Horizontal and Vertical Decomposition
in Interior Point Methods for Linear Programs*

Masakazu Kojimal Nimrod Megiddo¥ Shinji Mizuno® Susumu Shindoh¥

Abstract. Corresponding to the linear program:
Maximize ¢’  subject to Az =a, Bz =b, = > 0,

we introduce two functions in the penalty parameter ¢ > 0 and the Lagrange relaxation
parameter vector w,

ffit,w) = max{c'z —wl(Az —a)+ tZln z;: Bx =05, z >0}
7=1
(for horizontal decomposition),

n
ftw) = min{a’w + bTy — tZan]‘ BTy —z=c— ATw, z >0}
J=1
(for vertical decomposition).

For each ¢ > 0, fp(t, -) and fd(t, -) are strictly convex C'*° functions with a common
minimizer w(t), which converges to an optimal Lagrange multiplier vector w* associ-
ated with the constraint Az = a ast — 0, and enjoy the strong self-concordance prop-
erty given by Nesterov and Nemirovsky. Based on these facts, we present conceptual
algorithms with the use of Newton’s method for tracing the trajectory {w(t) : t > 0},
and analyze their computational complexity.

1. Introduction.

This paper presents a theoretical framework for incorporating horizontal and vertical de-
composition techniques into interior-point methods (see for example the survey paper [13])
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for linear programs. Let @ € R™, b € R*, ¢ € R*, A € R™*" and B € R*". We consider
the following equality form linear program P~ and its dual D*:

P* Maximize cla subject to Ax =a, Bx =0b, x > 0.
D* Minimize a’w + b’y subject to ATw+ Bly—z=¢, z>0.
Let
Riy = {t€ R:t>0} (the set of positive numbers),
Ry, = {x € R":2x >0} (the positive orthant),

Py = {zcR, :Az=a, Bxr=>}
(the interior of the feasible region of P*),
Dy = {('w,y,z)ERmkaxRi_l_:AT'w—l—BTy—z:c}
(the interior of the feasible region of D),
Qi+ = {x€e R, :Bx=b}
Diy(w) = {(y,2)e RF xR, :B'ly—z=c—-A"w}.

Then we obviously see that

Py = {2z € R": Az = a} () Qq+,

D-I—-I— = U {(wvyvz) € Rm+k+n : (y7z) € D++(w)}
weR™

Throughout the paper we impose the following assumptions on the constraint set of P~:

(A) P,y is nonempty and bounded.
(B) Q44 is nonempty and bounded.

(C) The (m+ k) x n matrix ( g ) has full row rank.

For every (t,2,w,y,2) € Ryy x Ry x R™ x RF x R% ., define

fftwe) = c'e—w'(Az—a)+1t) Ina;

i=1
fit,w,y,z) = a'w+b'y— t> Inz; .
i=1
Here t € R4 denotes the barrier parameter and w € R™ the Lagrange multiplier vector

associated with the constraint Az = a.

We can regard the horizontal (or vertical) decomposition technique as a numerical tracing
of the trajectory which consists of the solution w(t) (¢t € Ry ) of the following parametric
min-max (or min-min) problem:

minimize ,epm  maximize { fP({,w, @) x € Q14}, (1)

minimize yepm  minimize {f4(t,w,y,2): (y,2) € Dyy(w)}. (2)
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Under the assumptions (A), (B) and (C), the inner maximization problem in (1) (or the
inner minimization problem in (2)) has a unique solution for every (f,w) € Ry x R™, so
that we can consistently define the optimal value functions and the optimizers of the inner
problems; for every (t,w) € Ry X R™, let

= max{f"(l,w,x) @ € Q4t},

= arg max {fP(t,w,x):x € Qiy},

= min{f'(t,w,y,2): (y,2) € Dyy(w)},

= arg min {f'(t,w,y,2): (y,2) € Dyy(w)}.

We are mainly concerned with theoretical aspects of the horizontal and vertical decom-
position techniques. In particular we show the following features.

(a) For every t € Riy, the function fp(t, )+ R™ — R is a strictly convex C'*° function
with the unique minimizer w(t) over R™.

(b) For every (t,w) € Ry; x R™, we can use the primal-dual interior-point method
([5, 7, 8,9, 11], etc.) to compute (&(t,w),y(t,w), 2(t,w)), fp(t,w), the gradient
vector fi(t,’w) w.r.t. w and the Hessian matrix fww(t,’w) w.r.t. w.

(c) The set {(&(t,w(1)),w(t), y(t,w(t)),2(t,w(t))):t € Ryy } forms the central trajec-
tory [9] converging to the analytic center of the optimal solution set of the primal-dual
pair of linear programs P~ and D~.

(d) {fp(t, )it € Ryt }is a strongly self-concordant family [10] (with the parameter
finctions a(r) = 1, 1(t) = u(t) = L, £(1) = /1, n(t) = yin/(20)).

(e) fd(t,’w) — fp(t,’w) = nt(l —Int) for every ({,w) € Ry; x R™. Note that the right
hand side is independent of w. Hence (a), (b), (c) and (d) above remain valid even if

we replace fp by fd.

In view of the features (a), (b), (¢) and (e) above, we obtain approximate optimal
solutions of P* and D" if we numerically trace the trajectory {w(¢): ¢ > 0} in the w-space
until the barrier parameter ¢t € Ry gets sufficiently small. It should be emphasized that

« . e . . X ~d

w(t) is the common minimizer of strictly convex C'*° functions fp(t, ) and f (¢,-) over the
entire space R™. Thus we can utilize various unconstrained minimization techniques such
as Newton’s, quasi-Newton and conjugate gradient methods to approximate w(t).

The feature (d) is a major theoretical contribution of this paper, which makes it possible
to effectively utilize Newton’s method for tracing the trajectory {w(¢) : ¢ > 0}. The notion
and the theory of self-concordance were given by Nesterov and Nemirovsky [10] for a wide
class of polynomial-time interior-point methods for convex programming.

After listing in Section 2 symbols and notation used throughout the paper, we show
in Section 3 that the inner optimization problems in (1) and (2) share a common nec-
essary and sufficient optimality condition, and derive the feature (e) from the condition.



Section 4 describes several derivatives of the function f° : Ryy x R™ — R including the
gradient fi(t, w) and the positive definite Hessian matrix fiw(t, w) w.r.t. w € R™. Details
of calculation of derivatives are given in Appendix. Section 5 establishes that the family
{fp(t, )1t € Ryy }is strongly self-concordant. In Section 6 we present conceptual decom-
position algorithms with the use of Newton’s method, and investigate their polynomial-time
computational complexity.

Although we will state a horizontal decomposition for the general linear program P* and
a vertical decomposition mainly for its dual D, it is interesting in practice to apply them
to a special case where the matrix B has a block diagonal structure:

B, O --- O
p=|© B 0O (3)
O O --- B

Our horizontal and vertical decomposition techniques applied to such special cases are
roughly corresponding to the Dantzig-Wolfe and the Benders decomposition methods, re-
spectively. See for example the book [6]. It should be noted that when the matrix B has
a block diagonal structure as in (3), we can decompose the inner maximization problem in
(1) (or the inner minimization problem in (2)) into ¢ smaller subproblems of the same type.

Many studies ([1, 2, 12], etc.) have been done on how we exploit special structures such
as generalized upper bounds, block diagonal structures and staircase structures in interior-
point methods. The conceptual algorithms given in Section 6 has a close relation with
a compact-inverse implementation (see Section 9 of [2]) of the primal-dual interior-point
method applied to P* and D*. This is shown in Section 7 where we discuss some issues
toward implementation of the horizontal and vertical decomposition techniques.

2. Notation.

Ryy = {teR:t>0}, R}, = {zcR":2>0},
Piy = {zeR, :Ax=a, Bx=>},
Dy, = {('w,y,z)ERmkaxRZ_+:ATw+BTy—z:c},
Qi+ = {xeR} :Bx=b},
Diy(w) = {(y.z)e R* xR :B'y—z=c—ATw },
fr(t,w,2) = c'e—w'(Az —a)+ tznzln T,

i=1

fd(tvwvyvz) = a’Tw —I_bTy —tZlHZ]‘,

i=1

4



fp(tvw) = max{fp(t,w,a:) HEKES Q-I—-I—}v
i(tvw) = arg max {fp(tvwvw) HEKES Q-I—-I—}v
Ftw) = min{f(tw,y,2): (y,2) € Dys(w)},
(@(t,w),%(t,w)) = arg min {fd(tvwvyvz) : (yvz) € D-I—-I—(w)}v
X = X(t,w)=diag &(t,w), Z = Z(t,w) = diag 2(¢, w),
A = )~(1/2Z—1/27
w(l) arg min {f"(t,w): w € R™ },
A o= 2-3Y2=02679..., 0, = 1/4=10.25.

3. Duality between [ and fd.

Givent > 0 and w € R™, the term a’w involved in the objective functions f?(¢,w,-) of the
inner problem in (1) and f%(¢,w,-,-) of the inner problem in (2) is constant. Hence we may
eliminate it from the objective functions when we are concerned with the inner problems in
(1) and (2). Thus the pair of the inner problems is equivalent to the pair:

P(t,w) Maximize (c— A'w) @ +t>"_ Inz; subjectto @ € Quy.
D(t,w) Minimize by —t>"_ Inz; subject to  (y,2) € Diy(w).

This pair has exactly the same structure as the one often studied with the primal-dual
interior-point method ([5, 7, 8, 9, 11], etc.). Therefore we can apply the primal-dual interior-
point method to the pair of problems above. By using the well-known argument (see for
example the paper [9]) we obtain the theorem below that states a common necessary and
sufficient optimality condition for the inner maximization problem in (1) (i.e., P(t,w))
and the inner minimization problem in (2) (i.e., D(t,w)).

Theorem 3.1. Let (t,w) € Riy x R™. Then & € R" is a maximizer of fP(t,w,-) over
Qyy and (y,z) € R*™ is a minimizer of fi(t,w,-,-) over Dy (w) if and only if

Bx—b=0, z >0,
ATw+ BTy —z2—¢=0, 2 >0, (4)
Xz —te=0.

Here X denotes the diagonal matriz of the coordinates of ® € R* and e = (1,...,1)T € R".

Let (f,w) € Ry x R™. Suppose that (x,y, z) satisfies (4). Then (w,y, z) is a feasible

Tw + b'y gives an upper bound

solution of the original dual linear program D*. Hence a
of the maximal objective value of the original primal linear program P* to be solved. On

the other hand, @ is not a feasible solution of P* unless the additional equality A —a = 0
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holds. It will be shown in Section 4 that the equality holds when and only when w is a
minimizer of the outer problem in (1), i.e., a minimizer of fp(t, -) over R™.

Recall that &(f, w) and (y(t, w), 2(¢,w)) denote the maximizer of the inner problem in
(1) and the minimizer of the inner problem in (2), respectively. For every fixed w € R™, the
set {(&(f,w),y(t,w),z(t,w)) : t € Ryy } forms the central trajectory of the primal-dual
pair of linear programs:

P(w) Maximize (c— ATw)Tx subjectto Bz =b, > 0.
D(w) Minimize b’y subject to Bly—z=¢c— ATw, 2 >0.

Theorem 3.1 implies that the relations

ATw 4+ BTy(t,w) — 2(t,w) — ¢ =0, 2(t,w) > 0,

Bz(t,w)—-b=0, z(t,w) > 0,
X(t,w)z(t,w) —te =0 }

hold for every (t,w) € Ry x R™. It follows that

~d

f (tv w) - fp(tv w)
= b y(t,w) — '@ (t,w) +wl Az (t,w) — > Ini;(t,w)z(t,w)

7=1
— (A"w+ B y(tw) —c) @(t,w)—tY Int
j=1
= z(t,w) 2(t,w) —ntlnt = nt(l —1Int).
Therefore we obtain:

Theorem 3.2. fd(t,'w) — f(t,w) = nt(1 —Int) for every (I, w) € Ryy x R™.

4. Derivatives.

In this section, we present various derivatives of fp : Ryy x R™ — R. Details of calculation
of derivatives are omitted here but are given in Appendix.

Theorem 4.1.
(i) fo(t,w) =a — A&(t,w) for every (t,w) € Ryy x R™.
(ii) f,(t.w) = AA (I - AB"(BA'B")"'BA) AA”
= %AX (I . XBT(BXQBT)‘lBX) X A"
for every (t,w) € Ryy x R™.



1/22—1/2 ~

Here A = X X = X(t,w)= diag &(t,w) and Z = Z(l,w) = diag 2(t,w).

As a corollary we obtain:

Theorem 4.2. Lelt € Ry be fized arbitrarily.

(i) The Hessian matrix fiw(t,’w) is positive definite for every w € R™.
(ii) The function fp(t,-) : R™ — R is a strictly convex C°° function with the unique
minimizer over R™.

Proof: (i) Obviously the Hessian matrix
Fuultiw) = AA (I~ AB"(BA'B")™' BA) AAT

is positive semi-definite. Hence it suffices to show that the matrix is nonsingular. Assume
on the contrary that

AA (1-AB"(BA'B")"'BA)AA"u =0

for some nonzero w € R™. Since (I — ABT(BAQBT)_IBA) is a projection matrix, we
have ,
(1-AB"(BA"B")"'BA)AA"u =0,
which implies that
A"u — B"(BA"BT)"'BA"ATu = 0.
This contradicts the assumption (C).

(ii) The strict convexity of fp(t, -) follows directly from (i). We have observed that the
mappings €, ¥, z on Ry, X R™ are defined implicitly through the equalities in (4) (see
(5)). Since the Jacobian matrix of the left hand side of the equalities with respect to
(®,y, z) is nonsingular at every ({,w.@,y,z) € Ryy x R™ x R}, x R¥ x R%, and the
left hand side is C* differentiable with respect to (¢,w,x,y, z), we see by the implicit
function theorem (for example [3]) that the mappings &, y, 2 are C'* differentiable with
respect to (£, w). It is well-known [9] that under the assumptions (A)and (C), there exists
a unique (w,®,y, z) for which

Ar —a =0, Be—b=0, >0,
ATw+ By —z—-¢=0, z>0, (6)
Xz—-1e=0

hold. We know by Theorems 3.1 and 4.1 that (6) is a necessary and sufficient condition
for w € R™ to be a minimizer of fp(t, -) over R™. This ensures the existence and the
unique minimizer of fp(t, Do



For every t € Ry, define w(t) to be the minimizer of fp(t, -) over R™ whose existence
and uniqueness have been shown above; i.e., w(t) = arg min {fp(t, w):w € R"}. In view

of Theorem 3.2, we see that w(?) = arg min {fd(t,’w) :w € R™}. Furthermore, for every
t € Ryq, (,w,y,2) = (&(t,w(t)),w(t),y(t,w(t)), z(t,w(t))) satisfies (6). Thus the set
{(2(t,w(1)),w(t),y(t,w(t)),z(t, w(t))):t € Riy } forms the central trajectory converging
to the analytic center of the optimal solution set of the primal-dual pair of linear programs
P* and D*.

The theorem below will be utilized in Section 5 where we discuss the self-concordant
property of the family {fp(t, )1t € Ryy } of functions.

Theorem 4.3. Let w € R™ and h € R™ be fized arbitrarily. For every (t,s) € Ry X R,
let

X(t,s) = X(t w + sh),
(I-X(t,s)B"(BX(t,5)*B")'BX(t,5)) X(t,5)A"h,
v(t,s) = (I—-X(t,s)B"(BX(t,s)’B")'BX(t,s))e,

Then the following (i) — (v) hold for every s € R.

df(t,w + sh
(0 f(t,d8+ )

2 h) 1Z&
(ll) f ( 7w+8 ) ——
ds? 1

= (a— A&(t,w+sh)" h

B (t,w + sh) 2 &
(111) d83 = _t_z ZUj(t,S)S.

Ef(tw+sh)  ult,s)o(t,s)

(iv) dtds T ¢
Ef(tw+sh)  u(t,s)T (2diag v(t,s) — T)u(t,s)
(v) dtds? - 2 '

5. Self-Concordance.

In this section, we apply the notion and the theory of self-concordance to the family {fp(t, )
t € Ry, } of functions according to the paper [10] by Nesterov and Nemirovsky. To avoid
complicated notation and discussion, however, we employ a simplified version of the self-
concordance. Qur definition of the “global self-concordance” and related properties shown
below are less general than those of the original strong self-concordance given in the paper
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[10], but can be adapted directly to the family {fp(t, ) :t € Ryy}. The readers who are
familiar to the strong self-concordance can easily see that if a family {F(¢,-) : t € Ryi}
of functions on R™ is globally self-concordant then F = {R™, F'(t,-), R™ }scr,, is strongly
self-concordant.

Definition 5.1. A function F on R™ is globally self-concordant with the parameter value
a > 0 if it satisfies:

(a) F' is a strictly convex C® function on R™ with a positive definite Hessian matrix
Fuw(w) at every w € R™.

(b) There is a unique global minimizer of F' over R™.

(c) For every w € R™ and h € R™,

d*F(w + sh)
ds?

s=0

Definition 5.2. A family {F(¢,-): ¢t € Ry4} of functions on R™ is globally self-concordant
with the positive parameter functions «, ¢ and n if it satisfies:

(d) a, & n: Riy — Ry4 are continuous functions.
(e) For every t € Riy, F(t, ) is a globally self-concordant function on R™ with the
parameter value «f(t).
(f) F(t,w), F,(t,w) and F,,(t,w) are differentiable in ¢ € R, and the resultant deriva-
tives in t € Ry are continuous in (t,w) € Ry x R™.
(g) For every (f,w) € Ry; x R™ and h € R™,
1/2
s:O) ‘

d*F(t,w + sh)
dtds

< E(t)o(t)"? (sz(t,dZ;Jr sh)

(h) For every (t,w) € Ryy x R™ and h € R™,

d*F(t,w + sh)
dtds?

d*F(t,w + sh
< 277@)( (d52 )

)

Let {F(t,-):t € Ry} be a globally self-concordant family of functions on R™ with the
positive parameter functions «, &, n: Ryy — Rii. For every t € R,,, define Newton’s
decrement of the function F(t,-) at w € R™ by

s=0

At w) = inf{A s | Fu(t,w) h| < Aa(t)/? (BT Fuu(t,w)h) " for every h e R},



Or alternatively, A(¢,w) is defined by
N w) = 2 (F(t,w) —inf{®(t,u): u € Rm})
a(t)
1

= %Fw(t, 'w)TFww(t, 'w)_le(tv 'w),

where ®(t,-) is a quadratic approximation of the function F'(¢,-) at w € R™;

1
d(t,u) = Ft,w)+ Fu(t,w) (u—w)+ §(u —w) Fu(t,w)(u — w)
for every (t,u) € Ry x R™.
Newton’s decrement is a continuous function from Ri; X R™ into the set of nonnegative

numbers such that for each t € Ry, A(t,-) takes the minimal value 0 over R™ at w € R™

if and only if w is the unique global minimizer of F'(¢,-) over R™. Thus, for every § € R, .,
the set
N(@) ={(t,w) € Ryy x R™ : \(t,w) < 6}

forms a closed neighborhood of the trajectory

{(t,w) € Ryy x R™ : \(t,w) =0}
= {(t,w) € Rty x R™ :w = arg min {F({,w):w e R"} },

which we want to trace numerically. Let 6§ € Fyy. Define the metric pg on Riy by

/tjlf(s)ds /tt/n(s)ds

1

1
polt", 1) = S max{|In(a(r')/a(")] 7,7 € [, 1]} + 07" ¥

for every t', t" € R, .
Let A, =2 —3Y2=0.2679--- . Define

AT A A
o) = {1 A<,

w\) = 1—(1-3)"°

Theorem 5.3. Assume that {F(t,-) : t € Ry} is a globally self-concordant family of
functions on R™ with the positive parameter functions o, £, n: Ryy — Ryy. Lett' € Ry,
w' € R and X = At',w'). Let w € R™ be the Newton iterate at w’ with the step length
a(N);

w=w —a(\N)Fu,[t w) " F,, w).
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(i) If X' > A, then
Ft'w)— F{t'w') < —a(t') (A —In(1 4+ X)) < —0.03a(t").

(ii) If N < A then

3 = — YfN=A,
et Y
TESUA R
< 5 if X < A
1 1 A
F(t' w') — min{F(t,w): we R"} < §a(t')w()\’)21—l__7zj2)\/; < AN a(t).

(i) If N < 0 < A and pg(t", ') < 0710 — X') then \(t",w') < 6.

Proof:  See Section 1 of the paper [10] y
We have already seen that:

(a)” For every t € Ry, the function fp(t, ) R™ — R is a strictly convex C'* function
with a positive definite Hessian matrix fiw(t, w) at every w € R™.

(b)" For every ¢t € Ry, there is a unique global minimizer of fp(t, -) over R™.
() f7(-,-) is C* differentiable on Ry, x R™.

Hence the following theorem is sufficient to establish that the family {f’(t,-):t € Ryi} of
functions on R™ is globally self-concordant.

Theorem 5.4.

(d)” Define at) =1, £(t) = and n(t) = @ for everyt € Ry 4.

2t

vn
t

Then the following relations hold for every (t,w) € Ryy x R™.

~ ~ /2
&7 (t,w + sh) o (P w sk
s 9 < -1/2 9 )
() ds? ol 2a(t) ds? 0
(o) d2f(t,w + sh) < £(t)a(t)? 42 f7(t,w + sh) 1/2
g dtds IR ds? )
& (t,w + sh) 42 f7(t,w + sh)
s 2 < 2 .
() dds | | =) ds? »
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Proof: (¢)” By Theorem 4.3, we have that

N 2
& (tw + sh) 2 & ,
( d83 t2 ]Z:;u] 78)
4 (& ’
- (Z u;(t
7=1
4 (& ’
< 1 (Z u;(t
j

Thus (c)’ follows.

(g)’ It follows from the definition of v(t,s) that |v(t,s)] < /n. Hence we see by
Theorem 4.3 that
2 f(t,w + sh)
dtds

u(t,s)Tv(t, s)

t

Villu(t, )

- t

R e

Y

Thus we have shown (g)’.
(h)” It is easily verified that

—vn < 20(t,w) —1</n fori=1,2,...,n. (7)
Hence we see by Theorem 4.3 that
& f (, 'w—l—sh)‘ < Vn

dids? ~ t—Qu(t S) ’U,(t,S)

Vi df'(t,w + sh)
t ds?

Thus we have shown (h)’.

Now we are ready to apply Theorem 5.4 to the family {fp(t, )1t € Ryy}. Newton’s
decrement turns out to be

Alt, w)
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dff (t,w + sh)
ds

= inf{\:|(a— A(t,w)"h

2t h
§)\0z(t)1/2( f(;l’:;—l_s )

1/2
= inf{)\:‘ ) , Vhe R™ }

5=s8

1/2

<) (hTAX (I _ XBT(BXQBT)‘IBX) XATh) , Vhe R™ )
= inf{): |(A@(t,w) — a)"h|
1/2 (1T 4 A AT/ o AlnT -1 o) X 47p)\"? m
< \t'*(h"AA (I - AB"(BA'B")"'BA)AA"h) ", Vhe R™ }.

Here X = X (t,w) and A = X (t,w)"2Z(t,w) /2. Let 0 < § and 0 < t” < t'. Then
1

pa(t" 1) = 5max{|ln(oz(7’")/oz(7"))| 7ot e [t}
471 /tt/ £(s)ds /tt/ n(s)ds

1
= §maX{|1H(T”/T/)| e [t ]}

)

th 28

_|_

t/

+671

i

% (t /t//) \/0_ (ln t/ ln t//) _I_ \/75 (ln t/ _ ln t//)
(% MRV _) In(t'/1").

po(t 1) = (% N % n %ﬁ) In(#//t"). (8)

Thus we obtain

Theorem 5.5. Let 0, = 1/4 < A\, =2 —3Y2 =02679... . Let (', w') € Ryy x R™ and
N = At w'). Let w € R™ be the Newton iterate at w' with the step length o(N');

w =w' —o(X) [y, [t w) " Lt w).
(i) If X' > \. then
F ) — f (1, w') < =t (A —In(1 4 A,)) < —0.03".
(ii) If N < A then

S
Ny < ) y Y
N CEPY N
< 5 AN
. . !
Pt ') — min{ (¢, w) :w € B} < oY) oy
> (V)
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(i) If N < 60./2 and (1 — 1/(11y/m)t' < " < t' then Mt",w') < 0.

Proof:  The assertions (i) and (ii) follow directly from Theorems 5.3 and 5.4, so that it
suffices to show (iii). Assume that X < 60./2 and (1 — 1/(11y/n))t’ <" < t'. Then we
see by (8) that

po, (1", 1) = (1 + v + @) In(¢'/t")

2" 4, 9
< 5v/nl !
T T
1 1
< = = < 7Y, — X

Thus the desired result follows from (iii) of Theorem 5.3. y

6. Conceptual Algorithms.

In addition to the assumptions (A), (B) and (C) stated in the Introduction, we assume:
(D) Forany (t,w) € Ry; x R™, we can compute the exact maximizer & (¢, w) of fp(t, w,-)

over )44 and the exact minimizer (y(f, w), 2(¢,w)) of fd(t, w,-,-) over Diy(w).

We describe two algorithms based on Theorem 5.5. For each fixed t € Ry, Algorithm
6.1 approximates the minimizer w(t) of fp(t, w) over R™, while Algorithm 6.2 numerically
traces the trajectory {(f,w(t)):t € Ry;} from a given initial point (¢°,w°) in the neigh-
borhood N(6./2) = {(t,w) : A(t,w) < 0./2} of the trajectory {(¢,w(t)):t € Riy}, where
6. =1/4.
Let (t,’lﬂ) € R_|__|_ x R™.

Algorithm 6.1.

Step 0: Let ¢ =0 and w? = w.

Step 1:  Compute (27, y?, 27) = (2(f, w?), y({, w?), 2(t,w?)). Let AT = A(¢, w?).

Step 2:  Compute w't! = w? — (M) fL (1, w?)" 1 (1, w?).

Step 3: Replace ¢ by ¢ + 1, and go to Step 1.

Suppose (1%, w?) € N(0./2). where 6, = 1/4.
Algorithm 6.2.

Step 0: Let 6 = 1/(11y/n) and r = 0.
Step 1:  Compute (2",y",2") = (", w"), y(¢", w"), 2(t",w")). Let X = A(t", w").

Step 2: Let t"t! = (1 — §)1". Compute w™' = w" — f, (" w")~' f (171, w").

14



Step 3: Replace r by r + 1, and go to Step 1.

In view of Theorem 5.5, we see that:

(i)

The sequence {(t,w?)} generated by Algorithm 6.1 moves into the neighborhood
N(e*/Z) = {(tvw) : )‘(tvw) S 0*/2}

of the trajectory {(f,w(t)) : t € R4y} in a finite number of iterations, and eventually
converges to w(t). Hence Algorithm 6.1 provides us with an initial point of Algorithm

6.2.
The sequence {(t",w")} generated by Algorithm 6.2 runs in the neighborhood

N(0,./2) = {(t.w) : \t,w) < 6./2)

and satisfies that

1
= (1— 11\/ﬁ) t" for every r =0,1,2,... ; 9)
hence lim,_.,t" = 0. The sequence {(&",w",y",2")} lies in a neighborhood of

the central trajectory of the primal-dual pair of linear programs P* and D*, and if
(z*, w*,y*, 2") is a limiting point of the sequence then &* and (w*, y*, z*) are optimal
solutions of P* and D, respectively.

We now assume that all elements of the data A, B, a, b and ¢ are integers to analyze

computational complexity of Algorithms 6.1 and 6.2 in detail. Let L denote the input size
of P*.

Lemma 6.3. Leti{ > 0.

(i)
(i)

fp(t,O) < n2* 4 inl.

m]i%n fp(t,’w) > —n22l —nL.
weR™

Proof: By (A) and (B) assumed in the Introduction and by the definition of L, we know
that

x; <2F <expL foreveryi=1,2,...,n and every & € Q,

z; > 27 > exp(—L) foreveryi=1,2,...,n and some & € P, .

It follows that

f(t,0,2) = e+t Ina;

i=1
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< n(ZL)(ZL) + inlL
= n2* 4 inl for every & € Q,
frit,w,2) = c'z+td Ing;
7=1
—n(2M)(2%) 4 tn(=L)

—n2* —inL for every w € R™.

Hence

F(t,0) = max{fP(1,0,&): 2 € Qry} < n2*l 4 inL,
3 P .
Inin Jmin max{[*(l,w,2): & € Q)

min f(l,w, @)

—n2* —nlL.

3
=
P
g
VA

Y

Theorem 6.4.

(i) Lett = 22L and w® = 0. Then Algorithm 6.1 generates in O(nl) iterations a (t, w?) €
N(0./2).

(ii) Let € > 0. Then Algorithm 6.2 generates in O(\/nInt®/e€) iterations a (1", w") €
N(0./2) such that 0 < 1" < e.

Proof: Let ¢ = [4nL/0.03] + 1. Assume on the contrary that
(t,w?) ¢ N(A™) forq=0,1,2,...,q¢"
By Theorems 6.3 and 5.5 we then see that

fp(tqu*)

ot w®) —0.03t x ¢*

n2? L nl — Anlt

n2?t —onl x 2% —inl < —n2* —inl.

—n2?Y il

VAN VAN VAN VAN

This is a contradiction. Hence (t,w?) € N(X*) for some ¢ < ¢*. By Theorem 5.5, we
see that (,w??) € N(0./2). Thus we have shown (i). The assertion (ii) follows directly

from the inequality (9). g
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7. Toward Practical Implementation.

Among the assumptions imposed in our discussions so far, the most impractical one seems
to be the assumption:

(D) Forany (t,w) € Ry; x R™, we can compute the exact maximizer & (¢, w) of fp(t, w,-)

over )44 and the exact minimizer (y(f, w), 2(¢,w)) of fd(t, w,-,-) over Diy(w).

For every (t,w) € Ri; x R™, the Newton direction (de,dy,dz) toward a point on the
central trajectory of the primal-dual pair of P(w) and D(w) gives a search direction in the
(z,y, z)-space, which was utilized in many primal-dual feasible- and infeasible-interior-point

methods ([5, 7, 8, 9, 11], etc.); (de,dy,dz) is given by

Bdx = —(Bx —b),
Bldy —dz = —(A"w+ By — z — ¢), (10)
Zdx + Xdz=—(Xz —te).

In our framework, we have paid little attention to such search directions but assumed that
the point (&(¢,w), y(t,w), 2(t,w)) into which all the flow induced by the search directions
runs is available.

To develop practical computational methods, we need to weaken the assumption (D); at
least we need to replace “exact” by “approximate” in (D). In Algorithms 6.1 and 6.2, the
exact optimizers & = &(f,w) and (y, z) = (y(¢t,w), 2(f,w)) are necessary to compute the
gradient fi(t, w) = a — Az and the Hessian matrix

fuu(t,w) = AN (I = AB"(BA’B")™ BA) AA”
with which we perform one Newton iteration to generate a new point in the w-space;

w + o(\(t,w))dw,

where
Hdw = Az —a, (11)
H = AA(I-AB'G'BA)AAT,
G = BA’BT,

A = (diag ;13)1/2 (diag z)_l/z.

It should be noted, however, that even when the exact optimizers are unavailable, the
search direction dw above is well-defined for every pair of ® > 0 and z > 0. Thus, for
every (t,2,y,2) € Ri4 x R} X RF x R% ., the correspondence w — dw defines a search
direction in the w-space.
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Another critical question to be addressed is whether solving the system (11) to compute
a search direction dw in the w-space is essentially easier than one iteration of the primal-
dual interior-point method applied to the original pair of P* and D* without using the
decomposition techniques. To compute dw by solving (11), we need

(i) a construction of the matrix H = AA (I — ABTG_IBA) AAT, which requires an
(implicit) inversion of the matrix G = BA?B7,

(ii) a solution w of a system of equations Hdw = s for some s € R™.

On the other hand, given a current iterate (x,w,y,2z) € R}, x R™ X RF x RY ., the

standard primal-dual interior-point method solves the system of equations in the search
direction (de, dw,dy,dz):

Adx = —(Ax —a), Bdx = —(Bx —b),
ATdw + BTdy —dz = —(ATw + BTy — z — ¢), (12)
Xdz+ Zde = —(Xz —te),

where ¢ > 0. We can easily verify that the search direction (de,dw,dy,dz) can be repre-

sented as
Hdw = Az —a— AN’B'G™'(Bx —b)
—AA (I - AB'G'BA) (r +s),
Gdy = Bz—b-BA(AATdw +7+s), (13)
Adz = AATdw + ABYdy +r,
A7'de = —Adz— s,
where

r = ANATw+ BTy —z—¢) and s = X V2Z7V3( Xz —te).

This representation (13) of the solution (de, dw, dy, dz) of (12) is called a compact-inverse
implementation in the literature [2]. Hence if we utilize the compact-inverse implementation
(13), the majority of the computation of (de, dw,dy,dz) are also spent for (i) and (ii).

Therefore we are required almost the same amount of computational work in solving (11)
to compute a search direction dw as in one iteration of the compact-inverse implementation
of the primal-dual interior-point method applied to the original pair of P* and D™ without
using the decomposition techniques. This observation is ironic to our nice theoretical results
with the use of Newton’s method presented so far, but sheds a new light on the compact-
inverse implementation. In particular, we observe that when & = &(f,w), y = y(¢,w) and
z = z(t,w), (13) turns out to be

Hdw = Az — a,

Gdy = —BA’Aldw,

Adz = AATdw + ABTdy,
A7lde = —Adz;
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hence dw determined by the compact-inverse implementation (13) is exactly the same as
the search direction dw in the w-space determined by (11).

We conclude the paper by a general idea of computational methods consisting of the
following three steps:

Step xyz: Given (t,w) € Ryy xR™ and (®,y,2) € R}, X R¥x R, compute a new iterate
(@'.y',2) by &' = & + a,de and (¥, 2') = (y,2) + au(dy,dz), where (dx,dy,dz)
is given by (10) and «,, ag > 0 are step lengths.

Step w: Givent >0, (®,y,2) € R}, X RF x R, and w € R™, choose a search direction
dw in the w-space and generate a new iterate w’ by w’ = w + ocdw, where o > 0 is
a step length.

Step t:  Decrease t.

Algorithms 6.1 and 6.2 may be regarded as ideal cases of such methods in which we always
perform infinitely many iterations of Step xyz to compute the exact optimizers (¢, w) of
fP(t,w,-) and (g(t,w), 2(t,w)) of f4(t,w,-,-) before we perform Step w with the search
direction dw determined by (11).

Acknowledgment. We would like to thank an anonymous referee of the paper [4] which
had been submitted to Operations Research Letters. Although the paper was not accepted
for publication, the referee argued some interesting and significant points. In particular, the
referee suggested us to see whether a real valued function

f(w) = max{w”(Bx — b) + anlnxj celz =1, z >0}

=1
on R™ is self-concordant. This question motivated the study of the subject of the current
paper.
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Appendix. Calculation of Derivatives of fp
Differentiating the identities in (5) by w € R™, we first observe

Bz, (t,w) =0, A"+ B'y,(l,w)-2z,(,w)=0, } (14)

Z(t,w)a,(t,w) + X (L, w)z,(l,w) = O
for every (t,w) € Ryy x R™. Differentiating the identities in (5) by ¢t € R4, we also see

Bi,(t,w)= 0. B'j,(t.w)— %,(t,w) =O. } (15)

Z(t,w)e(t, w) + X (t,w)2,(t, w) = e
for every (t,w) € Ry x R™. By solving (14) in &,(t,w), y¥,(t,w), Z,(t,w) and (15) in

(1, w), y,(t,w), 2,(t,w), we obtain the following lemma.

Lemma A.

(i) For every (t,w) € Ryy x R™,

1 . . . N .
eo(tbw) = —-X (I - XBT(BXQBT)‘lBX) X AT,



y,(Lhw) = —(BX B')"'BX AT,
z,(hw) = X (I - XBT(BXQBT)‘lBX) X AT,
(ii) For every (t,w) € Ryy x R™,
X (I- XBT(BXQBT)‘lBX) e
9t w) = (BX'B')'BXe,
3(t,w) = BY(BX'BT)"'BXe.
Here X = X (t,w) and Z = Z(t,w).
Proof: (i) It follows from the second and third identities of (14) that
Bo(tw) = —XZ 'z,(tw)=-XZ (AT + By, (t,w))
Hence, by the first identity of (14),
O = Bi,(t,w)=-BXZ (A" + By, (1.w)).
Therefore we obtain that
y,(tbw) = —(BXZ 'BT)'BXZ AT
= —(BX'BT)"'BX AT (since XZ = tI)
z2,(t,w) = AT+ BTy, (t,w)
= AT - BT(BX’BT)"'BX’A”

< -1

= X (I - XBT(BXQBT)‘lBX) X AT,

Y

2o(lbw) = —XZ  z,(t,w)
1 . . . N .
= X (I - XBT(BXQBT)‘lBX) X AT,

(ii) In view of the the second and third identities of (15), we see that

~—1 oo~ ~—1

@(tbw) = Z e—XZ z(tbw)=Z e—XZ BTy, w).
Hence, by the first identity of (15),
O = Bil,w)=BZ 'e-BXZ Bly,l,w).
Therefore we obtain
y,(t,w) = (BXZ 'BT)"'BZ 'e = (BX'BY)'BXe,
z,(t,w) = BT(BX'BT)'BXe,

a(tbw) = Z 'e— XZ 'z(t,w)=-X (I - XBT(BXQBT)‘lBX) e.

o~ | —
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|
Proof of Theorem 4.1:
By the definition,

P(tw) = u(tw) [t w, @(t,w)) — (As(t, w) - a)
= &,(1,w) (BTj(1.w)) - (Ad(1,w) - a)
(t

- (A

= (Ba,(t,w) y(t,w) — (Az(t,w) — a)
(since B&,,(t,w) = 0 by (14)

= a— Az(t,w).

Thus we have shown (i). By the definition and (i), we see that
foultiw) = —Az,(t,w).
Hence we obtain by (i) of Lemma A and X = /A that
£ o(tw) = %AX (I - XBT(BXQBT)‘lBX) X AT
= AA(I-AB"(BA'B")"'BA)AA”.

This completes the proof of Theorem 4.1.

Proof of Theorem 4.3:

For simplicity of notation, we use

x(t,s) todenote &(t,w + sh),
X todenote X(t,s)= X(t, w + sh),
G to denote BX?BT,
P todenote I—XBTG'BX,

respectively.

(i) By (i) of Theorem 4.1,

dff(t,w + sh)

> = fi(t,w+ sh)Th = (a— Az(l,s))" h.

Thus we have shown (i).
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(ii) By (ii) of Theorem 4.1,

d2f(t,w + sh)

T 7P
ds? = kS

we

t,w+ sh)h
1 1
= ;hTAXPXATh = ;u(t,s)Tu(t,s).

Thus we have shown (ii).

(iii) We first observe that

de(t, s) de(t,w + sh)
ds ds
= 2,(t,w+ sh)h

1 1
= —?XPXATh = —;Xu(t,s).

On the other hand, we see by (ii) that

&7 (t,w + sh) 2 rdu(t, s)
ds? N ;u(t,s) ds

du(t,s)

Y

let

To evaluate
q(t,s)= XATh and »(t,s) = G'BX*A”h.
Then

Gr(t,s)= BX*A"h,
u(t,s) = PXATh = q(t,5) — XBTr(t,s).

It follows that

dalls) _ x ATh,
ds
dr(t
2BX X ,Br(t,s) + BXZBT¥ =2BXX,A"h.
S
Here X ; = diag M Hence
S
dr(t
G TEZ 3} _ 9BXX,ATh—2BX X,BTr(l,s)
S
= 2BXX,A"h -2BXX,B"G'BX?A"h
= 2BX,PXA"h,
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dr(t
r;’s) — 2G7'BX,PXA"h,
S

du(tvs) dq(t,S) T Td’l"(t,S)
_ ~ X,BTr(t,s) - XBT Y
ds ds r(ts) ds

= X, ATh-X,B"G"'BX?A"h —2XB"G'BX,PXA"h
— (I _ 2XBTG‘1BX) X'x.PXA"h.

Therefore
td?’fp(t, w + sh)
ds3

_ 2“(t75)Tduc(;7S)
s

= 2h"AXP(I1-2XB"G'BX) X 'X,PXA"h

= 2h"AXPX'X,PXATh

— ou(l,s)" Gdiag ull, 5)) ull, )

25
l =

ui(t,s)’.
1

J

Thus we have shown (iii).
(iv) By (i), we see that
42 f(t,w + sh) d((a — Ax(t,s))Th)

dtds N dt
= —hT A& (t,w + sh)

1
= —;hTAXPe

_ —%u(t,s)Tv(t,s).

(v) By (ii), we see that
Ef(tw+sh) d [ut,s)ul(t,s)
dtds? o di t
2
t

— _u(t75)TduE;’S) B u(t,s)ﬂu(t,s)‘

du(t
Using q(1, s) and v(t, s), we represent w(?, s) as in (16) to evaluate % By the definition
of q(t,s) and r(t,s), we see that

dq(t,s)

dt
dr(t
2BX X,B"r(t,s) + BXQBT% —2BX X A"h.

= X,A%h,
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de(t, s)

Here X; = diag . Hence
dr(t
G TEH’S) = 2BXX,A’h—2BXX B r(l,s)
= 2BXX,A’Th—-2BXX,B'G'BX*A"h
= 2BX,PXATh,
dr(t
TEZ;S) — 2G'BX,PXA"h,

du(tvs) dq(t,S) T Td’l"(t,S)
= ~ X,BTr(t,s)— XBT—2~
dt dt Bir(ts) dt
= X, ATh- X,B"G'BX?’A"h-2XB"G'BX,PXA"h

— (I _ 2XBTG‘1BX) X'X,PXA"h.

Thus we obtain

du(t, s)
dt

u(t,s)” h"AXP(I-2XB'G"'BX) X 'X,PXA"h
= hW"AXX,PXA"h.
By the definition of w(t,s), (¢, s), X; and Lemma A, we know that

u(t,s) = PXA'h,

de(t,s) . 1
o = &(t,w+ sh) = ;Xv(t,s),
de(t 1
X'X;, = x! ( diag M) = —( diag v(t,s)).
dt t
Therefore
&ef gu(tvs)Tdu(t,s) ot ) u(t, s)
ds?dt t dt 12
_ 2u(t,s)T (diag v(t,s))u(t,s) — u(t,s) u(t, s)
= 5
u(t,s)T (2diag v(t,s) — I)u(t,s)

t2

This completes the proof of Theorem 4.3.
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