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A NOTE ON THE GENERALITY OF THE SELF-DUAL ALGORITHM 
WITH VARIOUS STARTING POINTS* 

NIMROD MEGIDW. Palo Alto. California, U S.A 

We show how the selection of various starting points for the self-dual simplex method 
for linear programming can reproduce seemingly different algorithms, sometimes referred 
to as "variable dimension" or "constraint-by-constraint" methods and their hybrids. 

Consider the linear programming problem in the form: 

Maximize cTz 

subject to Az 5 b 

2 2 0  , 

(where z, c E Rn, A E R m X n  and b E Rm). The self-dual simplex algorithm is attributed to 
Dantzig [Dl. Lemke [L] generalized it and in its full generality it is sometimes referred to as 
"Lemke's algorithm". It can be explained as follows. Suppose that c0 E Rn is any positive vector 
and also let b0 E Rm be any positive vector. For any nonnegative X ,  let P(X) denote the following 
linear programming problem: 

Maximize ( C  - X C O ) ~ Z  

subject to Az 5 b + Xbo 

For X sufficiently large, the zero-vector is a basic optimal solution. Starting from such a sufficiently 
large X ,  we can continuously decrease the value of this parameter, always maintaining a basic 
optimal solution of the problem P(X). Under certain nondegeneracy conditions, the path-following 
procedure will find a basic optimal solution of the original problem P(O), if and only if every 
problem along the way has an optimal solution. 

The self-dual algorithm has recently become a focus of attention in the context of probabilistic 
analysis. This began with the work of Borgwardt [Bol, Bo2] and Smale [Sml, Sm21. Adler and 
Megiddo [AMl, AMZ], Todd m have proven that with special parameterizing vectors (and relative 
to certain classes of probability distributions) this algorithm runs on the average in no more than 
O(min(m, n))2) steps (see also [AKSZ]). 

In this note we are interested in special types of parameterizing vectors b0 and cO. In the 
following discussion these vectors will themselves be functions of a single parameter. t .  and we will 
be interested only in sufficiently small values o f t .  Assume that the vectors bO(c) and cO(t) are such 
that each of their components is equal to a certain power of E .  For example, in one case considered 
later we have b:(c) = E' and c;(c) = tm+J.  Under suitable non-degeneracy conditions, for every 
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c there is a well-defined sequence of bases, namely, the sequence of bases generated by the self-dual 
algorithm while employing the parameterizing vectors b 0 ( e )  and co(c) .  Considering the progress of 
the self-dual algorithm as a function of c, we discover that the critical values of c,  that is. values 
at which the sequence of bases changes, are all roots of finitely-many polynomials in c. Thus, the 
number of intervals of c, over which the sequence of bases does not change, is finite. Hence, there 
is some positive E * ,  such that for every c, 0 < c < c * ,  the algorithm produces the same sequence 
of bases while employing the parameterizing vectors bO(c)  and e O ( c ) .  Whenever we refer to c as 
"sufficiently small" we simply mean that c belongs to the particular interval whose left-hand open 
end is the zero. 

We now argue that by suitably choosing the powers of c, which constitute the components of b O ( c )  
and c O ( c ) ,  the sequence of bases produced by the self-dual algorithm (when c is sufficiently small) 
can be made indentical to those produced by seemingly different algorithms, sometimes referred to 
as "variable dimension" or "constraint-by-constraint" methods. The ideas of a row at a time or a 
column at a time have been exploited since the 1960's. See for example [GI where degeneracies are 
handled with such an approach. Other related works are Bland's least-index rules [Bl], [v]. [RoZ], 
[Sa] and [AKSl]. 

It is interesting to mention that the change of starting point can be replaced by scaling rows 
and columns. that is, multiplying them by suitable powers of c. Thus, Dantzig's original self-dual 
algorithm can simulate many algorithms provided we first scale the problem in a suitable way. 

Consider first the choice e ; ( c )  = €1 Cj = 1, . . . , n) and b:(c) = cn+' (i = 1 ,  . . . , m ) .  To gain 
some more insight Into the problem, consider the following sequence of values of X :  

Suppose n 2 k 2 m + n. Obviously, for every j Cj = 1,. . . , n), the objective-function of the 
problem P ( X k )  is determined by the vector whose components are c, - cJ-k-0 .5  Cj = 1,. . . , n). 
The direction of this vector (that is, the unit-vector in this direction) tends to the direction of 
(1,0,. . . , O ) T  E R" as a tends to zero. More accurately, this direction is asymptotically equal to 
the direction of e O ( c )  when c tends to zero. Analogously, consider the values of the right-hand 
side vector b + XbO when X = X k  and n 5 k 5 m + n. These are equal to b, + c " + ' - ~ - ~ . ~ .  
Suppose i 2 k - n. For c sufficiently small, such a constraint is inactive since its right-hand side 
tends to infinity. On the other hand, if i 2 k - n + 1 then the right-hand side tends to b, as c 
tends to zero. It follows that the basis, which is maintained by the algorithm at the point where 
X = Xk.  is in fact an optimal one for the following problem: 

Maximize ( - c ' ) ~ z  

subject to A,z 5 b. ( i  = k - n + 1,. . . , m )  

2 2 0  , 

where A, is the i-th row of A. Moreover, we can now interpret what the algorithm actually does 
when X varies between XI, and Xk-1 .  First, it is obvious that in this segment the algorithm starts 
with an optimal solution relative to the problem just stated and pivots until it reaches an optimal 
solution for the same problem with k - 1 replacing k.  Thus, the self-dual algorithm starts with 



only the nonnegativity requirements present and then adds the constraints one-by-one, in order of 
decreasing i. A more careful look at the particular way, by which the algorithm brings the next 
constraint, reveals the following. Let X satisfy 2 X 2 Xk. For any such X, the algorithm 
finds an optimal basis for the following problem: 

Maximize ( -c ' )~z 

subject to Ak-,,z < bkPn + Xck 

4 2  2 b, ( i = k - n + l , . . . , m )  

2 2 0  . 

When X varies between Xk and Xk-l, the value of Xck varies over an interval which tends to 
(0, w )  as c tends to zero. Of course, if the (k - n)-th constraint is satisfied when X = Xk then 
the algorithm does not pivot at all in this segment Otherwise, it starts the present segment with 
(k - n)-th constraint totally relaxed and proceeds by bringing it in continuously in the sense that 
the quantity Ak-,,z - bL-,, decreases continuously to zero (unless the algorithm discovers that 
the problem is not feasible). This description is equivalent to saying that the algorithm behaves like 
a parametric objective-function simplex algorithm solving the following problem: 

Maximize t(bnFk - A,,-kz) - (cO)=z 

subjectto A,z 5 b, (i= k - n + l , . . . , m )  

2 2 0  9 

where t varies from 0 to m. 

If the algorithm does not stop before X reaches the value A, then it means that all the constraints 
have been brought in successfully, so that the problem is feasible. Moreover, at this point the 
algorithm has a basic optimal solution relative to the objective-function determined by -cO, subject 
to all the constraints of the original problem. It is obvious that from this point and on the algorithm 
behaves like a parametric objective-function simplex algorithm, solving the following problem: 

Maximiae (tc - c O ) ~ ~  

subject t o  Az 2 b 

2 2 0 ,  

where t varies from 0 to w .  It follows that the particular choice of powers of c (with c sufficiently 
small) makes the self-dual algorithm work precisely like the "constraint-bysonstraint" method in 
the second work of Adler, Karp and Shamir [AKSZ]. Some other variants of constraint-by-constraint 
(see [AKSI]) can also be simulated by the self-dual method with appropriate choices of the starting 
point. 

Another approach, which can be interpreted as dual to the constraint-by-constraint method, is 
that of "variable-dimension". Here we look at the projection of the problem on the subspace of 
the last j variables, letting j grow from 1 to n. An equivalent way of looking at this situation 
is that we force the variables 21,. . . , z,-, to be equal to zero, which can be implemented by 
parametrizing with an objective-function that assigns a very large negative profit to these variables. 
Suppose we assign the powers of c in a way convene to the previous one, namely, c:(c) = cm+3 



Cj = 1, . . . , n) and b:(c) = c' (i = 1, . . . , m). Like in the previous case, when X varies between 
r-(k+0.5) and c-(k-0.5) (where m 2 k < m + n), the algorithm solves the following problem: 

Maximiae c T z  

subject to A z  2 bO(r) 

z 1 , . . . , 2 k - m = 0 ,  Z k - m + l , , . . , Z n  2 0 . 

Having increased the dimension to n, the algorithm then works like a parametric right-hand side 
simplex algorithm, deforming the vector bO(c) into the original b. 

It is interesting to note that the algorithm, with a special initialization procedure, described by 
Borgwardt [Bol, Bo2], can also be related to the self-dual algorithm as we explain in this section. 
This algorithm solves problems of the form: 

Maximize c T z  

subject to A z  < e 

(where z, c E R n ,  A E R m X "  and e = ( 1 , .  . ., l ) T  E Rm). These problems have the advantage 
that the zero-vector satisfies all the constraints and, trivially, they are also feasible relative to the 
projection of the problem on any space of a subset of variables. To start the argument, let us 
first consider a related problem where in addition to the original constraints the variables must 
also be nonnegative. Now, consider the self-dual algorithm with parameterizing vectors cO(c), with 
c;(c) = cn+'-1 and bO(c), with b!(c) = cn+'. Like in the preceding algorithm, the dimension 
is increasing (in the reverse order of coordinates, in order to fit Borgwardt's original description), 
obtaining optimal solutions relative to projections of the problem, until an optimal solution for the 
original problem is found. In Borgwardt's formulation there are no nonnegativity constraints. In 
order to fit that version we may use the standard trick of representing an unconstrained variable z ,  
as the difference between two nonnegative variables z, = $ - z:', associating the same power of 
c with both of them. so that they are introduced to the problem at the same stage. The difference 
bewteen this problem and the one in the previous section is that, due to the positivity of the given 
right-hand side vector, feasibilty is already maintained at the stan 

In general, if the self-dual algorithm is started at a vector whose components are pairwise distinct 
powers of c (with c sufficiently small) then it behaves like a hybrid of "constraint-by-constraint" 
and "variable dimension" methods. It starts with all the variables set to zero and all the constraints 
(except for the nonnegativity requirements) relaxed. It then brings in the constraints one-by-one 
and adds the variables one-by-one: the specific order of these m + n steps is determined by the 
powers of c. Thus. the algorithm "solves" subproblems obtained from the original one by omitting 
some constraints and setting some of the variables to zero. We note that some of these subproblems 
may be unbounded, in which cases the algorithm terminates the current stage with an appropriate 
ray rather than an optimal solution. Note that a constraint is brought in by moving the hyperplane 
parallel to itself. The movement starts from a very far location depending on the value of c. In 
the case when a new constraint changes the subproblem from unbounded to bounded then, at 



the stan of the movement, the algorithm holds an optimal solution to a problem obtained from 
the unbounded one by adding the hyperplane at its initial position. The algorithm pivots from 
a terminal basis of one subproblem to a terminal basis of the next subproblem in the sequence. 
behaving during this segment either like a parametric objective-function simplex algorithm (when it 
brings in a new constraint) or like a parametric right-hand side simplex algorithm (when it increases 
the dimension). We note again that the original self-dual algorithm (starting at (I, . . . , I)*) can 
simulate the implementation of Lemke's algorithm with any positive starting point 

We remark that it follows from the analysis in [AM11 that under a certain class of probability 
distributions (see [AM2]) the expected number of pivot steps performed by the self-dual algorithm, 
corresponding to any such starting point (consisting of distinct powers oft-), is O((rnin(m, n))l). 
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