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Abstract� Corresponding to the linear program�

Maximize cTx subject to Ax � a� Bx � b� x � ��

we introduce two functions in the penalty parameter t � � and the Lagrange relaxation
parameter vector w�

�f
p
�t�w� � maxfcTx�wT �Ax� a� � t

nX
j��

ln xj � Bx � b� x � �g

�for horizontal decomposition��

�f
d
�t�w� � minfaTw � bTy � t

nX
j��

ln zj � B
Ty � z � c�ATw� z � �g

�for vertical decomposition��

For each t � �� �f
p
�t� �� and �f

d
�t� �� are strictly convex C� functions with a common

minimizer 	w�t�� which converges to an optimal Lagrange multiplier vector w� associ

ated with the constraintAx � a as t� �� and enjoy the strong self
concordance prop

erty given by Nesterov and Nemirovsky� Based on these facts� we present conceptual
algorithms with the use of Newton�s method for tracing the trajectory f 	w�t� � t � �g�
and analyze their computational complexity�

�� Introduction�

This paper presents a theoretical framework for incorporating horizontal and vertical de�
composition techniques into interior�point methods �see for example the survey paper �����
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for linear programs� Let a � Rm� b � Rk� c � Rn� A � Rm�n and B � Rk�n� We consider
the following equality form linear program P� and its dual D�	

P� Maximize cTx subject to Ax 
 a� Bx 
 b� x � ��

D� Minimize aTw � bTy subject to ATw �BTy � z 
 c� z � ��

Let

R�� 
 ft � R 	 t � � g �the set of positive numbers��

Rn
�� 
 fx � Rn 	 x � � g �the positive orthant��

P�� 
 fx � Rn
�� 	 Ax 
 a� Bx 
 b g

�the interior of the feasible region of P���

D�� 
 f�w�y�z� � Rm �Rk �Rn
��

	 ATw �BTy � z 
 c g
�the interior of the feasible region of D���

Q�� 
 fx � Rn
�� 	 Bx 
 b g

D���w� 
 f�y�z� � Rk �Rn
��

	 BTy � z 
 c�ATw g�
Then we obviously see that

P�� 
 fx � Rn 	 Ax 
 ag�Q���

D�� 

�

w�Rm
f�w�y�z� � Rm�k�n 	 �y�z� � D���w�g�

Throughout the paper we impose the following assumptions on the constraint set of P�	

�A� P�� is nonempty and bounded�

�B� Q�� is nonempty and bounded�

�C� The �m� k�� n matrix

�
A

B

�
has full row rank�

For every �t�x�w�y�z� � R�� �Rn
�� �Rm �Rk �Rn

��� dene

fp�t�w�x� 
 cTx�wT �Ax� a� � t
nX

j��

lnxj

fd�t�w�y�z� 
 aTw � bTy � t
nX

j��

ln zj �

Here t � R�� denotes the barrier parameter and w � Rm the Lagrange multiplier vector
associated with the constraint Ax 
 a�

We can regard the horizontal �or vertical� decomposition technique as a numerical tracing

of the trajectory which consists of the solution �w�t� �t � R��� of the following parametric
min�max �or min�min� problem	

minimize w�Rm maximize ffp�t�w�x� 	 x � Q��g� ���

minimize w�Rm minimize ffd�t�w�y�z� 	 �y�z� � D���w�g� ���

�



Under the assumptions �A�� �B� and �C�� the inner maximization problem in ��� �or the
inner minimization problem in ���� has a unique solution for every �t�w� � R�� � Rm� so
that we can consistently dene the optimal value functions and the optimizers of the inner
problems� for every �t�w� � R�� �Rm� let

�f
p
�t�w� 
 maxffp�t�w�x� 	 x � Q��g�

�x�t�w� 
 arg max ffp�t�w�x� 	 x � Q��g�
�f
d
�t�w� 
 minffd�t�w�y�z� 	 �y�z� � D���w�g�

��y�t�w�� �z�t�w�� 
 arg min ffd�t�w�y�z� 	 �y�z� � D���w�g�

We are mainly concerned with theoretical aspects of the horizontal and vertical decom�
position techniques� In particular we show the following features�

�a� For every t � R��� the function �f
p
�t� �� 	 Rm � R is a strictly convex C� function

with the unique minimizer �w�t� over Rm�
�b� For every �t�w� � R�� � Rm� we can use the primal�dual interior�point method

���� �� �� �� ���� etc�� to compute ��x�t�w�� �y�t�w�� �z�t�w��� �f
p
�t�w�� the gradient

vector �f
p

w�t�w� w�r�t� w and the Hessian matrix �f
p

ww�t�w� w�r�t� w�
�c� The set f��x�t� �w�t��� �w�t�� �y�t� �w�t��� �z�t� �w�t��� 	 t � R�� g forms the central trajec�

tory ��� converging to the analytic center of the optimal solution set of the primal�dual

pair of linear programs P� and D��
�d� f �f p�t� �� 	 t � R�� g is a strongly self�concordant family ���� �with the parameter

functions ��t� 
 t� ��t� 
 ��t� 
 �� ��t� 

p
n�t� ��t� 


p
n���t���

�e� �f
d
�t�w� � �f

p
�t�w� 
 nt�� � ln t� for every �t�w� � R�� � Rm� Note that the right

hand side is independent of w� Hence �a�� �b�� �c� and �d� above remain valid even if

we replace �f
p
by �f

d
�

In view of the features �a�� �b�� �c� and �e� above� we obtain approximate optimal
solutions of P� and D� if we numerically trace the trajectory f �w�t� 	 t � �g in the w�space
until the barrier parameter t � R�� gets su�ciently small� It should be emphasized that

�w�t� is the common minimizer of strictly convex C� functions �f
p
�t� �� and �f

d
�t� �� over the

entire space Rm� Thus we can utilize various unconstrained minimization techniques such
as Newton�s� quasi�Newton and conjugate gradient methods to approximate �w�t��

The feature �d� is a major theoretical contribution of this paper� which makes it possible
to e�ectively utilize Newton�s method for tracing the trajectory f �w�t� 	 t � �g� The notion
and the theory of self�concordance were given by Nesterov and Nemirovsky ���� for a wide
class of polynomial�time interior�point methods for convex programming�

After listing in Section � symbols and notation used throughout the paper� we show
in Section � that the inner optimization problems in ��� and ��� share a common nec�

essary and su�cient optimality condition� and derive the feature �e� from the condition�

�



Section � describes several derivatives of the function �f
p
	 R�� � Rm � R including the

gradient �f
p

w�t�w� and the positive denite Hessian matrix �f
p

ww�t�w� w�r�t� w � Rm� Details
of calculation of derivatives are given in Appendix� Section � establishes that the family
f �fp�t� �� 	 t � R�� g is strongly self�concordant� In Section � we present conceptual decom�
position algorithms with the use of Newton�s method� and investigate their polynomial�time

computational complexity�

Although we will state a horizontal decomposition for the general linear program P� and
a vertical decomposition mainly for its dual D�� it is interesting in practice to apply them
to a special case where the matrix B has a block diagonal structure	

B 


�
BBBB�
B� O � � � O

O B� � � � O

� � �
O O � � � B�

�
CCCCA � ���

Our horizontal and vertical decomposition techniques applied to such special cases are
roughly corresponding to the Dantzig�Wolfe and the Benders decomposition methods� re�

spectively� See for example the book ���� It should be noted that when the matrix B has
a block diagonal structure as in ���� we can decompose the inner maximization problem in
��� �or the inner minimization problem in ���� into 	 smaller subproblems of the same type�

Many studies ���� �� ���� etc�� have been done on how we exploit special structures such

as generalized upper bounds� block diagonal structures and staircase structures in interior�
point methods� The conceptual algorithms given in Section � has a close relation with
a compact�inverse implementation �see Section � of ���� of the primal�dual interior�point
method applied to P� and D�� This is shown in Section � where we discuss some issues

toward implementation of the horizontal and vertical decomposition techniques�

�� Notation�

R�� 
 ft � R 	 t � � g� Rn
��


 fx � Rn 	 x � � g�
P�� 
 fx � Rn

�� 	 Ax 
 a� Bx 
 b g�
D�� 
 f�w�y�z� � Rm �Rk �Rn

�� 	 ATw �BTy � z 
 c g�
Q�� 
 fx � Rn

�� 	 Bx 
 b g�
D���w� 
 f�y�z� � Rk �Rn

��
	 BTy � z 
 c�ATw g�

fp�t�w�x� 
 cTx�wT �Ax� a� � t
nX

j��

lnxj�

fd�t�w�y�z� 
 aTw � bTy � t
nX

j��

ln zj�

�



�f
p
�t�w� 
 maxffp�t�w�x� 	 x � Q��g�

�x�t�w� 
 arg max ffp�t�w�x� 	 x � Q��g�
�f
d
�t�w� 
 minffd�t�w�y�z� 	 �y�z� � D���w�g�

��y�t�w�� �z�t�w�� 
 arg min ffd�t�w�y�z� 	 �y�z� � D���w�g�
�X 
 �X�t�w� 
 diag �x�t�w�� �Z 
 �Z�t�w� 
 diag �z�t�w��

�� 
 �X
��� �Z

����
�

�w�t� 
 arg min f �f p�t�w� 	 w � Rm g�

� 
 �� ���� 
 ������ � � � � �� 
 ��� 
 ���� �

�� Duality between �f
p
and �f

d
�

Given t � � and w � Rm� the term aTw involved in the objective functions fp�t�w� �� of the
inner problem in ��� and fd�t�w� �� �� of the inner problem in ��� is constant� Hence we may

eliminate it from the objective functions when we are concerned with the inner problems in
��� and ���� Thus the pair of the inner problems is equivalent to the pair	

P�t�w� Maximize �c�ATw�Tx� t
Pn

j�� lnxj subject to x � Q���

D�t�w� Minimize bTy � t
Pn

j�� ln zj subject to �y�z� � D���w��

This pair has exactly the same structure as the one often studied with the primal�dual
interior�point method ���� �� �� �� ���� etc��� Therefore we can apply the primal�dual interior�
point method to the pair of problems above� By using the well�known argument �see for
example the paper ���� we obtain the theorem below that states a common necessary and

su�cient optimality condition for the inner maximization problem in ��� �i�e�� P�t�w��
and the inner minimization problem in ��� �i�e�� D�t�w���

Theorem ���� Let �t�w� � R�� � Rm� Then x � Rn is a maximizer of fp�t�w� �� over
Q�� and �y�z� � Rk�n is a minimizer of fd�t�w� �� �� over D���w� if and only if

Bx� b 
 �� x � ��

ATw �BTy � z � c 
 �� z � ��

Xz � te 
 ��

��	
�
 ���

Here X denotes the diagonal matrix of the coordinates of x � Rn and e 
 ��� � � � � ��T � Rn�

Let �t�w� � R�� �Rm� Suppose that �x�y�z� satises ���� Then �w�y�z� is a feasible
solution of the original dual linear program D�� Hence aTw � bTy gives an upper bound

of the maximal objective value of the original primal linear program P� to be solved� On
the other hand� x is not a feasible solution of P� unless the additional equality Ax�a 
 �

�



holds� It will be shown in Section � that the equality holds when and only when w is a
minimizer of the outer problem in ���� i�e�� a minimizer of �f

p
�t� �� over Rm�

Recall that �x�t�w� and ��y�t�w�� �z�t�w�� denote the maximizer of the inner problem in
��� and the minimizer of the inner problem in ���� respectively� For every xed w � Rm� the

set f��x�t�w�� �y�t�w�� �z�t�w�� 	 t � R�� g forms the central trajectory of the primal�dual
pair of linear programs	

P�w� Maximize �c�ATw�Tx subject to Bx 
 b� x � ��

D�w� Minimize bTy subject to BTy � z 
 c�ATw� z � ��

Theorem ��� implies that the relations

B�x�t�w�� b 
 �� �x�t�w� � ��

ATw �BT �y�t�w�� �z�t�w�� c 
 �� �z�t�w� � ��
�X�t�w��z�t�w�� te 
 �

��	
�
 ���

hold for every �t�w� � R�� �Rm� It follows that

�f
d
�t�w�� �f

p
�t�w�


 bT �y�t�w�� cT �x�t�w� �wTA�x�t�w�� t
nX

j��

ln �xj�t�w��zj�t�w�



�
ATw �BT �y�t�w�� c

�T
�x�t�w�� t

nX
j��

ln t


 �x�t�w�T �z�t�w�� nt ln t 
 nt�� � ln t��

Therefore we obtain	

Theorem ���� �f
d
�t�w�� �f

p
�t�w� 
 nt��� ln t� for every �t�w� � R�� �Rm�

�� Derivatives�

In this section� we present various derivatives of �f
p
	 R���Rm � R� Details of calculation

of derivatives are omitted here but are given in Appendix�

Theorem ����

�i� �f
p

w�t�w� 
 a�A�x�t�w� for every �t�w� � R�� �Rm�

�ii� �f
p

ww�t�w� 
 A ��
�
I � ��BT �B ��

�

BT ���B ��
�
��AT



�

t
A �X


I � �XBT �B �X

�

BT ���B �X
�
�XAT

for every �t�w� � R�� �Rm�

�



Here �� 
 �X
��� �Z

����
� �X 
 �X�t�w� 
 diag �x�t�w� and �Z 
 �Z�t�w� 
 diag �z�t�w��

As a corollary we obtain	

Theorem ���� Let t � R�� be �xed arbitrarily�

�i� The Hessian matrix �f
p

ww�t�w� is positive de�nite for every w � Rm�

�ii� The function �f
p
�t� �� 	 Rm � R is a strictly convex C� function with the unique

minimizer over Rm�

Proof� �i� Obviously the Hessian matrix

�f
p

ww�t�w� 
 A ��
�
I � ��BT �B ��

�

BT ���B ��
�
��AT

is positive semi�denite� Hence it su�ces to show that the matrix is nonsingular� Assume
on the contrary that

A ��
�
I � ��BT �B ��

�

BT ���B ��
�
��ATu 
 �

for some nonzero u � Rm� Since
�
I � ��BT �B ��

�

BT ���B ��
�
is a projection matrix� we

have �
I � ��BT �B ��

�

BT ���B ��
�
��ATu 
 ��

which implies that

ATu�BT �B ��
�

BT ���B ��
�

ATu 
 ��

This contradicts the assumption �C��

�ii� The strict convexity of �f
p
�t� �� follows directly from �i�� We have observed that the

mappings �x� �y� �z on R�� �Rm are dened implicitly through the equalities in ��� �see
����� Since the Jacobian matrix of the left hand side of the equalities with respect to

�x�y�z� is nonsingular at every �t�w�x�y�z� � R�� �Rm �Rn
�� � Rk � Rn

�� and the
left hand side is C� di�erentiable with respect to �t�w�x�y�z�� we see by the implicit
function theorem �for example ���� that the mappings �x� �y� �z are C� di�erentiable with
respect to �t�w�� It is well�known ��� that under the assumptions �A�and �C�� there exists

a unique �w�x�y�z� for which

Ax� a 
 �� Bx� b 
 �� x � ��

ATw �BTy � z � c 
 �� z � ��

Xz � te 
 �

��	
�
 ���

hold� We know by Theorems ��� and ��� that ��� is a necessary and su�cient condition

for w � Rm to be a minimizer of �f
p
�t� �� over Rm� This ensures the existence and the

unique minimizer of �f
p
�t� ���

�



For every t � R��� dene �w�t� to be the minimizer of �f
p
�t� �� over Rm whose existence

and uniqueness have been shown above� i�e�� �w�t� 
 arg min f �fp�t�w� 	 w � Rmg� In view

of Theorem ���� we see that �w�t� 
 arg min f �fd�t�w� 	 w � Rmg� Furthermore� for every

t � R��� �x�w�y�z� 
 ��x�t� �w�t��� �w�t�� �y�t� �w�t��� �z�t� �w�t��� satises ���� Thus the set
f��x�t� �w�t��� �w�t�� �y�t� �w�t��� �z�t� �w�t��� 	 t � R�� g forms the central trajectory converging
to the analytic center of the optimal solution set of the primal�dual pair of linear programs
P� and D��

The theorem below will be utilized in Section � where we discuss the self�concordant
property of the family f �fp�t� �� 	 t � R�� g of functions�

Theorem ���� Let w � Rm and h � Rm be �xed arbitrarily� For every �t� s� � R�� � R�
let

X�t� s� 
 �X�t�w � sh��

u�t� s� 

�
I �X�t� s�BT �BX�t� s��BT ���BX�t� s�

�
X�t� s�ATh�

v�t� s� 

�
I �X�t� s�BT �BX�t� s��BT ���BX�t� s�

�
e�

Then the following �i� � �v� hold for every s � R�

�i�
d �f

p
�t�w � sh�

ds

 �a�A�x�t�w � sh��T h

�ii�
d� �f

p
�t�w � sh�

ds�



�

t

nX
j��

uj�t� s�
��

�iii�
d� �f

p
�t�w � sh�

ds�

 � �

t�

nX
j��

uj�t� s�
��

�iv�
d� �f

p
�t�w � sh�

dtds

 �u�t� s�

Tv�t� s�

t
�

�v�
d� �f

p
�t�w � sh�

dtds�


u�t� s�T ��diag v�t� s�� I�u�t� s�

t�
�

�� Self	Concordance�

In this section� we apply the notion and the theory of self�concordance to the family f �f p�t� �� 	
t � R��g of functions according to the paper ���� by Nesterov and Nemirovsky� To avoid
complicated notation and discussion� however� we employ a simplied version of the self�

concordance� Our denition of the �global self�concordance� and related properties shown
below are less general than those of the original strong self�concordance given in the paper

�



����� but can be adapted directly to the family f �f p�t� �� 	 t � R��g� The readers who are

familiar to the strong self�concordance can easily see that if a family fF �t� �� 	 t � R��g
of functions on Rm is globally self�concordant then F 
 fRm� F �t� ��� Rmgt�R�� is strongly
self�concordant�

De
nition ���� A function F on Rm is globally self�concordant with the parameter value

� � � if it satises	

�a� F is a strictly convex C� function on Rm with a positive denite Hessian matrix
Fww�w� at every w � Rm�

�b� There is a unique global minimizer of F over Rm�

�c� For every w � Rm and h � Rm�

����� d
�F �w � sh�

ds�

�����
s��

����� � ������
�
d�F �w � sh�

ds�

�����
s��

����

De
nition ���� A family fF �t� �� 	 t � R��g of functions on Rm is globally self�concordant
with the positive parameter functions �� � and � if it satises	

�d� �� �� � 	 R�� � R�� are continuous functions�

�e� For every t � R��� F �t� �� is a globally self�concordant function on Rm with the
parameter value ��t��

�f� F �t�w�� Fw�t�w� and Fww�t�w� are di�erentiable in t � R�� and the resultant deriva�
tives in t � R�� are continuous in �t�w� � R�� �Rm�

�g� For every �t�w� � R�� �Rm and h � Rm�

����� d
�F �t�w � sh�

dtds

�����
s��

����� � ��t���t����
�
d�F �t�w� sh�

ds�

�����
s��

����
�

�h� For every �t�w� � R�� �Rm and h � Rm�

����� d
�F �t�w� sh�

dtds�

�����
s��

����� � ���t�

�
d�F �t�w � sh�

ds�

�����
s��

�
�

Let fF �t� �� 	 t � R��g be a globally self�concordant family of functions on Rm with the
positive parameter functions �� �� � 	 R�� � R��� For every t � R��� dene Newton�s
decrement of the function F �t� �� at w � Rm by


�t�w� 
 inff
 	 jFw�t�w�
Thj � 
��t����

�
hTFww�t�w�h

����
for every h � Rmg�

�



Or alternatively� 
�t�w� is dened by


�t�w�� 
 �

�
F �t�w�� inff��t�u� 	 u � Rmg

��t�

�



�

��t�
Fw�t�w�

TFww�t�w�
��Fw�t�w��

where ��t� �� is a quadratic approximation of the function F �t� �� at w � Rm�

��t�u� 
 F �t�w� � Fw�t�w�
T �u�w� �

�

�
�u�w�TFww�t�w��u�w�

for every �t�u� � R�� �Rm�

Newton�s decrement is a continuous function from R�� � Rm into the set of nonnegative

numbers such that for each t � R��� 
�t� �� takes the minimal value � over Rm at w � Rm

if and only if w is the unique global minimizer of F �t� �� over Rm� Thus� for every � � R���
the set

N��� 
 f�t�w� � R�� �Rm 	 
�t�w� � �g
forms a closed neighborhood of the trajectory

f�t�w� � R�� �Rm 	 
�t�w� 
 �g

 f�t�w� � R�� �Rm 	 w 
 arg min fF �t�w� 	 w � Rmg g �

which we want to trace numerically� Let � � R��� Dene the metric �� on R�� by

���t
��� t�� 


�

�
maxfj ln��� ����� ����j 	  ���  � � �t��� t��g� ���

�����
Z t�

t��
��s�ds

����� �
�����
Z t�

t��
��s�ds

�����
for every t�� t�� � R���

Let 
� 
 � � ���� 
 ������ � � � � Dene

��
� 


�
�� � 
��� if 
 � 
� �

� if 
 � 
� �

��
� 
 � � ��� �
�����

Theorem ���� Assume that fF �t� �� 	 t � R��g is a globally self�concordant family of
functions on Rm with the positive parameter functions �� �� � 	 R�� � R��� Let t� � R���
w� � Rm and 
� 
 
�t��w��� Let �w � Rm be the Newton iterate at w� with the step length

��
���

�w 
 w� � ��
��Fww�t
��w����Fw�t

��w���

��



�i� If 
� � 
� then

F �t�� �w�� F �t��w�� � ���t�� �
� � ln�� � 
��� � �������t���

�ii� If 
� � 
� then


�t�� �w� � �
���

��� 
���

�����
����




�

�
if 
� 
 
��

�

�

�
if 
� � 
�

F �t��w���minfF �t��w� 	 w � Rmg � �

�
��t����
���

� � ��
��

� � ��
��
� �
���t���

�iii� If 
� � � � 
� and ���t��� t�� � ����� � 
�� then 
�t���w�� � ��

Proof� See Section � of the paper ����

We have already seen that	

�a�� For every t � R��� the function �f
p
�t� �� 	 Rm � R is a strictly convex C� function

with a positive denite Hessian matrix �f
p

ww�t�w� at every w � Rm�
�b�� For every t � R��� there is a unique global minimizer of �f

p
�t� �� over Rm�

�f�� �f
p
��� �� is C� di�erentiable on R�� �Rm�

Hence the following theorem is su�cient to establish that the family f �fp�t� �� 	 t � R��g of
functions on Rm is globally self�concordant�

Theorem ����

�d�	 De�ne ��t� 
 t � ��t� 


p
n

t
and ��t� 


p
n

�t
for every t � R���

Then the following relations hold for every �t�w� � R�� �Rm�

�c�	

����� d
� �f

p
�t�w � sh�

ds�

�����
s��

����� � ���t�����
�
d� �f

p
�t�w � sh�

ds�

�����
s��

����
�

�g�	

����� d
� �f

p
�t�w � sh�

dtds

�����
s��

����� � ��t���t����
�
d� �f

p
�t�w � sh�

ds�

�����
s��

����
�

�h�	

����� d
� �f

p
�t�w � sh�

dtds�

�����
s��

����� � ���t�

�
d� �f

p
�t�w � sh�

ds�

�����
s��

�
�

��



Proof� �c�� By Theorem ���� we have that

�
d� �f

p
�t�w � sh�

ds�

��



�
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t�

nX
j��

uj�t� s�
�

�
A
�



�
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�
� nX
j��

uj�t� s�
�

�
A
�

� �

t�

�
� nX
j��

uj�t� s�
�

�
A
�



�

t

�
d� �f

p
�t�w � sh�

ds�

��
�

Thus �c�� follows�

�g�� It follows from the denition of v�t� s� that jv�t� s�j � p
n� Hence we see by

Theorem ��� that�����d
� �f

p
�t�w � sh�

dtds

����� 


�����u�t� s�
Tv�t� s�

t

�����
�

p
nku�t� s�k

t


 ��t���t����
�
d� �f

p
�t�w � sh�

ds�

����
�

Thus we have shown �g���

�h�� It is easily veried that

�p
n � �vi�t�w�� � � p

n for i 
 �� �� � � � � n� ���

Hence we see by Theorem ��� that�����d
� �f

p
�t�w � sh�

dtds�

����� �
p
n

t�
u�t� s�Tu�t� s�




p
n

t

d� �f
p
�t�w � sh�

ds�


 ���t�
d� �f

p
�t�w � sh�

ds�
�

Thus we have shown �h���

Now we are ready to apply Theorem ��� to the family f �f p�t� �� 	 t � R��g� Newton�s
decrement turns out to be


�t�w�

��




 inff
 	

����� d
�f
p
�t�w � sh�

ds

�����
s�s

����� � 
��t����
�
d� �f

p
�t�w � sh�

ds�

�����
s�s

����
� �h � Rm g


 inff
 	
����a�A�x�t�w��Th

���
� 



hTA �X


I � �XBT �B �X

�

BT ���B �X
�
�XATh

����
� �h � Rm g


 inff
 	
����A�x�t�w�� a�Th

���
� 
t���

�
hTA ��

�
I � ��BT �B ��

�

BT ���B ��
�
��ATh

����
� �h � Rm g�

Here �X 
 �X�t�w� and �� 
 �X�t�w���� �Z�t�w������ Let � � � and � � t�� � t�� Then

���t
��� t�� 
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p
n

�
�ln t� � ln t��� �

p
n

�
�ln t� � ln t���




�
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�
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p
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�
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p
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�
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Thus we obtain
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��� t�� 


�
�

�
�

p
n

�
�

p
n

�

�
ln�t��t���� ���

Theorem ���� Let �� 
 ��� � 
� 
 � � ���� 
 ������ � � � � Let �t��w�� � R�� � Rm and


� 
 
�t��w��� Let �w � Rm be the Newton iterate at w� with the step length ��
���

�w 
 w� � ��
�� �f
p

ww�t
��w���� �f

p

w�t
��w���

�i� If 
� � 
� then

�f
p
�t�� �w�� �f

p
�t��w�� � �t� �
� � ln�� � 
��� � �����t��

�ii� If 
� � 
� then


�t�� �w� � �
���
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���

�����
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�
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�
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p
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�iii� If 
� � ���� and ��� �����
p
n��t� � t�� � t� then 
�t���w�� � ���

Proof� The assertions �i� and �ii� follow directly from Theorems ��� and ���� so that it

su�ces to show �iii�� Assume that 
� � ���� and �� � �����
p
n��t� � t�� � t�� Then we

see by ��� that

����t
��� t�� 
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�

p
n

��
�

p
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�
ln�t��t���

� �
p
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�
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p
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p
n

�
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p
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�

�
� ���� ��� � 
���

Thus the desired result follows from �iii� of Theorem ����

�� Conceptual Algorithms�

In addition to the assumptions �A�� �B� and �C� stated in the Introduction� we assume	

�D� For any �t�w� � R���Rm� we can compute the exact maximizer �x�t�w� of �f
p
�t�w� ��

over Q�� and the exact minimizer ��y�t�w�� �z�t�w�� of �f
d
�t�w� �� �� over D���w��

We describe two algorithms based on Theorem ���� For each xed t � R��� Algorithm
��� approximates the minimizer �w�t� of �f

p
�t�w� over Rm� while Algorithm ��� numerically

traces the trajectory f�t� �w�t�� 	 t � R��g from a given initial point �t��w�� in the neigh�
borhood N������ 
 f�t�w� 	 
�t�w� � ����g of the trajectory f�t� �w�t�� 	 t � R��g� where
�� 
 ����

Let �t�w� � R�� �Rm�

Algorithm ����

Step �	 Let q 
 � and wq 
 w�

Step �	 Compute �xq�yq�zq� 
 ��x�t�wq�� �y�t�wq�� �z�t�wq��� Let 
q 
 
�t�wq��

Step �	 Compute wq�� 
 wq � ��
q� �f
p

ww�t�w
q��� �f

p

w�t�w
q��

Step �	 Replace q by q � �� and go to Step ��

Suppose �t��w�� � N������� where �� 
 ����

Algorithm ����

Step �	 Let � 
 �����
p
n� and r 
 ��

Step �	 Compute �xr�yr�zr� 
 ��x�tr�wr�� �y�tr�wr�� �z�tr�wr��� Let 
r 
 
�tr�wr��

Step �	 Let tr�� 
 �� � ��tr� Compute wr�� 
 wr � �f
p

ww�t
r���wr��� �f

p

w�t
r���wr��

��



Step �	 Replace r by r � �� and go to Step ��

In view of Theorem ���� we see that	

�i� The sequence f�t�wq�g generated by Algorithm ��� moves into the neighborhood

N������ 
 f�t�w� 	 
�t�w� � ����g

of the trajectory f�t� �w�t�� 	 t � R��g in a nite number of iterations� and eventually
converges to �w�t�� Hence Algorithm ��� provides us with an initial point of Algorithm

����
�ii� The sequence f�tr�wr�g generated by Algorithm ��� runs in the neighborhood

N������ 
 f�t�w� 	 
�t�w� � ����g

and satises that

tr�� 


�
�� �

��
p
n

�
tr for every r 
 �� �� �� � � � � ���

hence limr�� tr 
 �� The sequence f�xr�wr�yr�zr�g lies in a neighborhood of

the central trajectory of the primal�dual pair of linear programs P� and D�� and if
�x��w��y��z�� is a limiting point of the sequence then x� and �w��y��z�� are optimal
solutions of P� and D�� respectively�

We now assume that all elements of the data A� B� a� b and c are integers to analyze

computational complexity of Algorithms ��� and ��� in detail� Let L denote the input size
of P��

Lemma ���� Let t � ��

�i� �f
p
�t��� � n��L � tnL�

�ii� min
w�Rm

�f
p
�t�w� � �n��L � tnL�

Proof� By �A� and �B� assumed in the Introduction and by the denition of L� we know
that

xi � �L � expL for every i 
 �� �� � � � � n and every x � Q���

�xi � ��L � exp��L� for every i 
 �� �� � � � � n and some �x � P���

It follows that

fp�t���x� 
 cTx� t
nX

j��

lnxj

��



� n��L���L� � tnL


 n��L � tnL for every x � Q���

fp�t�w� �x� 
 cT �x� t
nX

j��

ln �xj

� �n��L���L� � tn��L�

 �n��L � tnL for every w � Rm�

Hence

�f
p
�t��� 
 maxffp�t���x� 	 x � Q��g � n��L � tnL�

min
w�Rm

�f
p
�t�w� 
 min

w�Rm
maxffp�t�w�x� 	 x � Q��g

� min
w�Rm

fp�t�w� �x�

� �n��L � tnL�

Theorem ����

�i� Let t 
 ��L and w� 
 �� Then Algorithm 
�� generates in O�nL� iterations a �t�wq� �
N�������

�ii� Let � � �� Then Algorithm 
�� generates in O�
p
n ln t���� iterations a �tr�wr� �

N������ such that � � tr � ��

Proof� Let q� 
 d�nL�����e � �� Assume on the contrary that

�t�wq� �� N�
�� for q 
 �� �� �� � � � � q��

By Theorems ��� and ��� we then see that

�n��L � tnL � �f
p
�t�wq��

� �f
p
�t�w��� ����t� q�

� n��L � tnL� �nLt

� n��L � �nL � ��L � tnL � �n��L � tnL�

This is a contradiction� Hence �t�wq� � N�
�� for some q � q�� By Theorem ���� we
see that �t�wq��� � N������� Thus we have shown �i�� The assertion �ii� follows directly

from the inequality ����

��



�� Toward Practical Implementation�

Among the assumptions imposed in our discussions so far� the most impractical one seems
to be the assumption	

�D� For any �t�w� � R���Rm� we can compute the exact maximizer �x�t�w� of �f
p
�t�w� ��

over Q�� and the exact minimizer ��y�t�w�� �z�t�w�� of �f
d
�t�w� �� �� over D���w��

For every �t�w� � R�� � Rm� the Newton direction �dx�dy�dz� toward a point on the
central trajectory of the primal�dual pair of P�w� and D�w� gives a search direction in the
�x�y�z��space� which was utilized in many primal�dual feasible� and infeasible�interior�point
methods ���� �� �� �� ���� etc��� �dx�dy�dz� is given by

Bdx 
 ��Bx� b��
BTdy � dz 
 ��ATw �BTy � z � c��
Zdx�Xdz 
 ��Xz � te��

��	
�
 ����

In our framework� we have paid little attention to such search directions but assumed that
the point ��x�t�w�� �y�t�w�� �z�t�w�� into which all the  ow induced by the search directions

runs is available�

To develop practical computational methods� we need to weaken the assumption �D�� at

least we need to replace �exact� by �approximate� in �D�� In Algorithms ��� and ���� the
exact optimizers x 
 �x�t�w� and �y�z� 
 ��y�t�w�� �z�t�w�� are necessary to compute the
gradient �f

p

w�t�w� 
 a�Ax and the Hessian matrix

�f
p

ww�t�w� 
 A�
�
I ��BT �B��BT ���B�

�
�AT

with which we perform one Newton iteration to generate a new point in the w�space�

w � ��
�t�w��dw�

where

Hdw 
 Ax� a� ����

H 
 A�
�
I ��BTG��B�

�
�AT �

G 
 B��BT �

� 
 �diag x���� �diag z����� �

It should be noted� however� that even when the exact optimizers are unavailable� the
search direction dw above is well�dened for every pair of x � � and z � �� Thus� for

every �t�x�y�z� � R�� �Rn
�� � Rk �Rn

��� the correspondence w � dw denes a search
direction in the w�space�

��



Another critical question to be addressed is whether solving the system ���� to compute
a search direction dw in the w�space is essentially easier than one iteration of the primal�
dual interior�point method applied to the original pair of P� and D� without using the
decomposition techniques� To compute dw by solving ����� we need

�i� a construction of the matrix H 
 A�
�
I ��BTG��B�

�
�AT � which requires an

�implicit� inversion of the matrix G 
 B��BT �
�ii� a solution u of a system of equations Hdw 
 s for some s � Rm�

On the other hand� given a current iterate �x�w�y�z� � Rn
��

� Rm � Rk � Rn
��

� the

standard primal�dual interior�point method solves the system of equations in the search
direction �dx�dw�dy�dz�	

Adx 
 ��Ax� a�� Bdx 
 ��Bx� b��
ATdw �BTdy � dz 
 ��ATw �BTy � z � c��
Xdz �Zdx 
 ��Xz � te��

��	
�
 ����

where t � �� We can easily verify that the search direction �dx�dw�dy�dz� can be repre�
sented as

Hdw 
 Ax� a�A��BTG���Bx� b�

�A�
�
I ��BTG��B�

�
�r � s��

Gdy 
 Bx� b�B�
�
�ATdw � r � s

�
�

�dz 
 �ATdw ��BTdy � r�

���dx 
 ��dz � s�

��������	
�������


����

where

r 
 ��ATw �BTy � z � c� and s 
X����Z�����Xz � te��

This representation ���� of the solution �dx�dw�dy�dz� of ���� is called a compact�inverse

implementation in the literature ���� Hence if we utilize the compact�inverse implementation
����� the majority of the computation of �dx�dw�dy�dz� are also spent for �i� and �ii��

Therefore we are required almost the same amount of computational work in solving ����
to compute a search direction dw as in one iteration of the compact�inverse implementation
of the primal�dual interior�point method applied to the original pair of P� and D� without
using the decomposition techniques� This observation is ironic to our nice theoretical results

with the use of Newton�s method presented so far� but sheds a new light on the compact�
inverse implementation� In particular� we observe that when x 
 �x�t�w�� y 
 �y�t�w� and
z 
 �z�t�w�� ���� turns out to be

Hdw 
 Ax� a�
Gdy 
 �B��ATdw�

�dz 
 �ATdw ��BTdy�

���dx 
 ��dz�

�����	
����


��



hence dw determined by the compact�inverse implementation ���� is exactly the same as
the search direction dw in the w�space determined by �����

We conclude the paper by a general idea of computational methods consisting of the

following three steps	
Step xyz	 Given �t�w� � R���Rm and �x�y�z� � Rn

��
�Rk�Rn

��
� compute a new iterate

�x��y��z�� by x� 
 x � �pdx and �y��z�� 
 �y�z� � �d�dy�dz�� where �dx�dy�dz�
is given by ���� and �p� �d � � are step lengths�

Step w	 Given t � �� �x�y�z� � Rn
��

�Rk �Rn
��

and w � Rm� choose a search direction

dw in the w�space and generate a new iterate w� by w� 
 w � �dw� where � � � is
a step length�

Step t	 Decrease t�

Algorithms ��� and ��� may be regarded as ideal cases of such methods in which we always
perform innitely many iterations of Step xyz to compute the exact optimizers �x�t�w� of

fp�t�w� �� and ��y�t�w�� �z�t�w�� of fd�t�w� �� �� before we perform Step w with the search
direction dw determined by �����
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Appendix� Calculation of Derivatives of �f
p
�

Di�erentiating the identities in ��� by w � Rm� we rst observe

B�xw�t�w� 
 O� AT �BT �yw�t�w�� �zw�t�w� 
 O�
�Z�t�w��xw�t�w� � �X�t�w��zw�t�w� 
 O

�
����

for every �t�w� � R�� �Rm� Di�erentiating the identities in ��� by t � R��� we also see

B�xt�t�w� 
 O� BT �yt�t�w�� �zt�t�w� 
 O�
�Z�t�w��xt�t�w� � �X�t�w��zt�t�w� 
 e

�
����

for every �t�w� � R�� � Rm� By solving ���� in �xw�t�w�� �yw�t�w�� �zw�t�w� and ���� in
�xt�t�w�� �yt�t�w�� �zt�t�w�� we obtain the following lemma�

Lemma A�

�i� For every �t�w� � R�� �Rm�

�xw�t�w� 
 ��

t
�X

I � �XBT �B �X

�

BT ���B �X
�
�XAT �

��



�yw�t�w� 
 ��B �X
�

BT ���B �X
�

AT �

�zw�t�w� 
 �X
��

I � �XBT �B �X

�

BT ���B �X
�
�XAT �

�ii� For every �t�w� � R�� �Rm�

�xt�t�w� 

�

t
�X

I � �XBT �B �X

�

BT ���B �X
�
e�

�yt�t�w� 
 �B �X
�

BT ���B �Xe�

�zt�t�w� 
 BT �B �X
�

BT ���B �Xe�

Here �X 
 �X�t�w� and �Z 
 �Z�t�w��

Proof� �i� It follows from the second and third identities of ���� that

�xw�t�w� 
 � �X �Z
��
�zw�t�w� 
 � �X �Z

��
�
AT �BT �yw�t�w�

�
Hence� by the rst identity of �����

O 
 B�xw�t�w� 
 �B �X �Z
��
�
AT �BT �yw�t�w�

�
�

Therefore we obtain that

�yw�t�w� 
 ��B �X �Z
��
BT ���B �X �Z

��
AT


 ��B �X
�

BT ���B �X
�

AT �since �X �Z 
 tI��

�zw�t�w� 
 AT �BT �yw�t�w�


 AT �BT �B �X
�

BT ���B �X
�

AT


 �X
��

I � �XBT �B �X

�

BT ���B �X
�
�XAT �

�xw�t�w� 
 � �X �Z
��
�zw�t�w�


 ��

t
�X

I � �XBT �B �X

�

BT ���B �X
�
�XAT �

�ii� In view of the the second and third identities of ����� we see that

�xt�t�w� 
 �Z
��
e� �X �Z

��
�zt�t�w� 
 �Z

��
e� �X �Z

��
BT �yt�t�w��

Hence� by the rst identity of �����

O 
 B�xt�t�w� 
 B �Z
��
e�B �X �Z

��
BT �yt�t�w��

Therefore we obtain

�yt�t�w� 
 �B �X �Z
��
BT ���B �Z

��
e 
 �B �X

�

BT ���B �Xe�

�zt�t�w� 
 BT �B �X
�

BT ���B �Xe�

�xt�t�w� 
 �Z
��
e� �X �Z

��
�zt�t�w� 


�

t
�X

I � �XBT �B �X

�

BT ���B �X
�
e�

��



Proof of Theorem ����

By the denition�

�f
p

w�t�w� 
 �xw�t�w�
Tfpx �t�w� �x�t�w��� �A�x�t�w�� a�


 �xw�t�w�
T �BT �y�t�w��� �A�x�t�w�� a�


 �B�xw�t�w��
T �y�t�w�� �A�x�t�w�� a�

�since B�xw�t�w� 
 � by �����


 a�A�x�t�w��

Thus we have shown �i�� By the denition and �i�� we see that

�f
p

ww�t�w� 
 �A�xw�t�w��

Hence we obtain by �i� of Lemma A and �X 

p
t �� that

�f
p

ww�t�w� 

�

t
A �X


I � �XBT �B �X

�

BT ���B �X
�
�XAT


 A ��
�
I � ��BT �B ��

�

BT ���B ��
�
��AT �

This completes the proof of Theorem ����

Proof of Theorem ����

For simplicity of notation� we use

x�t� s� to denote �x�t�w � sh��

X to denote X�t� s� 
 �X�t�w � sh��

G to denote BX�BT �

P to denote I �XBTG��BX�

respectively�

�i� By �i� of Theorem ����

d �f
p
�t�w � sh�

ds

 �f

p

w�t�w � sh�Th 
 �a�Ax�t� s��T h�

Thus we have shown �i��

��



�ii� By �ii� of Theorem ����

d� �f
p
�t�w � sh�

ds�

 hT �f

p

ww�t�w � sh�h



�

t
hTAXPXATh 


�

t
u�t� s�Tu�t� s��

Thus we have shown �ii��

�iii� We rst observe that

dx�t� s�

ds



d�x�t�w � sh�

ds

 �xw�t�w � sh�h


 ��

t
XPXATh 
 ��

t
Xu�t� s��

On the other hand� we see by �ii� that

d� �f
p
�t�w � sh�

ds�



�

t
u�t� s�T

du�t� s�

ds
�

To evaluate
du�t� s�

ds
� let

q�t� s� 
XATh and r�t� s� 
 G��BX�ATh�

Then

Gr�t� s� 
 BX�ATh�

u�t� s� 
 PXATh 
 q�t� s��XBTr�t� s�� ����

It follows that

dq�t� s�

ds

XsA

Th�

�BXXsB
Tr�t� s� �BX�BT dr�t� s�

ds

 �BXXsA

Th�

Here Xs 
 diag
dx�t� s�

ds
� Hence

G
dr�t� s�

ds

 �BXXsA

Th � �BXXsB
Tr�t� s�


 �BXXsA
Th � �BXXsB

TG��BX�ATh


 �BXsPXATh�

��



dr�t� s�

ds

 �G��BXsPXATh�

du�t� s�

ds



dq�t� s�

ds
�X sB

Tr�t� s��XBT dr�t� s�

ds

 XsA

Th �X sB
TG��BX�ATh� �XBTG��BXsPXATh



�
I � �XBTG��BX

�
X��XsPXATh�

Therefore

t
d� �f

p
�t�w � sh�

ds�

 �u�t� s�T

du�t� s�

ds


 �hTAXP
�
I � �XBTG��BX

�
X��XsPXATh


 �hTAXPX��XsPXATh


 ��u�t� s�T

�

t
diag u�t� s�

�
u�t� s�


 ��

t

nX
j��

uj�t� s�
��

Thus we have shown �iii��

�iv� By �i�� we see that

d� �f
p
�t�w � sh�

dtds



d��a�Ax�t� s��Th�

dt

 �hTA�xt�t�w � sh�


 ��

t
hTAXPe


 ��

t
u�t� s�Tv�t� s��

�v� By �ii�� we see that

d� �f
p
�t�w � sh�

dtds�



d

dt

�
u�t� s�Tu�t� s�

t

�



�

t
u�t� s�T

du�t� s�

dt
� u�t� s�Tu�t� s�

t�
�

Using q�t� s� and r�t� s�� we representu�t� s� as in ���� to evaluate
du�t� s�

dt
� By the denition

of q�t� s� and r�t� s�� we see that

dq�t� s�

dt

X tA

Th�

�BXX tB
Tr�t� s� �BX�BT dr�t� s�

dt

 �BXX tA

Th�

��



Here X t 
 diag
dx�t� s�

dt
� Hence

G
dr�t� s�

dt

 �BXX tA

Th� �BXX tB
Tr�t� s�


 �BXX tA
Th� �BXX tB

TG��BX�ATh


 �BX tPXATh�

dr�t� s�

dt

 �G��BX tPXATh�

du�t� s�

dt



dq�t� s�

dt
�X tB

Tr�t� s��XBT dr�t� s�

dt

 X tA

Th�X tB
TG��BX�ATh� �XBTG��BX tPXATh



�
I � �XBTG��BX

�
X��X tPXATh�

Thus we obtain

u�t� s�T
du�t� s�

dt

 hTAXP

�
I � �XBTG��BX

�
X��X tPXATh


 hTAXX tPXATh�

By the denition of u�t� s�� x�t� s�� X t and Lemma A� we know that

u�t� s� 
 PXATh�

dx�t� s�

dt

 �xt�t�w � sh� 


�

t
Xv�t� s��

X��X t 
 X��

�
diag

dx�t� s�

dt

�



�

t
� diag v�t� s�� �

Therefore

d� �f
p

ds�dt



�

t
u�t� s�T

du�t� s�

dt
� u�t� s�Tu�t� s�

t�



�u�t� s�T �diag v�t� s��u�t� s��u�t� s�Tu�t� s�

t�



u�t� s�T ��diag v�t� s�� I�u�t� s�

t�
�

This completes the proof of Theorem ����

��


