of the best k
items appear in groups where they are not the only ones from the best k� Therefore� this method
rejects a constant fraction of the best k with high probability� and so the expected value of the
sum of the ranks obtained by such an algorithm is greater by at least a constant factor than the
optimal�

Since the expected sums achieved by our algorithms depend only on k and z and� in addition�
the probability of our algorithms to select an object does not decrease with its rank� it will follow
that the probabilities of our algorithms to actually select the best k objects depend only on k and z�
and hence for 
xed k and z� do not tend to zero when n tends to in
nity� In particular� this means
that for k � z � �� our algorithms will select the best possible object with probability bounded
away from zero�

In contrast� for any algorithm for the problem� if the order of arrival of items is the worst
possible �i�e�� generated by an oblivious adversary�� then the algorithm yields an expected sum of
at least knz���z��� for the zth powers of the ranks of selected items� Our lower bound holds also
for randomized algorithms�

Finally� in Section ��� we observed that an optimal algorithm for maximizing the probability of
selecting the best object results in an unbounded expected rank of the selected object� As a second
part of this work we show that this fact is not a coincidence the two goals are in fact in con�ict�
No algorithm can simultaneously optimize the expected rank and the probability of selecting the
best� We derive a lower bound on the trade�o� between the probability of accepting the best object
and the expected rank of the accepted item�

�� The Algorithms

In this section we describe a family of algorithms for the secretary problem� such that for each
positive integer z� the family includes an algorithm for accepting objects� where the resulting
expected sum of the zth powers of the ranks of accepted objects is

kz��

z � �
� O�kz���� log k� �

In addition� it will follow that the algorithm accepts the best k objects with positive probability that
depends only on k and z� Let z be the positive integer that we are given� Denote p � ��� log� k�

For the convenience of exposition� we assume without loss of generality that n is a power of
�� We partition the sequence ��� � � � � n� �corresponding to the objects in the order of arrival� into
m � logn� � consecutive intervals Ii �i � � � � � � m�� so that

Ii �

� h
� � n

Pi��
j�� �

�j � n
Pi

j�� �
�j
i

if � � i � m� �

fng if i � m

In other words� the 
rst m � � intervals are ��� n� �� �
n
� � �� �n	 �� � � � � each containing a half of the

remaining elements� The mth interval contains the last element� Note that jIij � dn��ie �i �
�� � � � � m� ���

�



Let us refer to the 
rst
m� � maxf�� blog�k�p�cg

intervals as the opening ones� and let the rest be the closing ones� Note that since p � ��� the last

ve intervals are closing� For an opening Ii� the expected number of those of the top k objects in
Ii is

jIij � k
n
� k��i �i � �� � � � � m���

�The latter is not necessarily an integer�� Furthermore� for any d �Pm�
j�� jIij �i�e�� d is in one of the

opening intervals�� the expected number of those of the top k objects among the 
rst d to arrive is
d � k

n �

Let

pi �

��
�
k��i if i � m�

k��m�
if i � m� � �

� if m� � � � i � m

Observe that pm��� � k �Pm�
j�� pj �

We will refer to pi as theminimum number of acceptances required for Ii �i � �� � � � � m�� Observe
that for i � m�� pi � k � �� log k�p � p� On the other hand� pm��� � k��m� � k�� log k�p�� � �p�

Intuitively� during each interval the algorithm attempts to accept the expected number of top k
objects that arrive during this interval� and in addition to make up for the number of objects that
should have been accepted prior to the beginning of this interval but have not� Note that since
pi � � for i � m� � �� then during such intervals the algorithm only attempts to make up for the
number of objects that should have been accepted beforehand and have not�

Let us explain this slightly more formally� During each execution of the algorithm� at the begin�
ning of each interval� the algorithm computes a threshold for acceptance� with the goal that by the
time the processing of the last object of this interval is completed� the number of accepted objects
will be at least the minimum number of acceptances required prior to this time� In particular�
recall that for i � �� � � � � m� pi denotes the minimum number of acceptances required for Ii� Given
a �pre
x� of an execution prior to the beginning of Ii �i � �� � � � � m���� let Qj �j � �� � � � � i���� be

the number of items accepted in Ij � Let Di�� � max
n
��
Pi��

j�� pj �
Pi��

j��Qj

o
� Roughly speaking�

Di�� is the di�erence between the minimum number of acceptances required prior to the beginning
of Ii and the number of items that were actually accepted during the given pre
x� Note that
D� � ��

Given a pre
x of an execution prior to the beginning of Ii� let

Ai �

�
Di�� � pi if

Pi��
j��Qj � k

� otherwise

We refer to Ai computed at the beginning of Ii as the acceptance threshold for Ii in this execution�
Loosely stated� given a pre
x of execution of the algorithm prior to the beginning of Ii� Ai is the
number of objects the algorithm has to accept during Ii in order to meet the minimum number
required by the end of Ii� The algorithm will aim at accepting at least Ai objects during Ii� To
ensure that it accepts that many� it attempts to accept a little more� In particular� during each
opening interval Ii� the algorithm attempts to accept an expected number of Ai���z���

p
Ai log k�
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As we will see� this ensures that the algorithm accepts at least Ai objects during this interval with
probability of at least k���z���� During each closing interval Ii� the algorithm attempts to accept
an expected number of ���z � ��Ai� This ensures that the algorithm accepts at least Ai objects
during this interval with probability of at least ����z����ai����

We make the distinction between opening and closing intervals in order to restrict the expected
rank of the accepted objects� If Ii is closing� then Ai may be much smaller than

p
Ai log k� Let

Bi �

�
Ai � ��z � ��

p
Ai log k if Ii is opening

���z � ���Ai� if Ii is closing�

In order to accept an expected number of Bi objects during interval Ii� the algorithm will accept
the dth item if it is one of the approximately Bi � �id�n top ones among the 
rst d� Since the order
of arrival of the items is random� the rank of the dth object relative to the 
rst d ones is distributed
uniformly in the set f�� � � � � dg� Therefore� the dth object will be accepted with probability of
Bi�

i�n� and hence� since jIij � dn��ie� the expected number of objects accepted during Ii is indeed
Bi�

If at some point during the execution of the algorithm� the number of slots that still have to be

lled equals the number of items that have not been processed yet� all the remaining items will be
accepted regardless of rank� Analogously� if by the time the dth item arrives all slots have already
been 
lled� this item will not be accepted�

Finally� the algorithm does not accept any of the 
rst dn���pk�e items except in executions
during which the number of slots becomes equal to the number of items before dn���pk�e items
have been processed� Roughly speaking� this modi
cation will allow to bound the expected rank
of the dth item in terms of its rank relative to the 
rst d items�

The above leads to our algorithm� which we call Select�

Algorithm Select� The algorithm processes the items� one at a time� in their order of arrival�
At the beginning of each interval Ii� the algorithm computes Ai as described above� When the dth
item �d � Ii� arrives� the algorithm proceeds as follows�

�i� If all slots have already been �lled then the object is rejected�

�ii� Otherwise� if d � dn���pk�e� then
�a� If i � m�� the dth item is accepted if it is one of the top b�Ai� ��z���

p
Ai log k��

id�nc
items among the �rst d�

�b� If i � m�� the algorithm accepts the dth item if it is one of the top b���z � ���Ai��id�nc
items among the �rst d�

�iii� Otherwise� if the number of slots that still have to be �lled equals the number of items left
�i�e�� n � d� ��� the dth item is accepted�

We refer to acceptances under ��� � i�e�� when the number of slots that still have to be 
lled
equals the number of items that remained to be seen� as mandatory� and to all other acceptances
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as elective� For example� if the dth item arrives during I�� and the latter is opening� then the item
is accepted electively if and only if it is one of the approximately

b�A� � ��z � ��
p
A� log k� � ��d�n�c � b�k�� � ��z � ��

q
k�� log k� � ��d�n�c

� b�k � ���z � ��
q
k�� log k� � �d�n�c

top objects among the 
rst d� In general� if the dth object arrives during an opening Ii� then the
object is accepted electively if and only if it is one of the approximately

b��iAi � ��z � �� � �i
p
Ai log k� � �d�n�c

top objects among the 
rst d�

�� Analysis of Algorithm Select

Very loosely stated� the proof proceeds as follows� In Section ��� we show that for i � �� � � � � m��
�m � logn � ��� with high probability� Di�� � �� Observe that this implies that for i � �� � � � � m�
with high probability� Ai is approximately pi� i�e��

Ai �
��
�
��ik if i � m�

��m�
k � �p if i � m� � �

� if i � m� � � �

In Section ��� we show that if the dth object arrives during an opening Ii� then the conditional
expectation of the zth power of its rank� given that it is accepted electively� is not greater than
�iz �

z��A
z
i � c	�z��izA

z����
i log k� for some constant c	�z� �depending on z�	 if Ii is closing� this

conditional expectation is not greater than c
�z��
izAz

i for some constant c
�z�� In Section ��� these
results of Sections ��� and ��� are combined and it is established that if the dth object arrives
during an opening Ii� then its conditional expected zth power of rank� given that it is accepted
electively� is at most

kz

z � �
� c�z��i��kz���� log k

for some constant c�z�� If Ii is closing� that conditional expected zth power of rank is at most
c��z�kz � for some constant c��z�� if i � m� � �� and is approximately � otherwise� From this it
will follow that the expected sum of the zth powers of ranks of the electively accepted objects is
�

z��k
z���O�kz���� log k�� In addition we use the result of Section ��� to show that the expected sum

of the zth powers of ranks of mandatorily accepted objects is O�kz���� log k�� Thus the expected
sum of the zth powers of ranks of the accepted objects is �

z��k
z�� �O�kz���� log k��

In addition� from the fact that the expected sum of the zth powers of ranks of the accepted
objects is bounded by a value that depends only on k and z� it will also follow that the algorithm
accepts the top k objects with probability that depends only on k and z�
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��� Bounding the Ais

In this section we show that for i � �� � � � � m� with high probability� Ai is very close to pi� More
precisely� we say that a pre
x of execution prior to the end of the ith interval is smooth� if for each
j � � � � � � i� the value computed for Ai in this pre
x is � jIj j� We distinguish between smooth and
nonsmooth executions�

In Section ����� we show that for an opening interval Ii� in executions whose pre
x prior to
the end of the i � �th interval is smooth� the probability that Ai � �jpi decreases exponentially
with j �Part � of Lemma ����� For a closing Ii� in executions whose pre
x prior to the end of the
i� �th interval is smooth� the probability that Ai � �jpm��� decreases exponentially both with j

and with i �Part � of Lemma ����� Part � and Part � of Lemma ��� will follow� respectively� from
Lemmas ��� and ��� that show that in executions whose pre
x prior to the end of the ith interval
is smooth� in Ii the algorithm accepts Ai objects with high probability �where Ai is computed for
the pre
x of the execution�� Intuitively� the restriction to smooth executions is necessary since at
most jIij objects can be selected in Ii� Lemma ��� implies that for each i � �� � � � � m� in executions
whose pre
x prior to the end of the ith interval is smooth� with high probability� by the end of
Ii the number of objects that were already accepted is not smaller than the minimum number of
acceptances required prior to this point� The latter holds even if Ii started at a disadvantage in the
sense that the minimum number of acceptances required prior to Ii was greater than the number
of objects that were actually accepted by that point�

Clearly� Lemma ��� implies that in smooth executions� with high probability� Ai is very close to
pi� To complete the proof that Ai is close to pi� Section ����� shows that nonsmooth executions are
rare� In particular� Section ����� uses Lemma ��� to show that in executions whose pre
x prior to
the end of the �i� ��st interval is smooth� the probability that Ai � jIij is less than c�z�n�����z���

for some constant c�z� �Lemmas ��� and ����� The case of k � n�� is excluded �Lemma ���� and
thus handled separately later �Section �����

����� Smooth Pre�xes

Denote by Ei the pre
x of an execution E prior to the end of Ii� Note that Em is E� We say that
Ei is smooth� if for j � �� � � � � i� Aj computed in Ei is � jIj j� Denote by MEi the event in which Ei

is smooth�

Lemma ��� For every i � m� and for any value ai of Ai�

Prob fDi � � j fAi � aig �MEig � k���z��� �

Proof� Note that Di � � only if the number of objects accepted in Ii is less than ai�

Overview Loosely stated� the algorithm accepts the dth object electively if it is one of the top
b�Ai���z���

p
Ai log k�

�id
n c objects among the 
rst d� Since the objects arrive in a random order�

the rank of the dth object within the set of 
rst d is distributed uniformly and hence it will be
accepted electively with probability not less than b�ai � ��z � ��

p
ai log k�

�id
n c�d� Moreover� the

rank of the dth object within the set of the 
rst d is independent of the arrival order of the 
rst
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d� �� and hence is independent of whether or not any previous object in this interval� say the d�th
one� is one of the top b�ai � ��z � ��

p
ai log k��

id��nc objects among the 
rst d�� The rest of the
proof follows from computing the expected number of accepted candidates and Cherno� inequality�

We proceed with the actual proof� Suppose i � m�� and let ai be the acceptance threshold
computed for Ii in a given execution� Recall that if the dth object arrives during Ii while there are
still empty slots� d � dn���pk�e� and i � m�� then the algorithm accepts the object electively if it

is one of the top b�Ai���z���
p
Ai log k�

�id
n c objects among the 
rst d� �If either d � dn���pk�e or

there are no empty slots when the dth object arrives� it may not be accepted electively�� Since the
objects arrive in a random order� the rank of the dth object within the set of 
rst d is distributed
uniformly and hence it will be accepted electively with probability not less than minf�� b�ai���z�

��
p
ai log k�

�id
n c�dg� Moreover� the rank of the dth object within the set of the 
rst d is independent

of the arrival order of the 
rst d��� Hence this rank is independent of whether or not any previous
object in this interval� say the d�th one� is one of the top b�ai � ��z � ��

p
ai log k��

id��nc objects
among the 
rst d��

Without loss of generality we may assume that

minf�� b�ai � ��z � ��
p
ai log k�

�id

n
c�dg � b�ai � ��z � ��

p
ai log k�

�id

n
c�d � � �

For� if for some d � Ii� b�ai � ��z � ��
p
ai log k�

�id
n c�d � �� then ai � ��z � ��

p
ai log k � n

�i
� and

hence� for each d � Ii� b�ai � ��z � ��
p
ai log k�

�id
n c � �� In this case each object in Ii is accepted

with probability � unless all slots have already been 
lled� If all slots are 
lled� then Di � �� and
we are done� Otherwise� Qi � jIij� It follows from the de
nition that Di � ai � Qi� and hence
Di � ai � jIij� Since by the lemma assumption� ai � jIij� it follows that Di is non positive�

The rest of the proof follows directly from Cherno��s inequality� Formally� suppose the gth
object is the 
rst in Ii� i�e�� g � � � n

Pi��
j�� �

�j � De
ne X�� � � � � XjIij to be independent random
��� ���variables such that

ProbfXt � �g �
b�ai � ��z � ��

p
ai log k�

�i�t�g���
n c

t� g � �

for t�g�� � dn���
p
k�e� It follows from the reasoning above that if the dth object is in an opening

Ii� then the probability that the dth object is accepted electively is not less than ProbfXd�g�� � �g�
The independence of the order of arrival of the 
rst d� � objects also implies that

ProbfDi � �g � Prob fQi � aig � Prob

��
�

jIijX
t��

Xt � ai

��
� �

Thus� to complete the proof� we will show that ProbfPjIij
t��Xt � aig � k���z���� To this end� we


rst establish

Claim�
PjIij

t��ProbfXt � �g � ai � ��z � ��
p
ai log k�

Proof� We distinguish two cases�

�



Case I i � ��

jIijX
t��

ProbfXt � �g �

jIijX
t��

b�ai � ��z � ��
p
ai log k�

�i�t�g���
n c

t� g � �

�
jIijX
t��

�ai � ��z � ��
p
ai log k�

�i�t�g���
n � �

t� g � �

�
n��iX
t��

�ai � ��z � ��
p
ai log k��

i�n�
n��iX
t��

�

t � g � �

� ai � ��z � ��
p
ai log k � n��i � �

n

� ai � ��z � ��
p
ai log k � ��i��

� ai � ��z � ��
p
ai log k�

The 
rst inequality follows since for i � �� we have g � n��� Hence� g � dn���pk�e� and the same
holds for t� g � � for each t � Ii� Thus� by de
nition�

ProbfXt � �g � b�ai � ��z � ��
p
ai log k�

�i�t�g���
n c

t� g � �
�

The third inequality follows since �i� i � m because� as noted in Section ��� Im is closing� and
�ii� jIij � n��i �i � �� � � � � m � ��� The fourth inequality follows from the fact that for i � ��
we have g � n��� The last inequality follows because� as noted in Section ��� since i � m��
pi � k�� logk�p � p� and hence also k� ai � p� Since p � ���

p
ai log k � p

p log p � � � ��i���

Case II i � ��

jI� jX
t��

ProbfXt � �g

�

jI� jX
t�dn���

p
k�e��

b�a� � ��z � ��
p
a� log k�

�t
n c

t

�
jI� jX

t�dn���
p
k�e��

�a� � ��z � ��
p
a� log k�

�t
n � �

t

�
n��X

t�dn���pk�e��
�a� � ��z � ��

p
a� log k���n�

n��X
t�n��

p
k

��t

� �a� � ��z � ��
p
a� log k�

�
�� �

�
p
k
� �

n

	
� �

p
k

� a� � ��z � ��
p
a� log k �

�
�a� � ��z � ��

p
a� log k� � �

�
p
k
� �

p
k

	

� a� � ��z � ��
p
a� log k �

�
�k�� � ��z � ��

q
k�� log k� � �

�
p
k
� �

p
k

	

��



� a� � ��z � ��
p
a� log k �

p
k

�
�

�
�

��z � ��log kp
�
p
k

� �

	

� a� � ��z � ��
p
a� log k �

p
k


�
	 �

��
�
�z � �� � �

�

� a� � ��z � ��
p
a� log k � �z � ��

s
k

�
log k

� a� � ��z � ��
p
a� log k�

The 
rst inequality follows since for i � � we have g � �� and hence by de
nition�

ProbfXt � �g � b�a� � ��z � ��
p
a� log k�

�t
n c

t

for every t � dn���pk�e� The third inequality follows since� �i� as noted above� Im is closing� and
since in our case I� is opening� we have � � m� and �ii� vertIij � n��i �i � �� � � � � m � ��� The

fth inequality follows since �

	
p
k
� �

n � because �i� as noted above� if i � m� then pi � p� and since

p� �
k
� � we have k � �p� and �ii� p � �� � log� k� so �

p
k � p

p
p
k � k � n� The sixth inequality

follows since a� � p� �
k
� � The eighth inequality follows since k � �p � ���� The ninth inequality

follows because log k � � since� as noted above� k � ���� The last inequality follows since a� � k���

An inequality related to Cherno��s states

Let X�� � � � � Xn be independent random ��� ���variables with ProbfXi � �g � pi� � � pi � ��
Let X �

Pn
i��Xi and � �

Pn
i�� pi� Then� for � � ��� ���

ProbfX � ��� ���g � exp���
���

���

Using the claim� we apply Cherno� inequality to our Xt�s to get

Prob

��
�

jIijX
t��

Xt � ai

��
� � Prob

��
�

jIijX
t��

Xt � �ai � ��z � ��
p
ai log k�

�
�� ��z � ��

p
ai log k

ai � ��z � ��
p
ai log k

��
�

� exp

�
� ���z � ���ai log

� k

��ai � ��z � ��
p
ai log k�



� exp

�
���ai�z � ��� log� k

�ai�z � �� log k



� exp ����z � �� logk� � k���z��� �

The third inequality follows since as noted above� ai� k � p � ��� and hence �i� ai � �
p
ai� and �ii�

log k � ��

Lemma ��� If n � ��� then for every i � m��

ProbfDi � � j fAi � aig �MEig � ����z����ai��� �

��



Proof� Suppose i � m�� and let ai be the acceptance threshold computed for Ii�

First� observe that Ai � � �i � m� � �� � � � � m� implies Ai � �� For� by de
nition

Ai �

�
Di�� � pi if

Pi��
j��Qj � k

� otherwise

Hence� for i � m���� if k�Pm�
j��Qj � �� then Am��� � � � � � Am � �� and the observation follows�

Assume k �Pm�
j��Qj � �� Then

Am��� � Dm� � pm��� � maxf��
m�X
j��

pj �
m�X
j��

Qjg� pm��� � maxfpm���� k�
m�X
j��

Qjg � k �
m�X
j��

Qj �

Since k and Qj are integers� and by our assumption k �Pm�
j��Qj � �� this means Am��� � �� For

i � m� � �� if k �Pi��
j��Qj � �� then Ai � � by de
nition� Otherwise� Am��� � �� and hence as

reasoned above is � k �Pm�
j��Qj � Thus

Ai � Di�� � maxf�� Am��� �
i��X

j�m���
Qjg � k �

m�X
j��

Qj �
i��X

j�m���
Qj � k �

i��X
j��

Qj �

Thus� since k and Qj are integers� and k �Pi��
j��Qj � � by assumption� then Aj � ��

If ai � �� the lemma follows since Di � ai� Thus� assume that ai � �� The proof is analogous
to that of Lemma ����

Recall that for d � dn���
p
k�e� if the dth object arrives during a closing Ii while there are still

empty slots� then the object is accepted electively if it is one of the top b���z���Ai�id�nc objects
among the 
rst d� �If either d � dn���pk�e� or there are no empty slots� this object is not accepted
electively�� Since the rank of the dth object in the set of the 
rst d is uniformly distributed� it will
be accepted electively with probability not less than minf�� b���z � ��ai�

id�nc�dg�
As in the proof of Lemma ���� we may assume that minf�� b���z � ��ai�id�nc�dg � b���z �

��ai�
id�nc�d � �� We apply again Cherno��s inequality� Suppose the gth object is the 
rst to

arrive during Ii� i�e�� g � �� n
Pi��

j�� �
�j � Let X�� � � � � XjIij be independent random ��� ���variables

such that
ProbfXt � �g � b���z � ��ai�

i�t� g � ���nc��t� g � ��

for t � g � � � dn���pk�e� It follows that if the dth object arrives during Ii and i � m�� then the
probability that it is accepted electively is not less than ProbfXt�g�� � �g� It also follows that

ProbfDi � �g � ProbfQi � ai j Ai � aig � ProbfPjIij
t��Xt � aig� Thus� to complete the proof� we

will show that ProbfPjIij
t��Xt � aig � ����z����ai����

To show this we 
rst prove

Claim�
PjIij

t��ProbfXt � �g � ���z � ��ai�

Proof� Again� we distinguish two cases�

��



Case I i � ��

jIijX
t��

ProbfXt � �g �
jIijX
t��

b���z � ��ai
�i�t�g���

n c
t� g � �

�
jIijX
t��

���z � ��ai
�i�t�g���

n � �

t � g � �

�

dn��ieX
t��

���z � ��ai
�i

n
�

dn��ieX
t��

�

t� g � �

� ���z � ��ai � dn��ie �

n��

� ���z � ��ai � ��i��

� ���z � ��ai�

The 
rst inequality follows since for i � �� we have g � n��	 thus g � dn���pk�e� and hence so is
t�g�� for each t in Ii	 thus by de
nition� ProbfXt � �g � b���z���ai�

i�t�g����nc��t�g����
The third inequality follows since jIij � dn��ie� The fourth inequality follows again from the fact
that for i � �� we have g � n��� The last inequality follows since� as noted in the beginning of the
proof� we may assume ai � �� Thus� ��z � ��ai � � � ��i���

Case II i � ��

jI�jX
t��

ProbfXt � �g �

jI�jX
t�dn���pk�e��

b���z � ��a���t�n�c
t

�
jI�jX

t�dn���pk�e��

���z � ��a���t�n�� �

t

�

dn��eX
t�dn���

p
k�e��

���z � ��a� � �
n
�

dn��eX
t�dn���

p
k�e��

�

t

� ���z � ��a�

�
�� �

�
p
k
� �

n

	
� �

p
k

� ���z � ��a� �
�
���z � ��a�

�
p
k

�
���z � ��a�

n
� �

p
k

	

� ���z � ��k � k �
�
��z � ��p

k
�

���z � ��

n
�

�p
k

	
� ���z � ��k � k � ���z � ��

� ���z � ��a� �

The 
rst inequality follows since for i � � we have g � �� and hence by de
nition�

ProbfXt � �g � b���z � ��a��
�t�nc�t for t � dn���

p
k�e �

The third inequality follows since dn��e objects arrive during I�� The sixth inequality follows
because� since � � i � m� in this case� we get m� � �	 thus by de
nition� a� � p� � k��m�

� k�
The seventh inequality follows since n � �� and z � ��

��



Using the claim� we apply Cherno��s inequality to get

Prob

��
�

jIijX
t��

Xt � ai

��
� � Prob

��
�

jIijX
t��

Xt � ���z � ��ai �
�
�� ���z � ��� �

���z � ��

	��
�

� exp

�
��

� � ���z � ��ai �
�
���z � ��� �

���z � ��

	�

� exp


��

� � ���z � ��ai � ������
�
� ����z����ai��� �

The third inequality follows from z � �� The last inequality follows since� as noted in the beginning
of the proof� we may assume that ai � ��

Lemma ���

�i� For i � m��
ProbfAi � k��i��j � �� j MEi��g � k���z���j �

�ii� If n � ��� then for i � m�� j � ��

ProbfAi � k��m�
��j � �� j MEi��g � k���z���j�����z����i�m��� �

Proof� For the proof of ���� suppose i � m�� Without loss of generality we may assume that
j � �� because for j � �� we have k���z���j � �� and ��� follows�

Recall that the minimum number of acceptances required for an opening interval Ii is pi � k��i�
Thus if Ai � k��i� then Di�� � �� Moreover�

k

�i
��j � �� �

k

�i
�� � � � � � �� �j��� � pi � pi�� � � � �� pi�j���

By induction� if Ai � k��i��j � ��� then Di��� Di��� � � � � Di�j are positive� Thus� it is enough to
bound

Prob
�
�Di�� � �� � �Di�� � �� � � � � � �Di�j � �� j MEi��

�
�

Note that the above events Da � � are mutually dependent� and are conditioned on MEi�� � How�
ever� both the dependency and the conditioning are working in our favour� Thus� Lemma ���
implies that each of the underlying events fDq � �g �q � �� � � � � i� ��� occurs with probability less
than k���z���� Clearly� each of the events fDq � �g �q � �� occurs with probability � and hence
less than k���z���� Thus�

ProbfAi � k��i��j � ��g � �k���z����j � k���z���j �

For the proof of ���� suppose i � m�� Recall that

pm��� � � � � � pm � �

and
pm��� � k��m�

�

��



Thus� if Ai � k��m�
��j � ��� then we must have

Dm� � k��m�
��j � ��

and
Dm���� � � � � Di�� � � �

Lemma ��� implies that for each q �q � m���� � � � � m�� the underlying event fDq � �g occurs with
probability less than ����z���� Again the dependency and the conditioning on MEi�� are working
in our favour� Thus� if j � �� then

ProbfAi � k��m�
��j � �� j MEi��g � �����z����i�m��� � k���z���j�����z����i�m����

To complete the proof� assume j � �� Then Dm� � k��m�
��j � �� � �� Lemma ��� implies that the

underlying event fDm� � �g occurs with probability less than k���z���� Moreover� since Dm� � Am� �
it follows that Dm� � k��m�

��j � �� implies Am� � k��m�
��j � �� � k��m�

��j��� ��� The 
rst part
of the lemma implies thus that for j � �� the underlying event fAm� � k��m�

��j�� � ��g occurs
with probability at most k���z����j���� Hence

ProbfAi � k��m�
��j��� jMEi��g � k���z����j����k���z���������z����i�m��� � k���z���j�����z����i�m����

����� Nonsmooth Executions

Lemma ��� If i � m�� then

Probf�MEi �MEi��g � ���z���n�����z��� �

Proof�

Probf�MEi �MEi��g � ProbfAi � jIij �MEi��g
� ProbfAi � jIij j MEi��g � ProbfMEi��g
� ProbfAi � jIij j MEi��g
� ProbfAi � n��i j MEi��g �

The 
rst inequality follows from the de
nition of �MEi �MEi�� � The last inequality follows since
by de
nition� jIij � dn��ie �i � �� � � � � m��

We distinguish two cases�

Case I k � p
n�

ProbfAi � n��i j MEi��g � ProbfAi � �k��i�
n

k
j MEi��g

� ProbfAi � �k��i�
p
n j MEi��g

� ProbfAi � �k��i���j � �� j MEi��g �

��



where j � d�� logne � ��

From Part ��� of Lemma ��� it follows that

ProbfAi � �k��i���j � �� j MEi��g � k���z���j

� ����z����d
�
� logne���

� ����z����
�
� logn���

� ���z��� � n�����z��� �
The second inequality follows from k � � because �i� since i � m�� we have pi � p and hence also
k � p� and �ii� by de
nition� p � ���

Case II k � p
n�

ProbfAi � n��i j MEi��g � ProbfAi � k��i j MEi��g � �
p
n����z��� � n�����z��� �

The 
rst inequality follows from Part ��� of Lemma ����

Lemma ��� If n � ��� k � �
�n� and i � m�� then

Probf�MEi �MEi��g � ����z���n�����z��� �

Proof�

Probf�MEi �MEi��g � ProbfAi � jIij �MEi��g
� ProbfAi � jIij j MEi��g � ProbfMEi��g
� ProbfAi � jIij j MEi��g
� ProbfAi � n��i j MEi��g�

The 
rst inequality follows from the de
nition of �MEi �MEi�� � The last inequality follows from
the de
nition jIij � dn��ie �i � �� � � � � m��

We distinguish two cases�

Case I k � p
n�

ProbfAi � n��i j MEi��g � ProbfAi � �k��m�
� � n

k
��i�m� j MEi��g

� ProbfAi � �k��m�
� � pn��i�m� j MEi��g

� ProbfAi � k��m� � ��j � �� j MEi��g �
where j � maxf�� d�� logne � i�m� � �g�

We distinguish again two cases�

Case I�a� d�� logne � i �m� � � � �� In this case� i � d�� logne � m� � �� From Part ��� of
Lemma ��� it follows that

ProbfAi � k��m� � ��j � �� j MEi��g � k���z���j����z����i�m����

� ����z����i�m����

� ����z����d
�
� logne���

� ����z���n�����z��� �

��



Case I�b d�� logne � i�m� � � � �� From Part ��� of Lemma ��� it follows that

ProbfAi � k��m� � ��j � �� j MEi��g � k���z���j����z����i�m�����

We distiguish two cases�

Case I�b�� k � ��

By de
nition

Ai � pi �Di�� � pi �max

��
���

i��X
j��

pj �
i��X
j��

Qj

��
� �

iX
j��

pj � k � � �

On the other hand� by our assumption Ai � n��i� Thus� n��i � �� and hence i � logn � �� In
addition� m� � � since by de
nition� m� � maxf�� blog�k�p�cg and p � ��� Thus�

k���z���j����z����i�m���� � ����z����i�m���� � ����z����logn��� � ����z���n���z��� �

Case I�b�� k � ��

k���z���j����z����i�m���� � ����z����d
�
� logne�i�m���� � ����z����i�m����

� ����z����
�
� logn���

� ����z��� � n�����z����
Case II k � p

n� We distinguish again two cases�

Case II�a i � m� � ��

ProbfAi � n��i j MEi��g � ProbfAi � n��m��� j MEm� g
� ProbfAi � k��m� j MEm�g
� k���z���

� n�����z��� �

The second inequality follows from the lemma assumption that k � �
�n� The third inequality follows

from Part ��� of Lemma ����

Case II�b i � m� � ��

ProbfAi � n��i j MEi��g � ProbfAi � � j MEi��g
� ProbfDm��� � � j MEm���

g
� ����z����am������

� ����z���p

� ����z��� log
� k

� k���z���

� �
p
n����z���

� n�����z��� �

The third inequality follows from Lemma ���� The fourth inequality follows since by de
nition of
Am���� if it is � �� then it is � k��m� � p� The 
fth inequality follows from p � log� k�

The case of k � n�� is excluded �Lemma ���� and thus handled separately later �Section �����
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��� Expected zth powers of Ranks

Let us denote by Rd the random variable of the rank of the dth object� We de
ne the arrival rank
of the dth object as its rank within the set of the 
rst d objects� i�e�� one plus the number of better
objects seen so far� Denote by Sd the random variable of the arrival rank� Denote by NAd the event
in which the dth object is accepted electively� In this section we show that there exist constants
c	�z�� c��z� and c
�z� such that if the dth object arrives during an opening interval Ii� then
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Lemma ��� will follow by combining the result of Lemma ��� with the fact that given that the
object is accepted electively during an opening interval Ii and Ai � ai� then Sd is distributed
uniformly in the set f�� �� � � � � b�ai���z���

p
ai log k��

id�ncg� Lemma ���� will follow analogously
by combining the result of Lemma ��� with the fact that given that the object is accepted electively
during a closing interval Ii and Ai � ai� then Sd is distributed uniformly in the set f�� �� � � � � b���z�
��ai�id�ncg�
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The second inequality follows from the fact that the denominator is a product of two positive factors
�since each of these factors originated from the factorials terms in the beginning of the proof�� The
third inequality follows since by the statement of the lemma� j � n
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where c��z�� c��z�� c���z�� c�z�� c
��z�� c���c�� civ�z�� cv�z� and cvi�z� are constants� and we are done�

The seventh inequality follows from Lemma ���� The eighth inequality follows because by de
nition
of j��

j�d
�n

p
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� �z� and ize�i decreases montonically with i for i � z� The inequality before the last

follows since �i� n
d � k because d � n

k by the lemma assumption� and �ii� lnz�k� � c�z�k� The last

inequality follows because s�z����� � sz for z � ��

Lemma ��
 For every x � �� there exists a constant c���x�� such that for all intervals Ii and for
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The second inequality follows since log k � ck��	 for some constant c� The last inequality follows
since by de
nition a� � k��� �In particular� if I� is opening then a� � k��� and otherwise we get
that m� � �	 thus by de
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Case II i � �� We distinguish two cases�
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where c and c���x� are constants� The 
rst inequality follows since for i � �� d � n��� The second
inequality follows since p � log� k � ��� and hence k

p � c log� k for some constant c� The fourth

inequality follows �From i � m�� The last inequality follows since a� � �� because �i� as observed
in the beginning of the proof of Lemma ���� for closing Ii� Ai � � implies that Ai � �� and �ii� by
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where c�z�� c��z�� c���z�� c����z� and civ�z� are constants� The second inequality follows from Lemma ����
The fourth inequality follows from
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ai log k � ai because� �i� since Ii is an opening interval� we

have� as mentioned in Section ��� that pi � p and hence also ai � p and k � p� and ��� p � ���log� k
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For the proof of �i�� since ai � k we have that azi �k � az��i � Since� as noted above� ai � p and

k � p� we have that ai and k � log� k� ��� and thus az��i � a
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from z � � and ai � log� k� �iii� follows from Lemma ����
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where c�z�� c��z�� c���z� and c
�z� are constants� The second inequality follows from Lemma ����
The last inequality follows from Lemma ��� that implies that there is a constant c��� such that�n
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��� Expected Sum of Ranks

In this section we show that the expected sum of the zth powers of ranks of the k accepted objects
is

�
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kz�� � O�kz���� log k�

�Theorem ����� This will follow by adding up the expected sum of the zth powers of ranks of
electively accepted objects �Lemmas ������ and the expected sum of the zth powers of ranks of
mandatorily accepted objects �Lemma ������
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In Section ����� we bound the expected sum of the zth powers of ranks of electively accepted
objects� In particular� denote by SUMZi the sum of the zth powers of ranks of objects that are
accepted electively during Ii� We 
rst use Lemmas ��� and ���� of Section ��� to show that there
exist constants c��z� and c��z� such that if Ii is opening� then
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�Lemma �����	 and if Ii is closing� then

E�SUMZi j Ai � ai� � c��z��
izaz��i
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�
� log k

�Lemma ������ Lemma ���� is combined with Part � of Lemma ��� and with Lemma ���� to show
that there exists a constant c���z� such that if Ii is closing� then

E�SUMZi� � c���z��
�ikz��

�Lemma ������ The expected sum of the zth powers of ranks of electively accepted objects is
obtained by summing up these results over all intervals �Lemma ������

Section ����� bounds the expected sum of the zth powers of ranks of mandatorily accepted
objects� It 
rst shows that if in execution E some object d � Ii is accepted mandatorily� then
the pre
x of E prior to the end of Ii��� is not smooth �Lemma ������ Lemmas ��� and ��� of
Section ������ imply that� for each Ii� the probability that a pre
x of execution E prior to the end
of Ii is not smooth� is at most c�z�n�����z��� log n� where c�z� is a constant� This bound applies
thus also for the probability that objects will be mandatorily accepted in Ii� Lemma ���� combines
this bound with the facts that the rank of an object never exceeds n� and the number of accepted
objects is at most k � n� to show that the expected sum of the zth powers of ranks of mandatorily
accepted objects is O�kz���� log k�� The case of k � �

�n is handled without the use of Lemma ����
since this lemma excludes it�

In addition� the fact that the expected sum of the zth powers of ranks of accepted objects is
bounded by a value that does not depend on n will imply that the algorithm accepts the top k
objects with positive probability that does not depend on n �Corollary �����

����� Elective Acceptances

Lemma ���� There exists a constant c��z� such that for all opening intervals Ii and for all values
ai of Ai�
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Proof� Suppose Ii is opening� Then�
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The second inequality follows since� as explained above� if the dth object arrives during an opening
Ii and d � dn���pk�e� then

Prob�NAd j Ai � ai� � �ai � ��z � ��
p
ai log k��

i�n �

The value of E�Rz
d j NAd � fAi � aig� is given by Lemma ���� If d � dn���pk�e� the dth object is

not accepted electively� The third inequality follows since i � m �as observed in Section ��� Im is
always closing�� and hence jIij � n��i� The last inequality follows from

p
ai � log k� The latter is

true because since Ii is opening� we have� as mentioned in Section ��� pi � p and hence also ai � p�
However� by de
nition p � log� k�

To complete the proof� it su�ces to show that there is a constant c�z� such that
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The last inequality follows since
p
ai � log k� by the same reasoning as above�

For i � ��

X
d�I�

d�dn���pk�e

r
n

d
�

s
n
np
k

�

s
n

np
k
� �

�

s
n

np
k
� �

� � � ��
r
n

n

� np
k
�
�
�s n

np
k

�

s
n

� np
k

�

s
n

� np
k

� � � ��
s

np
k np

k

�
A

� np
k
�
qp

k �
p
kX

i��

r
�

i
� cn �

Lemma ���� There exists a constant c��z� such that for all closing intervals Ii� for all acceptance
thresholds ai computed for Ii�

E�SUMZi j Ai � ai� � c��z��
izaz��i �

Proof� The proof is analogous to that of Lemma ����� Suppose Ii is closing� Then�
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where c��z� is a constant� The second inequality follows since� as explained above� if the dth object
arrives during a closing interval Ii� and d � dn���

p
k�e� then

Prob�NAd j Ai � ai� � ���z � ��ai�
i�n �

and E�Rz
d j NAd � fAi � aig� is given by Lemma ����	 if d � dn���pk�e� the dth object is not

accepted electively� The third inequality follows since jIij � dn��ie�

Lemma ���� is combined with Part � of Lemma ��� and with Lemma ��� to show

Lemma ���� There exists a constant c�z� such that for all opening intervals Ii�
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Proof� Suppose Ii is opening� Then�
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The last inequality follows since Ai � k�

To complete the proof� we show that there exist constants c�z� and c��z� such that
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where c�z� is a constant� For the 
rst inequality� Lemma ��� is used to bound Probf�MEi��g� and
Lemma ���� is used to bound E�SUMZi j Ai � k�� The second inequality follows �From k � n� The

last inequality follows because �i� �i�z�
�
�� � �nz�

�
� since i � logn � �� and �ii� log k � �� because

since Ii is opening� we have pi � p � �� and hence also k � ���
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where c��z�� c���z� and c����z� are constants� For the second inequality� Lemma ��� is used to bound
Prob

�
k��i��j�� � �� � Ai � k��i��j � �� j MEi��

�
� and Lemma ���� is used to bound E�SUMZi jAi �

k��i��j � ���� The last two inequalities follow because� since Ii is opening� we have pi � p and
hence also k � p� Thus k � �� and log k � ��

Analogously�

Lemma ���� If n � ��� then there exists a constant c���z� such that for any closing interval Ii�

E�SUMi� � c���z��
�ikz�� �

Proof� The proof is analogous to that of Lemma ����� Suppose Ii is closing� Then�
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The last inequality follows since Ai � k�

To complete the proof� we prove that there exist constants c�z� c��z� such that
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For the proof of ���� we distinguish between two cases�

Case I k � �
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Probf�MEi��g � E�SUMZi j Ai � k� � ����z���n�����z��� logn � c��z��izkz�� � c�z���ikz�� �

where c�z� is a constant� The 
rst inequality follows from Lemmas ��� and ����� The last inequality
follows because �i� k � n� and �ii� �i�z��� � �z��n�z � �� since i � logn � ��

Case II k � �
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� c�z���ikz��
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where c�z� is a constant� For the second inequality observe that since jIij � dn��ie� and the
maximum rank of any object is n� we have that the sum of the zth powers of the ranks of ob�
jects accepted during Ii is bounded above by dn��ienz � The third inequality follows since by our
assumption k � �

�n�

For the proof of ����
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where c��z� is a constant� The second inequality follows from Lemmas ��� and ����� The third
inequality follows since if k � � then the sum is clearly constant� and if k � � then k��j��j��� � ��j �
and the sum converges� The last inequality follows since i � m� by de
nition of closing intervals�

The following lemma completes the proof of the upper bound on the sum of the ranks of the
electively accepted objects� It sums up the expected sum of ranks of electively accepted objects
over all intervals�
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where c���z� is a constant� The 
rst inequality follows from Lemmas ���� and ����� The third
inequality follows since by de
nition p � log� k � ���
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����� Mandatory Acceptances

This section bounds the expected sum of mandatorily accepted objects� We 
rst observe

Lemma ���� If the dth object is mandatorily accepted in execution E during Ii� then �MEi���

Proof� First we claim that i � m � �� For� as noted in Section ��� Im��� Im are closing� Thus�
if there is still an empty slot in E by the time the dth object arrives during Ij �j � m � �� m��
then aj � �� As observed at the beginning of the proof of lemma ���� in this case aj � �� since for
closing Ij � Aj � � implies Aj � �� Hence� this object will be electively accepted if it is among the
top b���z � ��aj�

jd�nc objects seen so far� and hence� it will be electively accepted if it is among
the top

b���z � ��aj�
jd�nc � b���z � ���logn�n� ���nc � b���z � ��n�n� ���nc � n �

objects seen so far� Thus� it will be electively accepted and hence not mandatorily accepted�

Assume the dth object is mandatorily accepted in E during Ii� By de
nition of mandatorily
accepted� this implies that the number of open slots just before the dth object�s arrival equals to
the total number of objects remaining to be seen� i�e�� n�d��� Since� as shown above� i � m� ��
it follows that Ii�� exists� Thus� at the beginning of Ii��� the number of open slots equals to the
total number of objects remaining to be seen� Moreover� since i � m � �� the number of objects
that remain to be seen just before the beginning of Ii�� is exactly �jIi��j� Thus�

iX
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Qj � k � �jIi��j �
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To complete the proof� it su�ces to show that �jIi��j �
Pm

j�i�� pj � jIi��j� We distinguish beween
two cases�

Case I i � m�� In this case�
Pm

j�i�� pj � �� and hence

�jIi��j �
mX

j�i��

pj � �jIi��j � jIi��j �

Case II i � m�� In this case� it follows directly from the de
nition of pj that
Pm

j�i�� pj �
pi�� � k��i��� If k � n� then clearly all objects are electively accepted and none is mandatorily
accepted� Thus� assume k � n� Then k��i�� � n��i�� � jIi��j� Thus�

�jIi��j �
mX

j�i��

pj � �jIi��j � jIi��j � jIi�� �
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Denote by SUMDZi the sum of the zth powers of ranks of objects that are accepted mandatorily
during Ii�

Lemma ���	 There exist constants c���z� and c���z� such that

mX
i��

E�SUMDZi� � c���z�k
z�

�
� log k � c���z� �

Proof� Again� if n � ��� the assertion is immediate� For n � ��� we argue as follows� The number
of accepted objects in Ii at most jIij� and the rank of any object is of course not greater than n�
Thus�

mX
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The 
rst inequality follows since as shown in the beginning of the proof of Lemma ����� no object is
accepted mandatorily in Im� The second inequality follows from Lemma ����� The third inequality
follows since for i � m� jIij � n��i�

To complete the proof� we show that there exist constants c�z� and c��z� and c���z� such that
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For the proof of ����
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where c�z� is a constant� The 
rst inequality follows from Lemma ����

For the proof of ���� we distinguish between two cases

��



Case I k � �
�n�
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� log��k� � ��k���m��� � ��k�z
� c����z�kz���� log�k�p� log k

� c����z�kz���p�k� logk
� c����z�kz�log� k � ��� logk

� c��z�kz�
�
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where c����z�� c��z�� and c���z� are constants� The fourth inequality follows from the assumption
k � �

�n� The 
fth inequality follows since by de
nition m� � blog�k�p�c� The inequality before the
last follows since p � log� k � �� by de
nition�

Case II k � �
�n�

m��X
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Probf�MEi��g � n��i � nz �
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where c���z� and c����z� are constants� The 
rst inequality follows from Lemmas ��� and ����

Lemmas ���� and ���� imply

Theorem ��� The expected sum of ranks of accepted objects is at most

�

z � �
kz�� �O�kz���� log k� �

Corollary ��� Algorithm Select accepts the best k objects with positive probability that depends
only on k and z�

Proof� Theorem ��� implies that the expected sum of the zth powers of ranks of accepted objects
is bounded by a value that is independent of n� Thus� there is some value r that does not depend
on n such that with probability � ���� all accepted objects are of rank � r� Clearly� the probablity
of acceptance decreases monotonically with the object�s rank� Therefore� the probability that the
k accepted objects are the best k objects is at least �

��
�r
k

�
�

��



�� TradeO� between Small Expected Rank and Large Probability of Accepting the

Best

Theorem ��� Let p� be the maximum possible probability of selecting the best object� There is a
c � � so that for all 	 � � and all su�ciently large n� if A is an algorithm that selects one of n
objects� and the probability pA that A selects the best one is greater than p� � 	� then the expected
rank of the selected object is at least c�	�

Proof� Suppose that contrary to our assertion there is an algorithm A that selects the best object
with probability of at least p� � 	 and yet the expected value of the rank of the selected object is
less than c�	� Starting from A� we construct another algorithm R so that R selects the best
object with a probability � p��

Denote by OPT the following algorithm Let n�e objects pass� and then accept the 
rst object
that is better than anyone seen so far� If no object was accepted by the time the last object arrives�
accept the last object� For n su�ciently large� this algorithm accepts the best object with the
highest possible probability� and hence with probability p� ����

�

We de
ne R by modifying A� The de
nition will depend on parameters c� � d � �� We will
assume that d is a su�ciently large absolute constant and c� is su�ciently large with respect to d�
R will accept an object if at least one of the following conditions is satis
ed

�i� A accepts the object after time n�d and by time n � c�	n and the object is better than
anybody else seen earlier	

�ii� OPT accepts the object whereas A accepted earlier somebody who� at the time of acceptance�
was known not to be the best one �that is there was a better one before�	

�iii� OPT accepts the object and A has already accepted somebody by time n�d	

�iv� the object comes after time n � c�	n� it is better than anybody else seen before and R has
not yet accepted anybody based on the rules ���� ���� ���	

�v� the object is the nth object and R has not accepted yet any object�

Notation� Denote by BA� BR� and BOPT the events in which A� R and OPT� repectively�
accept the best object� Denote by B�� B�� and B� the events in which the best object appears
in the intervals ��� n�d�� �n�d� t� � n � c�	�� and �t�� n�� respectively� Denote by IA�� IA� and
IA� the events in which A makes a selection in the intervals ��� n�d�� �n�d� t� � n� c�	�� and �t�� n��
respectively�

We distinguish between two cases�

Case I ProbfIA�g � �	�p��

�In fact� r � �n� �
� �e

��� �
� � is a better approximation to r than ne�� although the di�erence is never more than

� ��� We ignore this di�erence for the sake of simplicity�

��



Claim ���

ProbfBR j IA�g � PfBA j IA�g� p����

Proof� Suppose that A made a selection by time n�d� According to rule ���� in this case R will
accept an object that arrives after time n�d if and only if OPT accepts this object� By choosing d
su�ciently large� we have that objects are accepted by OPT only after time n�d� Thus� if A made
a selection by time n�d� R will accept the object if and only if OPT accepts it� Thus�

ProbfBR j IA�g � ProbfBOPT j IA�g � ProbfBOPTg � p��

The second inequality follows since the probability that OPT accepts the best object is independent
of the order of arrival of the 
rst n�d objects� and hence independent of whether or not A makes
a selection by time n�d� On the other hand�

ProbfBA j IA�g � ProbfB�g � ��d�

Thus� by choosing d to be su�ciently large the claim follows�

Claim ���

ProbfBR j IA�g � ProbfBA j IA�g�

Proof� The claim follows immediately from the fact that if A picks the best object between n�d
and t�� then this object must be the best seen so far� and hence by rule ���� R picks the same
object�

Claim ���

ProbfBR j IA	g � ProbfBA j IA	g�

Proof� If IA� holds then neither A nor R have accepted anybody till time t�� Let X be the event
when A chooses no later than R� By the de
nition of R we have that if X � IA� holds then either
A accepts an object that already at the moment of acceptance is known not to be the best� or A
and R accept the same object� Thus�

ProbfBR j IA� �Xg � ProbfBA j IA� �Xg �
To complete the proof� it su�ces to show that

ProbfBR j IA� � �Xg � ProbfBA j IA� � �Xg �
Suppose that IA� � �X holds and R accepts an object at some time t � t�� By de
nition� A has
not accepted anybody yet� and the object accepted by R at t is better than anyone else seen earlier�
Thus� if a better object than the one accepted by R arrives after time t� this means that the best
object arrives after time t� Since the objects arrive in a random order� the rank of each dth arriving
object within the set of 
rst d is distributed uniformly� Hence� the probability that the best object
will arrive after time t is at most �n � t��n � c�	n� Notice that this probability is independent of
the ordering of the 
rst t objects� and hence is independent of the fact that R has accepted the
tth object� Therefore the probability that the object accepted by R is indeed the best object is at
least �� c�	n� while the probability that A accepts the best one later is smaller than c�	n� Thus�
for any 
xed choice of t and 
xed order of the 
rst t objects �with the property IA� � �X�� the
probability of BR is larger than BA� and hence ProbfBR j IA� ��Xg � ProbfBR j IA� � �Xg�

��



Now we can complete the proof of Case I

ProbfBRg
� ProbfBR j IA�g � ProbfIA�g

�ProbfBR j IA�g � ProbfIA�g
�ProbfBR j IA�g � ProbfIA�g

� �ProbfBA j IA�g� p���� � ProbfIA�g
�ProbfBA j IA�g � ProbfIA�g
�ProbfBA j IA�g � ProbfIA�g

� ProbfBAg� �p���� � ProbfIA�g
� p� � 	 � �p���� � �	�p� � p� � 	�� �

The second inequality follows from Claims ���� ��� and ���� The fourth inequality follows from �i�
ProbfBAg � p�� 	 by the theorem assumption and �ii� ProbfIA�g � �	�p� by Case I assumption�

Case II ProbfIA�g � �	�p��

Denote by BR�� BR�� and BR� the events when R picks the best object and its selections
are in the interval ��� n�d�� �n�d� t�� and �t�� n�� respectively� Denote by BA�� BA�� and BA� the
corresponding events for A�

Since by the assumption of this case ProbfIA�g � �	�p�� we have

��� ProbfBA�g � �	�p� �

If A picks the best object between n�d and t�� then this object must be the best seen so far�
and hence by rule ���� R picks the same object� Thus

��� ProbfBR�g � ProbfBA�g �

By choosing d su�ciently large� we have that objects are accepted by OPT only after time n�d�
Observe that in that case� if the second best comes by time n�d and the best comes after time t��
then R accepts the best object� The probability that the second best object arrives by time n�d is
��d� and the conditional probability that the best object comes after time t�� given that the second
best comes by time n�d� is at least c�	� It thus follows

��� ProbfBR�g � c�	�d �

For bounding ProbfBA�g� we 
rst use the assumption that the expected rank of the object
selected by A is less than c�	� to show

Claim ���

ProbfIA	g � ����d� �

��



Proof� Each of the �����dc�	� objects with a rank smaller than �����dc�	� arrives after time
t� � n � c�	n with probability of at most c�	� Therefore� with probability of at least � � �����d��
all objects that arrive after time t� are of rank larger than �����dc�	�� Hence� if the probability
of IA� had been greater than ����d�� then the expected value of the rank would have been larger
than c��	 for some absolute constant c� � �� Take the c of the theorem to be equal to c�� and we
get a contradiction to the assumption that the expected rank of the selected object is at most c�	�

Let B� denote the event in which the best object arrives in interval �t�� n�� Then ProbfBA�g �
ProbfIA�g � ProbfB� j IA�g� But B� is independent of the order of arrival of the 
rst t� objects
and hence independent on whether or not A has accepted an object by time t�� Thus� Claim ���
implies that ProbfIA�g � ProbfB� j IA�g � ProbfIA�g � ProbfB�g � �

�d � c�	� Thus�
��� ProbfBA�g � c�	���d� �

Equations ��� to ��� imply

ProbfBRg � ProbfBAg
� ProbfBR�g � ProbfBA�g� ProbfBR�g � ProbfBA�g� ProbfBR�g � ProbfBA�g
� ��	�p� � c�	�d� c�	���d�

� c�	���d�� �	�p� � �	 �

�The last inequality follows from our assumption that c� is su�ciently large with respect to d��
Therefore

ProbfBRg � ProbfBAg� �	 � p� � 	 � �	 � p� �

�� Deterministic Arrivals

In this section we consider the case where the order of arrivals is not random but is determined by
an adversary that knows the algorithm� i�e�� an oblivious adversary� We show that against such an
adversary� no algorithm can obtain an expected sum of the zth powers of ranks of selected items
that is less than knz��z��� In particular� this expected sum tends to in
nity with n� This lower
bound holds also for randomized algorithms�

Given an algorithm A� we construct a sequence over which the expected sum of zth powers of
ranks of objects selected by A is at least knz��z��� Without loss of generality assume that n is
even� Let p be the expected number of acceptances prior to the time the �n���th object is seen
�inclusive�� in case the ranks of the arriving objects are monotonically increasing� If p � k��� then
construct a sequence of objects such that the best n�� objects are the 
rst to arrive� and they arrive
in order of increasing rank� Clearly� the expected number of objects accepted during the second
half is at least k��� and each such object is of rank larger than n��� It thus follows that the average
rank of accepted objects is at least �k��� � �n���z � knz��z��� The case of p � k�� is analogous�
The sequence is constructed so that the worst n�� objects are the 
rst to arrive� and they arrive in
order of increasing rank� It again follows that the expected sum of z�powers of ranks of accepted
objects is at least knz��z���

��
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