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BOUNDARY BEHAVIOR OF INTERIOR POINT 
ALGORITHMS IN LINEAR PROGRAMMING*~ 

NIMROD MEGIDDO* AND MICHAEL SHUB~ 

This paper studies the boundary behavior of some interior point algorithms for linear 
programming. The algorithms considered are Karmarkar's projective rescaling algorithm, the 
linear rescaling algorithm which was proposed as a variation on Karmarkar's algorithm, and 
the logarithmic barrier technique. The study includes both the continuous trajectories of the 
vector fields induced by these algorithms and also the discrete orbits. It is shown that, although 
the algorithms are defined on the interior of the feasible polyhedron, they actually determine 
differentiable vector fields on the closed polyhedron. Conditions are given under which a 
vector field gives rise to trajectories that each visit the neighborhoods of all the vertices of the 
Klee-Minty cube. The linear rescaling algorithm satisfies these conditions. Thus, limits of such 
trajectories, obtained when a starting point is pushed to the boundary, may have an exponen- 
tial number of breakpoints. It is shown that limits of projective rescaling trajectories may have 
a linear number of such breakpoints. However, projective rescaling trajectories may visit the 
neighborhoods of linearly many vertices. The behavior of the linear rescaling algorithm near 
vertices is analyzed. It is proved that all the trajectories have a unique asymptotic direction of 
convergence to the optimum. 

1. Introduction. Interest in interior point algorithms for linear programming was 
revived by the work of Karmarkar [Karl. In this paper we sometimes refer to 
Karmarkar's algorithm as the projective rescaling algorithm. This reflects the property 
that the algorithm moves in the direction of the gradient of the objective function after 
a projective scaling transformation has been applied. A variation on this algorithm, 
which was proposed in various forms by many people1 (e.g., [Bar, CaS, VMF]), is 
called the linear rescaling algorithm, reflecting the property that a linear scaling 
transformation is applied before the gradient step is taken. The projective and the 
linear rescaling algorithms were shown in [GMSTW] to be related to the logarithmic 
barrier function technique using Newton's method. In this paper we study the behavior 
of all these algorithms. We consider both continuous and discrete versions of the 
algorithms. Our main interest is in the boundary behavior of these algorithms. We 
study the differences among the different algorithms through their behavior near 
boundaries. We first introduce the algorithms and the notation to be used later. 

Interior point algorithms for linear programming usually update a point x, interior 
to the feasible polyhedron P, by moving along a straight line in the direction of a 
vector V ( x )  defined at x. The new point depends of course not only on the direction of 
V ( x )  but also on the step size which is assigned at x. Thus, the new point can be 
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represented in the form x' = x + a(x)V(x), where a (x )  denotes a real number that 
determines the step size. The iteration formula defines a transformation of the 
polyhedron P into itself. We are concerned with the properties of this transformation, 
or the vector field itself, near the boundary of P. We denote the boundary of P by dP. 
In this paper we usually consider the linear programming problem in standard form: 

Minimize cTx 

subject to Ax = b,  

where A E RWzX"  (m < n), h E Rm and c, x E R". 

1.1. The linear rescaling algorithm. Following the description of [VMF], the 
algorithm is stated with respect to the linear programming problem in standard form. 
It is assumed that a point xo is known such that Ax" = b and x0  > 0. Given a point 
x E Rn, we denote by D = D(x) a diagonal matrix of order n whose diagonal entries 
are the components of x. We frequently denote D = D, to emphasize the dependence 
on x. Let x E Rrl be any point such that Ax = h and x > 0. The algorithm assigns to 
the point x a "search direction", that is, a vector < (whose norm is not necessarily 
equal to 1) which is computed as follows. Consider a transformation of space 
T,: R" + R" given by T,(y) = D-ly. In the transformed space, the direction q = 

T, ( ( )  is obtained by projecting the vector Dc orthogonally into the linear subspace 
{q:  ADq = 0). Thus, q is the solution of the following least-squares problem: 

Minimize lIDc- q112 

subject to ADq = 0 .  

Assuming A is of full rank, the solution is 

In the original space, the linear rescaling algorithm assigns to a point x the vector 

[, = E,(x) = D [ I  - D A ~ ( A D ~ A ~ ) ' A D ]  Dc, 

to define a search direction. We note that since the problem is in the minimization 
form, the new point has the form x - a(x)[,(x) where a (x)  is positive. 

1.2. The projective rescaling algorithm. Following [Karl, the algorithm is stated 
with respect to the linear programming problem given in the following form 
("Karmarkar's standard form"): 

Minimize cTx 

subject to Ax = 0, 

eTx = 1, 

where A E R ( m - l ) X 1 l  (1 < m < n), x, c E R" and e = (1,. . . , E R". In the original 
statement of the algorithm it was assumed that Ae = 0 so the point x0  = e/n is 
interior relative to the linear subspace {Ax = 0 ) .  We do not use this assumption in our 
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analysis. It was assumed that the optimal value of the objective function is zero, but 
the algorithm is well defined without this assumption. Let A" denote the matrix 

Let x E R" be such that Ax = 0, e% = 1, and x > 0 and continue to denote 
D = D(x) = Diag(x). The new point is computed as a function of x as follows. 
Consider a transformation of space 

given by 

Thus, T,(x) = e / n .  In the transformed space, the direction q p  is obtained by project- 
ing the vector Dc into the nullspace of the matrix 

Thus, 

The nullspace of the matrix Aequals the intersection of the nullspaces of the matrices 
AD and eT. However, e is orthogonal to every row of AD since ADe = Ax = 0. This 
property implies that q,  can be obtained by projecting on the nullspace of AD and 
then projecting the projection on the null space of eT (see Appendix C). It follows that 
the search direction in the transformed space is given by 

The search direction 5, in the original space is obtained as follows. The algorithm 
moves in the transformed space from the point e/n to a point of the form 

where p is a certain positive constant. The step in the original space is thus given by 
the vector u = T;'(9) - x. The inverse transformation is given by 

Letting 
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we have 
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Let us ignore the size of the step, and consider just a vector 5,  in the (opposite) 
direction of u: 

Note that xTe = 1. so we have 

Thus, the algorithm assigns to the point x  the vector 

to define the search direction. As in the case of the linear rescaling algorithm, the new 
point has the form x  - a ( x ) Z , ( x )  where a ( x )  is positive. Note that Z ,  is well defined 
even without the hypothesis that the minimum of the objective function is equal to 
zero. 

1 . 3 .  The barrier function technique. The logarithmic barrier technique considers 
the nonlinear optimization problem 

Minimize F , ( x )  = cTx - y  C ln x, 
I 

subject to Ax = b, 

where y  > 0 is a scalar. If x * ( y )  is an optimal solution for S F ( y ) ,  and if x * ( y )  tends 
to a point x* as p tends to zero, then it follows that x* is an optimal solution for the 
linear programming problem ( S F ) .  Consider the problem ( S F ( y ) )  where y  is fixed. As 
explained in [GMSTW], the Newton search direction up at a point x is obtained by 
solving the following quadratic optimization problem: 

Minimize : u T v  2 ~ ( ~ )  u + ( v F ( x ) )  *u 

subject to Au = 0, where 

v F ( x )  = c - yD,-'e and V ' F ( X )  = ~ D L ~ .  

Let w,, denote the vector of Lagrange multipliers. The vectors up and w, must satisfy 
the following system of equations 
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Let q, = D; 'pup. Thus, 

It follows that 

vU = [ I  - D , A ~ ( A D ~ A T ) ~ A D , ) ( D , C  - pe)  and 

is the vector field corresponding to the fixed value of p. It was noted in [GMSTW] that 
E,(x> = lim,+,y'/,(~). 

In this paper we study the boundary behavior of the above interior point algorithms 
for linear programming. We study both the continuous trajectories of the vector fields 
induced by these algorithms and the discrete sequences of iterates of a point given by 
transformations of the polytope to itself. (In both cases we sometimes refer to these 
trajectories as orbits.) In 52 we show that, although the algorithms are defined on the 
interior of the feasible polyhedron, the vector fields actually extend continuously to the 
whole closed polyhedron. This is true even when the problem is degenerate. In 53 we 
provide conditions under which a vector field gives rise to trajectories that visit the 
neighborhoods of all the vertices of the Klee-Minty cube. The linear rescaling algo- 
rithm satisfies these conditions. Thus, limits of such trajectories obtained when a 
starting point is pushed to the boundary may have an exponential number of 
breakpoints. It is shown that limits of projective rescaling trajectories may have a 
linear number of such breakpoints. Projective rescaling trajectories may visit the 
neighborhoods of linearly many vertices. In 554 and 5 we consider the behavior of the 
linear rescaling trajectories near vertices. We show that all the trajectories have a 
unique direction of convergence to the optimum. This direction is given by the vector 
of the reciprocal values of the reduced costs of the nonbasic variables at the vertex. In 
56 we prove the differentiability (over the closed polytope) of the vector field underly- 
ing the logarithmic barrier technique with a fixed parameter, assuming nondegeneracy. 
The linear rescaling algorithm is a special case. In 57 a similar result is proven for the 
projective rescaling vector field. $8 analyzes the boundary behavior of the discrete 
linear rescaling algorithm. The unique direction of convergence is proven for this case 
too. In 59 the boundary behavior of the discrete version of the projective rescaling 
algorithm is studied. The limiting behavior is characterized in terms of reduced 
problems where the feasible domains are faces of the given polyhedron. In Appendix A 
we describe the behavior of the linear rescaling algorithm on the unit hypercube. We 
show that each ascending sequence of adjacent vertices can be approximated by a 
trajectory. In Appendix B we consider the projective rescaling trajectories on the unit 
simplex. We show that certain trajectories visit all the vertices. Also, there are 
trajectories starting from the center and visiting the centers of linearly many faces of 
the simplex. Appendix C proves a lemma on orthogonal projections. In Appendices D 
and E we present similar results on the barrier function technique in inequality form. 
In Appendix F we include an extension of 52, proving the differentiability of the linear 
rescaling vector field on the closed feasible polyhedron. We also represent this 
derivative in terms of projections on nullspaces. 

2. Interior point algorithms continuously extend to the boundary. As seen in 51, 
the central feature of the interior point algorithms under consideration is a projection 
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of a certain vector on a certain subspace. In this section we study the behavior of the 
resulting vector as the current point of the algorithm tends to a boundary point. 

Let A denote any fixed matrix of order m x n. Let N = (1,.  . . , n )  and let I, and 
I, define a partition of N, i.e., N = I, u I, and I, n I, = 0. Let A,  denote a 
submatrix of A consisting of the columns of A with indices in I, ( i  = 1,2). Similarly, 
for any n-vector u ,  let u, denote the subvectors of u consisting of the components of u 
corresponding to the sets 1, ( i  = 1,2). Let D(u) denote a diagonal matrix whose 
diagonal consists of the components of u.  Let c denote any fixed n-vector and let c, 
and c, denote its subvectors as defined above. 

Given x, a step of the linear rescaling algorithm amounts to the evaluation of the 
orthogonal projection of a vector D(x)c on a linear subspace L (x )  = L(x; A) = 

( y: AD(x)y = 0). We are interested here in the behavior of this projection when x 
tends to a limit point i. The interesting case is when some of the components of F are 
zero. Let I, denote the set of indices j for which i, # 0. For simplicity of notation, we 
assume > 0 ( j  E I,) but this is not really necessary for the argument. If i is a 
feasible point then of course this condition holds. 

The orthogonal projection of D(x)c on L(x)  is equal to the point in L ( x )  which is 
closest to D(x)c. Thus, it is the solution of the following optimization problem (where 
the decision variables are the components of y): 

Minimize ( ( ~ ( x ) c - ~ \ l ~  

subject to AD(x) y = 0. 

With the notation introduced above, the latter is equivalent to 

Minimize ( ( ~ ( x , ) c ,  - y,((2 + ( (D(x , )c ,  - y2)l2 

subject to A,D(x,) Y ,  + A,D(x,) y, = 0. 

Let us denote this projection by y(x),  and also let v,(x) and y,(x)  denote the 
restrictions to the sets of indices I, and I,, respectively. Obviously, if x tends to 2 
then the point D(x)c tends to the point D(x)c. The distance between D(x)c and 
y ( x )  is always less than or equal to 1 1  D(x)cll since the origin is in the linear subspace. 
It follows that the point y(x) is bounded while x tends to i. Since x, tends to zero, 
the vector A,D(x,)y,(x) also tends to zero (since y,(x) is bounded). Observe that the 
point y l (x)  is the orthogonal projection of the point D(x)c on the affine subspace 

Consider the point-to-set mapping that takes every x E R"  to @(x). First, recall 
the definition of a continuous point-to-set mapping: 

DEFINITION 2.1. Let \E be a point-to-set mapping that takes points x E Rn to 
subsets *(x) of Rm. The mapping 4 is continuous at 2 if for any sequence ( x h ) ) ,  
converging to a point i, the following is true 

(i) for any convergent sequence { z k  ), where z k  E \I/(xh), necessarily i = lim zh  E 

*(Z). 
(ii) for any point z' E \E(.?), there exists a sequence ( z h )  converging to z' where 

zh  € \I/(xh). 

PROPOSITION 2.2. The mapping @(u) is continuous at x. 



BOUNDARY BEHAVIOR OF INTERIOR POINT ALGORITHMS 103 

PROOF. Let { x h )  be any sequence converging to 2. By assumption, 2, > 0 and 
- 
x, = 0. Notice that a ( ? )  = {u: A,D(x,)u = 0). Obviously, condition (i) is satisfied 
since A2D(x,k)y2(xh) tends to zero. In other words, the set of all limits of sequences 
{ u k ) ,  such that uh E @(xk),  is contained in the subspace @(2). It is easy to check 
that Q is a linear subspace, which is in a sense the limit of the affine subspaces @(xh) .  
The dimension of is the same as the common dimension of all the @(xh)'s for k 
sufficiently large. This dimension is obviously equal to I1,I - rank(A,). On the other 
hand, @(2)  is a linear subspace of the same dimension (since 2, > 0). It follows that 
cD(.F) = 62 and this completes the proof. 

PROPOSITION 2.3. If x tends to i (where 2, > 0 and Z2 = 0) then the point y,(x) 
tends to the projection of D(.Fl)cl on the linear subspace @(F). 

PROOF. Given the interpretation of the orthogonal projection as the closest point, 
the proof is immediate. 

COROLLARY 2.4. The limit of the orthogonal projection of D(x)c on the subspace 
{z:  AD(x)z = 0 )  is equal to the orthogonal projection of D(2)c on the subspace 
{z: AD(2)z = 0). 

PROOF. It suffices to show that y2(x) tends to zero since the orthogonal projection 
of D(2)c  onto { z :  D(2)c = 0) is of the form (yl(2),  0) and since y,(x) tends to y,(2) 
by Proposition 2.3. Assume that y2(x) has a limit point j2 Z 0. (It obviously has 
some limit point by the boundedness of I(y(x)(l.) Then (ID(x)c - (y,(x), y,(x))(12 
tends to ( (D(2)c  - (yl(x), 0)112 + (1J,11~. On the other hand, letting j , ( x )  = 

D - ' ( X , ) D ( Z ~ ) ~ ~ ( X ) ,  we have that I(D(x)c - ( j , (x) ,  O)(I tends to IID(2)c - 
(y,(Z), O)11. Together these imply that for x sufficiently near to ?, 

However, ( j l ( x ) ,  0) E { z :  AD(x)z = 0). Thus we reach a contradiction to the fact 
that (y,(x), y2(x)) is the orthogonal projection of D(x)c onto { z :  AD(x)z = 0). 

The vector 5 = <(x )  assigned by the linear rescaling algorithm to a point x can be 
described as ((x)  = D(x)y  where y is the projection of the vector D(x)c  on the 
subspace { y: AD(x)y = 0). Thus, we have the following proposition: 

PROPOSITION 2.5. Suppose x E R" satisfies Ax = h, has positive components, and 
tends to a point 2 such that 2, > 0 and X2 = 0. Then the vector 5(x)  of the lineur 
rescaling algorithm at x > 0 in the problem ( S F )  tends to the vector ((7,) assigned by 
this algorithm at Z, in the problem 

Minimize crz 

subject to A,z = 6,  

The argument for similar results about the projective rescaling algorithm and the 
barrier function technique are essentially the same: 

PROPOSITION 2.6. Suppose x E Rn satisfies Ax = 0 and eTx = 1, has positive corn- 
ponents, and tends to a point 2 such that 2, > 0 and ?, = 0. Then the vector 5,(x) 
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assigned by the projective algorithm at a point x > 0 in the problem ( K S F )  tends to the 
vector <,(F,) assigned by this algorithm at F, in the problem 

Minimize crz 

subject to A,z = 0, 

PROOF. We have <, = <,(x) = [ D  - x x T ] y  where y is the projection of D ( x ) c  on 
the subspace { z :  A D ( x ) z  = 0) and the proof follows easily. 

PROPOSITION 2.7. Suppose x E R" satisfies A x  = b and has positive components, 
and tends to a point 2 such that F, > 0 and Y 2  = 0. Let p > 0 be fixed. Then the vector 
V , ( x )  assigned by the Newton logarithmic barrier function method at x > 0 in the 

problem ( S F ( p ) )  tends to the vector V,(?,) assigned by this algorithm at F, in the 
problem 

Minimize crz - p In z, 
J E I, 

subject to A,z = b ,  

PROOF. The vector V , ( x )  assigned to x can be represented as D ( x ) ( y t  - y") where 
y' and y" are the projections of D ( x ) c  and pe, respectively, on the subspace 
{ z :  A D ( x ) z  = 0). The argument about the vector y' is the same as in Proposition 2.5. 
The argument about the vector y" is similar. The vector e is a sum e = e' + e" of 
vectors where el = 1 for j E I ,  and e," = 1 for j E 12. The projection of the vector e" 
on the subspace { z :  A D ( x ) z  = 0)  is bounded so D ( x )  times it tends to zero. 

3. Interior point algorithms and the Klee-Minty cube. Some variants of the sim- 
plex method require exponential numbers of pivot steps in the worst case. The first 
examples of such behavior were provided by Klee and Minty [KM]. The "tilted cube" 
described in their paper is a very useful construct which we also use here. 

The n-dimensional Klee-Minty cube is defined by the following inequalities: 

v < x , < l - v ,  

( K M )  
vx,-, < xJ < 1 - V X , - ,  ( j  = 2 ,  ..., n), 

where v is any positive number less than $. The associated linear programming 
problem is to maximize the value of x ,  subject to the set of inequalities ( K M ) .  It can 
be verified that the maximum is attained at a unique point, namely, the vertex 
( v ,  v 2 , .  . . , vn-I , 1  - vn) .  

If x is a vertex of the ( K M )  cube then obviously each x ,  equals either the lower or 
the upper bound implied by the values of the other components of x.  This suggests a 
correspondence between vertices of the (KM) cube and vertices of the unit cube. Thus, 
we use a (0,l)-vector u = (v , ,  . . . , v,) to describe the vertex x of ( K M )  where 
x ,  = (1  - u,)v + v,(l - v ) ,  and for every j >  2, x ,  = (1  - v,)vxJ-, + v,(l - V X , ~ , ) .  

We say that u is the characteristic vector of the vertex x.  Some simplex variants visit 
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all the vertices of (KM) (or an analogous construct) in a nice order which can be 
described, inductively, as follows. The case n = 1 is trivial (the two vertices are the 
numbers v and 1 - v). Let u', . . . , urn be the sequence of characteristic vectors of the 
vertices of the (n  - 1)-dimensional (KM) cube in the order they are visited (m = 2"-I). 
Then the 2" vertices of the n-dimensional (KM) cube ((vl, 0), (u', I), j = 1,. . . , m )  
are visited in the following order: 

Faces of the (KM) cube can be easily described by the characteristic vectors. Thus, a 
d-dimensional face @ is described by n - d equations of the form u J  = eJ, where 
e J  E { O , l ) .  We denote the relative interior of a face 0 by 4. It is interesting to note 
that every face @ has a unique point x*(@) where the value of x,, is maximized over 
0. We call this point the optimal point of 0. 

We shall later consider the vector field induced by the linear rescaling algorithm on 
the (KM)  cube. However, we first discuss the subject in a more general context. Let us 
identify the linear programming problem 

Maximize cTx 

subject to Ax z b 

with the triple (A, b, c). We are interested here in algorithms that can be described by 
vector fields as follows. The underlying vector field A is defined for quadruples 
(x;  A, b, c )  where A E R m X n ,  b E R m  and c, x E R", such that Ax 2 b. The vector 
field assigns a vector y = A(x; A ,  b, c) E Rn such that A(x + y )  >, b. The vector field 
describes an iterative algorithm defined by xki l  = x k  + A(x; A, b, c). 

We need our algorithms to be defined in a slightly more general context. First, the 
algorithms extend to minimization problems in the obvious way that the direction 
assigned in the "minimize cTx" problem is the same as the direction assigned in the 
"maximize -cTx" problem. Also, we assume the algorithm is defined for afine 
objective functions cTx + c0 and the vector field is independent of the constant co. 
Similarly, if an inequality is given in a more general form, dTx + 6 z gTx + y ,  then 
the algorithm converts it into ( d  - g)Tx z y - 6. 

The vector field A and the algorithm A will be referred to interchangeably. Concep- 
tually, the discrete iterates of the algorithm approximate the solution curves of the 
vector field A. We now state conditions on the algorithm A which are needed for 
establishing "long" paths in the (KM) cube. The corresponding linear programming 
problem is nondegenerate. Thus we need these conditions to hold only for nondegener- 
ate problems. 

1. Reuersibility. The algorithm is called reversible if, when the objective function 
vector is multiplied by - 1, the direction of movement from x is reversed: 

In other words, the directions computed by the algorithm in the minimization and the 
maximization problems (with the same data) are precisely opposed to each other. 

2. Independence of the representation. First, this condition includes all the assump- 
tions listed above with respect to the extensions of the algorithm to problems in the 
minimization form and inequalities in nonstandard form. In addition, we require the 
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following: (i) The vector field is invariant under permutations of the set of inequalities. 
In other words, if Q is a permutation matrix then 

A(x; QA, Qb, c) = A(x; A ,  b, c).  

(ii) The vector field is invariant under "affine scaling automorphisms" in a sense as 
follows. Consider an affine transformation of Rn, T(x) = Mx + q, where M is 
diagonal. Denoting the new variable y = T(x) (so x = M - ' ( ~  - q)), the problem ( F )  
is transformed into 

Maximize c T ~ -  ly 

subject to A M P y  > b +  AM-^^. 

Thus, the quadruple (x; A, b, c) is transformed into 

(x';  A', b', cf) = (MX + q;  AM-', b +  AM-'^, M - T ~ ) .  

A translation Ax maps to a translation Ay = MAX (since y + Ay = M(x + Ax) + 
q). Suppose the new problem (A ' ,  b', c') is the same as ( A ,  b, c) up to permutation of 
the set of inequalities (that is, there exists a permutation matrix Q such that A' = QA 
and b' = Qb), and up to changing the sense of the optimization from maximization to 
minimization or vice versa, that is, c' is in the direction of k c .  In this case our 
condition requires that the direction assigned in the transformed problem to the 
transformed point be equal to the transformed direction assigned to the original point 
in the original problem. In other words, 

3. Continuity. The vector field A is continuous at every x such that Ax = b. 
4. Invariance of faces. The vector A(x; A, b, c) is tangent to any face @ of the 

feasible polyhedron such that x E a, is equal to the vector field of the problem 
restricted to the face, and satisfies (1)-(3) on the face. Note that this condition 
necessitates that A(x; A, b, c) = 0 if x is a vertex. 

5.  Convergence. For every bounded face @ of the (nondegenerate) feasible polyhe- 
dron which contains the optimal vertex and every x0  E 6, the orbit induced by the 
vector field A at x converges to this optimal vertex. 

DEFINITION 3.1. A vector field A (or, equivalently, an algorithm subject to the 
interpretation given above) that satisfies the conditions of reversibility, independence 
of the representation, continuity, invariance and convergence, defined above (in 
nondegenerate problems), will be called proper. 

Note that by the reversibility assumption, the orbit induced at a point xo  E 6 
(where is bounded) by a proper algorithm, converges at one end to a maximum 
point and at the other end to a minimum point of the face Q. Also, the restriction of a 
proper algorithm to any face of the feasible polyhedron is itself a proper algorithm. 

LEMMA 3.2. If A is a proper algorithm then all the orbits induced by A on the ( KM) 
cube are symmetric with respect to the hyperplane H = { x  E Rn: x,, = f ). More pre- 
cisely, if a is one such orbit then a point x = (x,, . . . , x , , ) ~  is on a if and only if the point 

T .  X = ( x l  ,..., x n l , l - x , )  zsonm. 
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PROOF. The given problem is 

Maximize x,, 

(PI) 
v  <XI< 1 - v  

ox,-, < x , < l  - vx, , ( j  = 2, . . . ,  n ) .  

Consider the transformation of reflection with respect to the hyperplane H, that is, 
- 
x,, = 1 - x,,. Let ? = (x,, . . . , x,, ,, 1 - x,,)~. The affine transformation is given by 
the matrix 

and the vector q = (0,. . . ,O,l) ' .  The substitution x, = 1 - TI, transforms the original 
problem into the following: 

Maximize 1 - T,, 

which is equivalent to 

Minimize T,? 

The latter is simply the minimization problem with the same data as in ( P , ) .  Let A , ( x )  
denote the direction assigned at any point x i n  the problem (P,) ( I  = 1,2,3). By the 
properties of independence of the representation and reversibility, 

Also, 

By reversibility, 

Thus, 

Note that M - '  = M so 
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In particular, if x ,  = q then x = x and we get (A , (x ) ) ,  = 0 for j = 1,. . . , n - 1. It 
follows that the point sets of the orbits through x and x coincide, and also if time is 
reversed in the upper half of the cube, then the orbit starting at x and the one starting 
at F reach the hyperplane H at the same time, hitting it perpendicularly. 

We are now ready to state a theorem on long paths. 

THEOREM 3.3. If A is a proper algorithm then for every c > 0,  there exists an orbit m, 

which is induced by A on the ( K M )  cube, such that for every vertex u of the cube, the 
distance between u and the orbit m is less than r. 

PROOF. We prove the theorem by induction on the dimension of the cube. The 
theorem is trivial for n = 1. Consider the general case n > 2. Consider the restriction 
of the (KM) problem to the "base" of the cube, that is, the face characterized by 
the equality x,, = vx,,-,. Thus, the problem of maximizing xn on 0 is equivalent to the 
problem of maximizing x n - ,  on a, that is, the (KM) problem in dimension n - 1. It 
follows by the induction hypothesis that for every c there exists an orbit m', that lies 
completely within the base a, such that the distance between any vertex of and m' is 
less than c. Given c > 0, let y denote a point in such that for every vertex u of the 
base a, the distance between u and the orbit through y is less than c. If x is an interior 
point of the ( K M )  cube which is sufficiently close to y then, by continuity, the 
distances between the orbit through x and all the vertices of the base are each less than 
c.  Moreover, by the symmetry proved in Lemma 3.2, the point 2 = (x , ,  . . . , x ,-,, 
1 - x,,) also has the property that the distances between the orbit through T and all 
the vertices of the "ceiling" (that is, the face characterized by the equality x,, = 1 - 
vx,,-,) are each less than c. However, these two orbits are actually the same by Lemma 
3.2 and this completes the proof. 

It is easy to see that, for c sufficiently small, the path (whose existence was proven in 
Theorem 3.3) visits the r-neighborhoods of the vertices of the cube in ascending order 
with respect to the nth coordinate, so in a certain sense it approximates the behavior of 
the simplex method. It is also interesting to note that not every ascending sequence of 
adjacent vertices can be approximated by an orbit of the algorithm. The latter follows 
from the symmetry property since the sequence of visited vertices of the base 
determines the sequence of visited vertices of the ceiling. Interestingly, on the regular 
unit hypercube every ascending sequence of adjacent vertices can be approximated by 
an orbit of the algorithm. This is shown in Appendix A. 

We now show that the linear rescaling algorithm is proper. The linear rescaling 
algorithm was stated originally for problems in standard form. We now recast it in 
inequality form and prove it is proper. For problems in the form ( p )  we can do one of 
two things: 

(i) We can introduce surplus variables s = Ax - b constrained to be nonnegative. 
We then eliminate the x variables. Assume without loss of generality that 

where B E RnX"  is nonsingular and N E R(n ' -n )Xn  . Represent s = (s,, s,) and 
b = (b,, b,) accordingly. Thus, x = B-'(b,  + s,) and the problem is 

Maximize C ~ B -  's, 

(FS) subject to N B - ~ S ,  - s, = b, - N B - ' ~ , ,  
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It can be verified that if ( x ' ;  A', b', c') is obtained from ( x ;  A ,  b ,  c )  by a general affine 
transformation as above, then both these problems have the same representation in the 
form ( p,). 

(ii) We can develop an analogous algorithm, for problems in inequality form, based 
on similar principles. This is included in Appendix D. The search direction is then 
given by the vector 

1 
v = v ( x )  = ( A ~ D F ~ A )  c where 

D, = D , ( x )  = ~ i a g ( A , x  - b,, . . ., A,,x - b,) 

We now prove that the algorithms outlined in (i) and (ii) above are actually the same. 

PROPOSITION 3.4. The vector v = ( A * D ; ~ A ) ~ c  is equal to the vector u assigned at x 
by applying the ajine rescaling algorithm in standard form to the corresponding problem 

<&>. 
PROOF. Let D, and D, denote, respectively, the diagonal submatrices of D of the 

orders n x n and ( m  - n )  x ( m  - n )  corresponding to B and N. The direction As in 
the space of the s variables is obtained by projecting the vector (D,B-Tc,O) E R"' 
orthogonally into the nullspace of the matrix ( N B I D , ,  - D,) E R ( m - " ) X m  , and then 
multiplying the result by D,. Thus As = (As,, As,) is the solution of the following 
problem 

subject to N B p l A s ,  - As, = 0.  

This is equivalent to 

Minimize IID,B-Tc - D i l  As,1l2 + I ~ D ; ' N B ~ ' A S , ~ ~ ~  

Thus 

Since 

A ~ D ; ~ A  = B ~ D ; ~ B  + N ~ D ~ ~ N ,  

it follows that 

which completes the proof. 

PROPOSITION 3.5. The linear rescaling algorithm, applied to problems in the form 
( j ) ,  is proper in the sense of Dejnition 3.1. 

PROOF. In view of Proposition 3.4, we can rely on either form of the algorithm for 
proving the required conditions. Reversibility is trivial to verify. Independence of the 
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representation follows from the fact that the vector s = Ax - b is invariant; thus, 

Continuity and invariance of faces were proven in 52. Appendix D contains analogous 
proofs for inequality form. We now consider the convergence of linear rescaling 
trajectories. First, note that the objective function is monotone increasing along 
trajectories. Thus, all the accumulation points of a trajectory must have the same 
objective function value. Moreover, if x is neither a vertex nor an optimal point, the 
objective function strictly increases along any trajectory in a neighborhood of x. By 
continuity, this implies that the only candidates for accumulation points are vertices of 
the feasible polyhedron and optimal solutions. In 554 and 5 we analyze the behavior of 
the trajectories near vertices (see also Appendix E). It follows from our analysis that 
interior trajectories cannot accumulate in nonoptimal vertices, and, therefore, if there 
is a unique optimal solution, all the interior trajectories converge to it. 

Interestingly, Theorem 3.3 does not apply to the projective rescaling algorithm. Two 
requirements of Definition 3.1 are not satisfied. First the reversibility requirement fails. 
Recall that the algorithm has to be applied to the problem in the form (KSF) with the 
additional requirement that the optimal value be equal to zero. The transformation 
that takes a problem into this form when we wish to reverse the sense of the 
optimization causes a change in the direction of search which is, in general, not the 
reverse direction. Second, although the invariance of faces holds, convergence within a 
face is not necessarily to the optimum of the face, unless the face contains the global 
optimum of the problem. The reason is that the projective rescaling algorithm induces 
paths that converge within faces to optima of a "reduced" potential function. More 
precisely. let 

P = { x  E R":  Ax = O,eTx = 1 , x  2 0 )  

denote the feasible polytope and for J c N = (1,. . . , n ) let 

denote a face of P. Every nonempty face QJ of P contains a center, namely, a point q, 
where the reduced potential function +,(x) = lJlcTx - C,,, In x, is minimized over 
a,. If the minimum of cTx over Q, is zero then paths through the interior of QJ 
converge to such a minimum of cTx. The latter lies on the relative boundary of the face 
unless the linear function is constant on the face. If the minimum is not zero, the point 
q, is interior. A detailed discussion of these issues is given in 57. 

We now consider the vector field <(x)  given by the Newton logarithmic barrier 
function method with a fixed p. This vector field is initially defined for p J.> 0. It is 
obviously not proper since convergence is to the optimum of the nonlinear approxi- 
mate objective function rather than the given linear objective function. Recall that 
V,(x) has a limit as p tends to zero and, moreover, the direction of the limit Vo(x) 
coincides with the direction assigned by the linear rescaling algorithm [,(x) (see 
[GMSTW]). Thus, the vector field Vo(x) is proper. It follows that although V,(x) is not 
proper, it has "long" paths if p is sufficiently small. More precisely, 
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PROPOSITION 3.6. For every E > 0, there exists a p, > 0 such that for every fixed p, 
0 < p < pO, the vector jield V , ( x )  on the ( K M )  cube has solution paths that visit the 
&-neighborhoods of all the vertices. 

4. The behavior of the linear rescaling algorithm near vertices. Consider the linear 
programming problem in standard form (St . ' ) .  Let B denote the square matrix of order 
m,  consisting of the first m columns of A .  We assume R is nonsingular and B p ' b  > 0. 
In other words, B is a nondegenerate feasible basis. Let N denote the matrix of order 
m x ( n  - m )  consisting of the last n - m columns of A .  We denote the restriction of 
any n-vector u to the first m coordinates by o,, and its restriction to the last n - m 
coordinates by u,. Thus, the objects c,, c , ,  x ,  and x ,  are defined with respect to the 
vectors c and x .  Recall that D = D ( x )  is a diagonal matrix (of order n )  whose 
diagonal entries are the components of the vector x.  Also, D, and D, are diagonal 
matrices of orders m and n - m ,  respectively, corresponding to the vectors (, and 4,. 

In the transformed space, the direction q = T , ( [ )  is the solution of the following 
least-squares problem: 

Minimize 1 1  Dc - 711 2 

subject to ADq = 0. 

This is equivalent to 

subject to BD,q, + ND,q, = 0.  

In the original space, 4 = Dq,  so the problem is 

subject to B ( ,  + N ( ,  = 0. 

Eliminating (, by the substitution (, = - B we obtain an equivalent problem: 

A vector 5 ,  is an optimal solution for the latter if and only i f  the gradient of the 
objective function vanishes; that is, 

Equivalently, 

We now consider points x in the neighborhood of the vertex u ( B )  determined by B,  
that is, u , ( B )  = ( B p ' b ) ,  for j = 1,. . . , m, and u,(B)  = 0 for j = m + 1,. . ., n.  
Obviously, if x tends to u ( B )  then x ,  tends to the positive vector Bp 'b  and x ,  tends 
to 0. Note that the coefficient matrix of the latter system is 



112 NIMROD MEGIDDO & MICHAEL SHUB 

which tends to the identity matrix as x  approaches u ( B ) .  We thus have 

PROPOSITION 4.1. The nonbasic part of the search direction is 

The basic part of the search direction satisfies l l E s l l  < O(llxN1l 2 ) .  

Notice that the vector EN = c ,  - N7BP7cB is precisely the "reduced-cost" vector 
associated with the basis B. 

We first provide some intuition about the behavior of trajectories near vertices based 
on the description of the asymptotic vector field. More rigorous arguments will be 
given later. Consider the orbit induced by the (asymptotic) vector field 5 at a point x  
in the neighborhood of u ( B ) .  The underlying differential equations are 1, = - 5  J J  x 2  
( j  = m + 1,. . . , n) ,  whose solution obviously is 

Recall that x B ( t )  is determined by x , ( t ) ,  namely, x B ( t )  = B P 1 ( b  - Nx, ( t ) ) .  Notice 
that u ( B )  is the unique optimal solution of the linear programming problem if and 
only if for every j ,  j = m + 1,. . . , n,  EJ > 0. If this is the case then the trajectory x ( t )  
converges to u ( B ) .  Moreover, as t  tends to infinity, the direction of x , ( t )  tends to the 
direction of the vector 

Note that we obtain a unique asymptotic direction near a vertex corresponding to each 
face containing the vertex. 

5. More on the trajectories near vertices. Here we rigorously carry out the 
analysis suggested in the last section of trajectories near the optimal vertex. It is 
convenient in this section to assume the vector field is real analytic even though this is 
stronger than what is actually required. We now examine the behavior of the solution 
curves of the equation i = - x 2  + o ( l l ~ 1 1 ~ )  where x  E R" and we denote x 2  = 

2 ( x , ,  . . . , ~ 2 ) ~ .  It is convenient to express x  in polar coordinates. We start with a 
slightly more general problem and follow Gomory [GI. 

Let F: Rn + Rn be a real analytic vector field defined in the neighborhood of the 
origin. Consider the differential equation 1 = F ( x ) .  Let Sn-' = ( x  E Rn: ( ( X I (  = 1) 
denote, as usual, the unit sphere in Rn. A nonzero vector x  E R n  is represented in 
polar coordinates by a pair ( a ,  u )  where o  = a ( x )  = llxll and u  = u ( x )  = x / a .  Thus, 
the vector x  can be expressed as a product x  = au where a  E R +  and u  E R" with 
I I u I I  = 1. 

Consider a solution path x  = x ( t )  of the equation i = F ( x ) .  The polar coordinates 
of a point along the path are also functions of t ,  so we denote in short o = a ( t )  and 
u = u ( t ) .  We shall represent the equation 1 = F ( x )  in polar coordinates. The polar 
coordinates pairs ( a ,  u )  are of course points in R+X S n P 1 .  We shall obtain an 
equivalent vector field on a neighborhood of (0) x Sn-' relative to R + x  s " ~ ' .  

First, 
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Also, 

Since F is real analytic, it follows that F(x)  = XT=o F,(x) where for every i 
(i  = 0,1,. . . ), F,(x) is a homogeneous polynomial of degree i. In our case, F ( x )  = 

- x 2  + 0(l(x1(~) where F is real analytic so Fo and F, are identically zero. Whenever 
there exists an m > 2 such that for every i < in, F, is identically zero, we have 

do cc m 

dt - = u T ~ ( u u )  = uT C F,(UU) = uT C alE;(u) 
I = nl I = w l  

Similarly, 

We have obtained a vector field which is well defined in a neighborhood of (0) x s"-' 
relative to R +  X Snp l .  In fact, if we divide by am- '  we still obtain a vector field on the 
same neighborhood and the orbits of the new vector field are the same as those of the 
old one (in R + x  Snp') .  Note that the sphere (0) x Snp' is invariant in the sense that 
the flow induced by the field on this sphere remains in the sphere. Thus, we may 
consider, instead, the following equations: 

da m 

- dt = urF(au)  = uT a'-"l+'F,(u), and 
I = Wl 

As a vector field this can be written in the form 

(for a > 0) and 

The latter is just the projection of the homogeneous equation i = Fwl(x) into the unit 
sphere. The projections of the solution curves of the homogeneous equation are 
solution curves as computed above. The derivative of at a point (0, u), where 
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c(0, U )  = 0, is the following: 

We now return to our special case where m = 2 and 

and will study the behavior of orbits on the sphere (0) x SnP1 .  Consider the equation 
i = - x 2 ,  that is, 1, = - x ;  ( i  = 1, .  . . , n). If xp > 0 then by integration, the solution 
is 

and the ith component of the curve through x 0  is given by 

4' x , ( t )  = ---- 
xpt + 1  ' 

If xj' = 0 then obviously x , ( t )  = 0. For every i and j (1 < i, j < n )  if xp, xp > 0 then 

These orbits project to orbits on the sphere. 
We now study the zeros of the vector field 

The solutions of the system 

are the nonnegative solutions of the system 

It can easily be verified that a solution u of this system is characterized as follows. 
There exists a j (1 < j < n) such that j components of the vector u equal 1/ fi while 
the rest of the components are zero. 

The forward or o-limit points of an orbit u ( t )  are those points u O  such that there is a 
sequence of reals t ,  tending to infinity with u ( t , )  tending to uO. Bcrckward or a-limit 
points are defined by letting t ,  tend to - oo. We see from the discussion above that the 
o-limit points of v(0, u )  are precisely the 2" - 1 zeros of I?(o, u) .  The same is true for 
a-limits as well. If we let t be negative then x , ( t )  becomes infinite at t = l / x p ,  thus 
the projection of this orbit to the unit sphere kills any coordinate x ,  with x:xp. If the 
maximum of the coordinates of uo  is achieved by j components then the a-limit of the 
orbit u ( t )  through u0 has the corresponding j components equal to 1/ fi and the rest 



BOUNDARY BEHAVIOR OF INTERIOR POINT ALGORITHMS 115 

of the components are zero. This establishes the following proposition: 

PROPOSITION 5.1. The only a-  and o-limit points of the vector Jield v ( 0 ,  u )  on S';-' 
are the zeros. 

We have 

To understand the stability properties of the zeros on the sphere, we calculate the 
eigenvalues of D ~ ( o ,  u ) .  Since it is lower triangular, the eigenvalues of D ~ ( o ,  u )  are of 
two kinds: (i) the number -uTu2 ,  corresponding to a ,  and (ii) the eigenvalues of the 
matrix 

3u,,u: . . . -2u, ,  + C u j  + 3 4  i 
corresponding to u. The first eigenvalue is then 

The other eigenvalues are those of the operator D,(-u2 + ( C u j ) ~ )  defined on the 
tangent space to the sphere. Suppose that u E S"-' is such that u ,  = y for all k such 
that u ,  # 0. Then for every v tangent to the sphere at (0, u ) ,  

Thus for an eigenvector o 

where the sign is positive if  the corresponding component of u is zero. 
Thus, D,P has a component repelling from each facet of the positive orthant in 

which u lies. Each vertex of S : '  is a source. Each zero of D,V that lies on an edge has 
one stable eigenvalue and the corresponding eigenvector is tangent to that edge. Each 
zero that lies on a two-dimensional face has two stable eigenvalues and their corre- 
sponding eigenvectors are tangent to that face, and so on. 

For each zero u' of ?(o, u ) ,  define W u ( u ' )  as the set of those points u whose a-limit 
is equal to u', and define Ws(u') as the set of those points u whose o-limit is equal to 
u'. Note that W ' ( u l )  is the interior of the face in which u' lies. We now define a 
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pre-order on the set of zeros of ?(o, u) .  We write u' > u" if there is a nonstationary 
orbit whose a-limit is u' and whose w-limit is u". This pre-order has no cycles since the 
dimension of the set WS(u') is strictly increasing along a chain in the pre-order. For 
any fixed time t ,  let & ( u )  denote the point on the orbit at time t ,  assuming it starts at 
u at time 0. The transformation 6, is called the time t map of the flow. For the proof of 
the following proposition the reader is referred to Chapter 2 in [Sh]: 

PROPOSITION 5.2. There is a time to > 0 and compact sets 

such that 
(i) For every i ,  M, is the closure of its interior. 
(ii) The diflerence M, \ M,-,  contains one zero, denoted z', of v(0, u) .  
(iii) The image &i(M,)  is contained in the interior of the set Mr. 
(iv) The intersection of the iterates @(M,) (that is, q applications of 4), for q 0, is 

equal to the union of the sets Wu(zJ)  over all j < i. 

The construction described in Proposition 5.2 is called a filtration. We are now ready 
for the proof of the following proposition. 

PROPOSITION 5.3. Suppose i = V(x) = - x2 + o(11~11~) is a real analytic vector 
field deJined on a neighborhood of the origin in Rn. Suppose that for every x > 0 and 
every i such that x, = 0, also (V(x)), = 0. Under these conditions, there exists an c > 0 
such that if x0 > 0 and (1xoll < 6 then the solution curve + ( t )  = (P,,](t) of the equation 
i = V(x) is dejned for all nonnegative values of t .  Moreover, as t tends to injinity, (P(t ) 
tends to the origin tangent to the line {x, = . . . = x,,). 

PROOF. If x > 0 is sufficiently close to the origin then du/dt < 0. This implies that 
(P,yo(t) is defined for all nonnegative t and (P,,II(~) + 0. Consider the vector field ? and 
the corresponding & ( t ) .  The filtration described above can be fattened to a filtration 
of a neighborhood of (0) X S : '  in [0, t ]  x S:-' since du/dt < 0. Thus every point 
tends to a zero. The stable sets of zeros in the boundary stay in the boundary since the 
boundary is invariant. Thus the orbit of any interior point tends to the point 
(0, (I/ & ) e ) .  It does so with a definite limiting direction (see [HI on C' linearization 
for contractions). This implies that the projected curve in the x-variable is tangent to 
the ray through e at the origin. 

Note that throughout this section we used differentiability only up to second order. 
In the context of linear programming, Proposition 5.3 translates to the following: 

PROPOSITION 5.4. Given a nondegenerate linear programming problem in standard 
form, suppose we express the linear rescaling search direction vector field .$, in terms of 
the nonbasic variables at the optimal vertex as in Proposition 4.1. Then any interior 
solution curve is tangent to the vector 

at the origin where the vector . . . , Fn) is the reduced cost vector. 

The discrete analog of this fact was observed experimentally by Earl Barnes. 
Subsequent to this analysis Megiddo [Me21 found different behavior for a class of 
differential equations related to the barrier method. 
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6. Differentiability of the Newton barrier function method. We continue to con- 
sider the problem in standard form ( S F )  and represent the new point given by the 
algorithm at a point x ,  

We say that the system ( A ,  b )  is nondegenerate if for every x such that Ax = b ,  the 
submatrix of A,  consisting of the columns with indices j for which x ,  + 0, has rank m .  
The feasible polyhedron P is the set of all the solutions of the system { A x  = h,  
x > 0). We denote the interior of P by P. 

PROPOSITION 6.1. For a nondegenerate system (A, b ) ,  the matrix ( AD,'AT)-' 
constitutes a well-defined real analytic mapping from the aflne $at Ax = h into R"'Xn'. 

PROOF. The mapping that takes a nonsingular matrix to its inverse is real analytic 
by Cramer's rule. Thus, we need only show that the matrix A D , ? A ~  is invertible at 
x E P even when x,  = 0 for some j 's .  Suppose, without loss of generality, that 
x,, . . . , xp # 0 and x,,, = . .  . = x,, = 0 ( m  < p < n ) .  Write A = (B, N), where 
B E RmXp and N E R"'~("-*) .  Let I = ( x  ,,..., x,). Since 

it follows that 

which is invertible since BD, has maximal rank by the nondegeneracy assumption. 
Obviously, 

This completes the proof. 
We now recall that the Newton barrier vector field corresponding to a fixed value of 

p is 

PROPOSITION 6.2. For a nondegenerate system (A, b ) ,  
(i) The Newton barrier vector Jield V,(x) is well dejined for every x E P and p > 0 

and, moreover, at every such point it is real analytic. 
(ii) If x is on a face of the polytope P then the vector V,(x) is tangent to a. In 

particular, i f x  is a vertex then V , ( x )  = 0. 
(iii) If x is on a face @ then V,(x) coincides with the Newton barrier vectorfield (with 

the same p)  which is associated with the restricted problem on the face: 

Minimize cTx 

subject to x E a. 

PROOF. Claim (i) is obvious in light of Proposition 6.1 and the formula for V,. For 
claims (ii) and (iii), suppose (without loss of generality), as in the proof of Proposition 
6.1, that x ,  ,..., x ,  # 0 and x,,, = . . .  = x,, = 0 ( m  < p  < n ) ,  and let I also be as 
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there. We have 

AD, = ( B D ;  0 )  

Denote c' = ( c , ,  . . . , c , I T  and e' = ( e l , .  . . , e,lT. We now have 

On the other hand, 

A D ; A ~  = B D ; ~ B ~ ,  

Substituting the right-hand sides of these equalities into the formula for Vp we prow 
(ii) and (iii). 

REMARK 6.3. The nondegeneracy hypothesis implies that at a vertex x of tht 
polytope the matrix B is invertible. Thus 

and the matrix 

is the zero matrix. 
We now compute the derivative of V, at a vertex x. 

LEMMA 6.4. Let 

M, = D,(I  - D, .A ' (AD:AT) 'AD, ) .  

Then 

Since D,D, = D, D,, we have 



BOUNDARY BEHAVIOR OF INTERIOR POINT ALGORITHMS 

PROPOSITION 6.5. At a vertex x ,  V i ( x )  = - p I  

V; = (M,(D,c - p e ) ) ' ( h )  = Mi(h) (D,c  - p e )  + M,D,c. 

Since M, = O (see Remark 6.3), and h is tangent to the polytope (so Ah = 0), it 
follows that 

7. Differentiability of the projective rescaling vector field. In this section we 
develop results analogous to those of the preceding sections. We work in Karmarkar's 
standard form (KSF).  We assume nondegeneracy of the matrix A (not the entire 
matrix 2 of the linear system of constraints) in the sense that for every x in the affine 
subspace L = { A x  = 0, eTx = I ) ,  the submatrix of A ,  consisting of the columns with 
indices j for which x, # 0, has rank m. The polyhedron P is the set of all the 
solutions of the system { A x  = 0, eTx = 1 ,  x 2 0 ) .  The following proposition is essen- 
tially the same as Proposition 6.1. 

PROPOS~TION 7.1. For a nondegenerate problem, the matrix ( AD, 'A~)  ' constitutes 
u well-defined real analytic mapping from the afJine f i t  L into Rm ' " I .  

Recall that 

Analogously, we have 

PROPOSITION 7.2. For a nondegenerate problem ( A ,  b ) ,  
(i) The direction 6, is well defined for every x E P and, moreover, at every such point 

it is real analytic. 
(ii) If x is on a face @ of the polytope P then the vector 5, is tangent to a. In 

particular, if x is a vertex then 5,(x) = 0. 
(iij) I f x  is on a face @ then E,(x) coincides with the vector 5, which is associated with 

the restricted problem on the face: 

Minimize cTx 

subject to x E a. 

REMARK 7.3. Recall that the vector field (,(x) is well defined even without the 
assumption that the optimal value of the linear objective function equals zero. Thus, 
the 5, vector for the restricted problem on the face is defined this way and the 
restricted problem is not transformed into the form KSF with optimal value zero. 

Let 
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Thus, 

Notice that the logarithmic barrier vector field V , ( x )  is well defined even when p is 
negative. The following proposition was first pointed out in [GMSTW]. 

PROPOSITION 7.4. If the harrier parameter II, is chosen as a function of the point x ,  
II,(x) = xT7(x ) ,  then E p ( x )  = y'(&). 

PROOF. If p ( x )  = xT7(.x) then (see Remark 7.3) 

PROPOSITION 7.5. For a nondegenerate problem, at any vertex x ,  

PROOF. Since V w ( x )  is differentiable in ( x ,  p) ,  the vector Vp(, ,(x) is differentiable 
and 

Since y ' ( x )  is identically zero (as a function of p)  at any vertex, 

a vp d ~ ,  - av, - = 0  and - -  - - 
~ I I ,  dx a x  - - t " (x )Z  

by Proposition 6.5. 

8. The discrete version of the linear rescaling algorithm. In this section we 
consider a specific choice of a step size in the linear rescaling algorithm (as in [Bar]). 
Given an interior point x ,  the algorithm determines a new point X , ( x )  as follows 

where O < p < 1 is a constant. The choice of p guarantees that X ( x )  is in the interior 
of the polytope (see [Bar]). It has been proven [Bar, VMF] that for nondegenerate 
problems, for any interior point x ,  X q ( x )  converges to the optimal solution. In this 
section we study the asymptotic behavior and extensions to the boundary of this 
discrete algorithm. Nondegeneracy in this section means (i) for every feasible solution 
x ,  the submatrix of the matrix A ,  consisting of the columns corresponding to nonzero 
coordinates, is of rank m ,  and (ii) every face of the feasible polyhedron has a unique 
optimum with respect to the objective function vector c. 

LEMMA 8.1. Suppose the problem is nondegenerate. Let {x" be a sequence of 
interior points converging to a point T on the boundary of P. Let J denote the set of j ' s  
with F, # 0. Under these conditions, for every j P J ,  the ratio El(xk), /(x~)%onverges 
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to a finite limit. In particular, for every j E J ,  

[ I ( x k ) j  - o. lim ----- - 
k-+oo X :  

PROOF. Recall that 

Thus, 

and the lemma follows from the fact that the matrix   AD:^ A T ) '  extends continuously 
to the closed polytope. 

Let's denote 

THEOREM 8.2. Suppose the problem is nondegenerate. Then 
(i) The vectorfield V , ( x )  extends continuously to the boundary of the polytope and real 

analytically at any point which is not a vertex. 
(ii) On any face of the polytope P ,  the vector jield I// coincides with the vector jield 

associated with the restricted problem on the face a. In particular, V,(x) is tangent to 
each face that contains the point x and vanishes at vertices. 

(iii) The iteration x' = X(x) = x - pV,(x) extends continuously to the bouqdary of 
the polytope. 

(iv) The iteration X takes any face of the polytope into itself and is in fact the iteration 
of the problem restricted to the face. 

(v) If x lies in the face cP then, as q tends to injinity, Xq(x) converges to the minimum 
of the linear objective function relative to the face @. 

PROOF. By Proposition 2.5, ( ,  extends continuously to the closed polytope and 
vanishes only at vertices (see $2). By Lemma 8.1 llDx-'[,ll has the appropriate limiting 
value on any face. This establishes (i)-(iv) except at vertices. The difference in the 
values of the objective function is 

and this is negative provided x is not a vertex. Therefore, the only possible accumula- 
tion points of iterates are vertices. The remaining claims will follow from local analysis 
of the linear rescaling algorithm at vertices which is discussed below. It is convenient to 
represent the points in the neighborhood of a nondegenerate vertex in terms of their 
nonbasic components at a nondegenerate vertex. Let us also use N to denote the set of 
indices of nonbasic variables. If j E N, that is, x, = 0 at the vertex then by Proposi- 
tion 4.1 
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Continuity at vertices follows from this formula. It is clear that if x is in the relative 
interior of a face and the iterates converge to a vertex of Q then all the C, ( i  E N )  
must be positive (assuming nondegeneracy). Thus, the vertex is a minimum relative 
to Q. 

To study the asymptotic behavior of iterates near a nondegenerate optimal vertex, 
we express the mapping X ( x )  in terms of the nonbasic variables alone. Recall that x ,  
denotes the restriction of the vector x to the nonbasic variables. For every j G N, we 
have 

Since the basic variables are affine functions of the nonbasic ones, we are reduced to 
studying the asymptotic behavior of X, near the origin. We first change variables. Let 
y, = C,x, for i E N, and let y = ( y , )  ,,,. 

PROPOSITION 8.3. The change of variables y, = C,x, conjugates X, to 2, where for 
i E N ,  

in a neighborhood of the origin. 

The mapping fA, is not differentiable at the origin, but its directional derivatives 
along rays exist. As in the case of the vector field (see $9, it is now convenient to study 
2N in "polar coordinates". For convenience, assume without loss of generality ihat 
N = (1,. . . , n - in ) so 2, is a mapping from a neighborhood U of the origin in R"-"I 
into RnP"'. A vector y E R"-"' can be expressed as a product y = a u  where o >, 0 is a 
scalar and u E Rn-"' is a unit vector. Of course, a is just llyll and if y # 0 then 
u = y/ll yll. If .y 2 0 then u E S':Pn'P1 . In these polar coordinates gN is expressed as 

where u 2  = (u:,  . . . , u : _ , , ) ~  and a is sufficiently small. Let 

be defined by 
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PROPOSITION 8.4. For any p, 0 < p < I ,  there is an r > 0 such that W p  is dejined on 
[0 ,  r ]  x S:-"'-' and 

wp([O, r ]  x s:-"'-~) c [ O ,  r ]  x s ; - "~-~ .  

Moreover, the function ualues and the derivative of W and Z coincide at (0, u ) ,  that is, 
Z(0, u )  = W(0, u )  and Z'(0, u )  = W'(0, u ) .  

PROOF. All the assertions follow from the expression for W above and the chain 
rule for differentiation. 

The map Z seems simple as it maps rays to rays. The ray determined by a unit 
vector u is contracted by the constant factor I (u - pu' ( l .  This contraction constant is 
minimized at the unit vectors e' (i  = 1 , .  . . , n - m )  and maximized at e /  
where its value is 1 - p/ G. We will show that (0 ,  e /  J=) is an attractor for 
both Z and W. However, we do not know yet the precise domain of attraction of this 
point even for Z. Let G: ST- '  -+ s'"' + be defined by 

so G is just the second coordinate of Z. 
It is not known whether every interior point of ST-' tends to e/  fi under the 

iteration of G. 

I P \ 

I - -  0 Jn-m 
n - m  

\ O ( l - J 7 Z L P  11, 
and hence (0, e/ d G )  is an attractor for both Z and W. 

Thus, at e/ 4n-m with w tangent to s';-"'-', 
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PROPOSITION 8.6. There are a neighborhood U, of the origin in R";" and a 
neighborhood U2 c U, of the intersection of Ul with the line {I?,x, = . . . = 'n-rnx,,-m} 
such that 

(i) The set U2 contains a dejinite angle at the origin. 
(ii) For every x  E U2, 

for all i and j. 
(iii) There exist constants K, ,  K ,  > 0 such that 

for ull x  and q > 0. 

PROOF. We need only prove the comparable facts for i ; ( y )  and a definite angular 
wedge around the diagonal { y,  = . . . = y,, - ,, ). Let U3 be a neighborhood of 
(0, e/  6) consisting of points attracted to (0, e/ 6) under W, that is, for 

E U3, 

1 
lim W 4 ( u )  = 0, - 

'1-00 [ J n T e ] .  

The set of points in R"-" corresponding to U, contains an angular wedge about a 
small piece of the line { y, = . . . = y,-,). Moreover, since the contraction rates 
given by the eigenvalues of W'(0, e/ 4n-m) are stronger along the sphere (0) x 
S I , - ~ - ~  than along the line through e /  d=, any orbit W q ( u )  becomes tangent to 

the ray and the asymptotic rate of convergence to zero is the rate along the ray. This 
type of argument can be found in center-unstable manifold theory in [Sh]. 

Given a point x in the interior of the polytope and an optimal point x*, let 

1 
a , ( x )  = limsup -logIJXq(x) - x*ll 

4- m 4 

be the asymptotic rate of convergence to the optimum. We have shown 

COROLLARY 8.7. For a nondegenerate problem, 

a ,=  log 1 - - i GGi 1 
for a nonempty open set interior to the polytope. 

Barnes [Bar] shows that 
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for any interior point x. It is still an open question whether 

for all x interior to the polytope. 

9. The discrete version of the projective rescaling algorithm. In this section we 
analyze the boundary behavior of the discrete iteration of the projective rescaling 
algorithm. The linear programming problem is considered in Karmarkar's standard 
form ( K S F ) :  

Minimize cTx 

subject to Ax = 0 

x  >, 0, 

where c , x  E R n ,  A  E R m X n  and e =  (1  ,..., R". Let 

S  = { x  E R n :  eTx = 1 ,  x  > 0 )  and 

We denote the interior of the feasible domain by P ,  that is, P = P n {x E R": x > 0). 
The algorithm assigns to any point x E P a new point Y ( x )  defined as follows. Recall 
the matrix Afrom •̃1 and the vector 

For simplicity let us denote q ( x )  = q , ( x ) .  A unit vector, u ( x ) ,  in the direction of 
q ( x )  is given by 

The underlying projective transformation at an interior point x  is the following: 

Obviously, T x ( x )  = e / n .  In the transformed space the algorithm moves from the point 
e / n  to the point 

1 
Yf(x) = ;e  - - y ru (x )  where 
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and y is a constant which was originally chosen in [Karl as $. In the source space the 
new point Y(x) is equal to the inverse image of the point Y'(x) under the transforma- 
tion T,: 

For the sake of simplicity we replace r = I/ / n ( n  - 1) by r = l / n  and call the 
resulting vector Y(x) = Y,(x). It follows that 

In this section we assume nondegeneracy in the following sense. For any feasible point 
x, the submatrix of A, consisting of the columns with indices j such that x, > 0, has 
rank m .  We also denote by ~ ( x )  the orthogonal projection of the vector D,c into the 
nullspace of the matrix AD,, that is, 

LEMMA 9.1. Suppo~e { x V )  is a sequence of interior points corznerging to a boundag, 
point x0  CG dP.  Let J denote the set of indices J such that x:) # 0 ( J  # N ) .  Utder these 
conditiot~s, if the problem is nondegenerale, then 

lim ( ~ ( x " ) ) ,  = 0 
, I -  cc 

for every j 6L J and, moreover, the limil 

( 4 r Z ' ) ) ,  lim -- 
,,4 Jj x;' 

exists for eveiy j E J .  

PROOF. First, note that by the nondegeneracy assumption the matrix ( A D ? " A ~ )  ' 
tends to the matrix (AD$AT)- '  as v tends to infinity. Now, we have 
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The latter tends to 

COROLLARY 9.2. Suppose the problem is nondegenerate and the optimal objective 
function value equals zero. Under these conditions, if x E P is such that cTx > 0 then 
q ( x )  # 0 and hence the mapping Y ( x )  is smooth at x. 

PROOF. Suppose x is a feasible point such that q ( x )  = 0. Recall that q ( x )  is the 
orthogonal projection of the vector Dxc into the nullspace of A. This implies that q ( x )  
is also the orthogonal projection of the vector D,c - (cTx /n)e  into the nullspace of 
the matrix ADx. Thus, there exists a vector v such that 

C ' X  T 
D,c - -e = (AD,) v n 

Suppose first that x E P .  In this case we have 

and therefore both c and (cTx /n)~ , - ' e  induce the same linear functional on P. The 
vector D,,T1e is positive which contradicts the assumption that the optimal value is 0. 
Now suppose that x is a boundary point and let J  denote the set of j ' s  such that 
x ,  > 0. For every j P J we have 

which is a contradiction. 

LEMMA 9.3. The vector e is orthogonal to q ( x ) .  

PROOF. By definitions, q ( x )  is in the nullspace of eT if x is in the interior, and 
hence for every x in the polytope. 

For every J c N = (1,.  . . , n ) ,  let us denote L, = { x  E R": x, = 0 for j @ . I ) .  
Thus, L, is a linear subspace of dimension I J1. The set J  also determines a face of the 
polytope: a, = L, n P. Let e J  denote the vector consisting of 1's in the positions 
corresponding to J and 0's in all the other positions. We are interested in restrictions 
of the linear programming problem to faces of the polytope P. Specifically, the 
restricted problem corresponding to the set J is the following: 

Minimize cTx 

subject to x E a,. 
This restricted problem gives rise to a new vector field q,(x)  on the face a, by 
ignoring the vanishing coordinates (that is, those with indices not in J ) .  Thus, 
q, (x )  E L,. The T vector for the restricted problem is the same as the T vector for the 
original by Proposition 7.1 and 56: 

c Tx c Tx 
q , ( x )  = T ( X )  - - eN ' J ,  ~ ( x )  = T ( X )  - -eN 

I J I  n 
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and q(x)  may be written as the sum 

of mutually orthogonal vectors since eJ  is orthogonal to qJ(x) by Lemma 9.3 and eJ  
and q ,(x) lie in LJ which is orthogonal to e ' J. So we have 

LEMMA 9.6. If the problem (KSF) has a unique minimum, with nonnegative mini- 
mum value, then for a nonoptimal point x, 

( 9  llv(x)ll cTx 
(ii> + I I ? ~ J ( ~ ) \ ~  < 2cTx, and 
(iii> I l ~ ( ~ > l l  - IIqJ(x)ll > $(l/(n - IJI) - l/n)cTx' 

PROOF. Inequality (i) implies inequality (ii) by Lemma 9.4. The equality of Lemma 
9.4 divided by the inequality (ii) implies inequality (iii). Inequality (i) was proved in 
[Blu] and we provide here another proof. The point 

is in the interior of the polytope defined by 

AD,y = 0, 

The objective function (D,c)~Y is nonnegative on this polytope with equality only 
possible at the optimal vertex since every point in this polytope is a positive multiple of 
a point in D,-'P. Thus we have 

Now, q(x)  equals the projection of the vector D,c into the intersection of the 
nullspaces of the matrix AD, and the vector eT. Thus 

This implies the claim at interior points x. By continuity the claim (i) holds on the 
closed polytope and hence (ii) and (iii) follow. 
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Suppose still that the problem has a unique optimal solution. Consider the vector 

Obviously, for any real M f 0, 

It follows from Lemma 9.5 that there is a real number M such that 

For y < i, it follows from part (iii) of Lemma 9.6 that 

It thus follows that the point MDXYf(x) lies on the line segment between x and 
x - (y/11qJ(x)II)DXq(x) and thus Y(x) lies on the line segment between x and YJ(x), 
where Y,(x) is the point assigned by the algorithm when the problem is restricted to 
the face cP,. 

Let us denote by Y ~ ( x )  the transformation resulting from q iterations of Y, that is, 
y l (x )  = Y(x) and Y4+l(x) = Y(Yq(x)). 

Given a face QJ that does not contain the global optimum, let A' denote the 
submatrix of A consisting of the columns j such that j E J, and similarly let c', x' 
and e' denote the corresponding subvectors of c, x and e ,  respectively. The problem 
(KSF)  restricted to the face cP, is the following: 

Minimize ( c ' )  'XI 

subject to A'x' = 0, 

( e ' )  T ~ '  = 1, 

The vector q(x)  defined above for problem (KSF) is well defined for the problem 
(KSF,), where we denote it by q,(x). We associate with the face QJ a reducedpotential 
function 

$,(x) = 1 ~ 1 1 n c ~ x  - lnx,,  
J E J  

defined only for interior points of the face. We denote the interior of the face QJ by 
6,. 

THEOREM 9.7. Suppose the linear programming problem ( KSF) is nondegenerate and 
the optimal objective function value is 0. Under these co~iditions 

(i) The transformation Y(x) extends continuously tc/ the boundary of P ,  leaving each 
face invariant. 
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(ii) If x lies on a face QJ then Y ( x )  lies on the line segment between x and the point 
Y,(x) which is assigned by the algorithm when the problem is restricted to the face @,,. 

(iii) For every x E P ,  the limit h ( x )  = lim, , ,Y4(x) exists. Moreover, if QJ is the 
smallest face that contains x then X ( x )  is precisely the minimum of the reduced potential 
function with respect to the face QJ. 

(iv) The mapping Y ( x )  is smooth at every x E P except, perhaps, at the optimal 
vertex of ( K S F ) .  

(v) Every nonoptimal vertex is a local repeller. 

PROOF. The continuity of Y ( x )  at the optimal vertex follows from the convergence 
of Karmarkar's algorithm. It remains to analyze the vertex behavior and the iterates 
Y*(x ) .  Let x be a nonoptimal vertex. Let 

Since eTx = 1 and x E R", it follows that llxll < I and hence by the Cauchy-Schwartz 
inequality that IxTv(x)l < Ilq(x)II SO + ( X I  is well defined. Moreover, by Corollary 9.2, 
+ ( x )  is positive and differentiable away from the optimal vertex. Thus, 

Consider the derivative dY/dx.  Since ( , ( x )  = 0 at any vertex, we have 

By Proposition 7.5, for any vertex x ,  

By Lemma 9.8 below, p ( x )  > 0 at a vertex. Thus, 

and hence x is a repeller (a source; see [Sh]). 

LEMMA 9.8. If x E P is such that f , ( x )  = 0 then p ( x )  = xT7(x)  > 0 with equality 
holding only at the optimal vertex. 

PROOF. We have from 

that 

If x ,  = 0, by Lemma 9.1, ( ~ ( x ) ) ,  = 0. Thus, all the nonzero components of ~ ( x )  have 
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the same sign as p ( x ) .  by Lemma 9.3, 

so e T r ( x )  = cTx > 0 and hence p ( x )  2 0 .  
We now return to an analysis of the iterates Y ~ ( x ) .  In the following lemma we 

consider faces of the polytope P which do not contain the optimal vertex. 

LEMMA 9.9. The zeros of the vector Jield q J ( x )  in bJ are zeros of the gradient vector 
field of the reduced potential function q J ( x )  in 6J. 

PROOF. AS in Corollary 9.2, q J ( x )  = 0 if and only if the vector 

is orthogonal to the nullspace of A'. The gradient of the reduced potential function is 

so the gradient is zero if this vector is orthogonal to QJ. Since the two vectors are 
multiplies of each other, they are simultaneously orthogonal to QJ. 

Now it is not hard to see (as in [Karl) that if q J ( x )  + 0, then the value of the 
potential function at any point y # x in the line segment between x and Y J ( x )  is 
strictly less than its value at x,  i.e., + , ( y )  < + , ( x ) .  This is true because Karmarkar's 
proof is valid for all constants strictly between 0 and y and these points generate the 
line segment. Suppose x E 6J where QJ does not contain the minimizing vertex, so 
cTx > 0 on QJ. The function qJ(YJ4(x))  decreases in value and by compactness the 
sequence { Y , ~ ( x ) )  has limit points in 6J. Any limit point must be a zero of q J ;  for if 
q, -t w and Y , ~ ( x )  - x 0  and q J ( x O )  z 0 then q J ( Y ( x O ) )  < q J ( x O ) .  For q, suffi- 
ciently large #,(yyi'(x)) < J I ~ ( x O ) ,  but then the subsequent iterates of Yfl (x)  ( q  > q,)  
cannot return to a small neighborhood of x0 where 4 takes on values greater than 
qJ(Y?+'(x)) .  Since qJ has only one critical point in 6J, any x in 6J tends to this 
point. If QJ contains the minimizing vertex, 6J has no critical points of 4, and by a 
similar argument as above Y?(x) tends to the minimizing vertex as q tends to infinity. 

Appendix A. The linear rescaling algorithm applied to the hypercube. Consider the 
general linear programming problem on the unit cube 

I 1  

Maximize cJxJ 
j 

Let c = ( e l ,  . . . , c,, O ,O , .  . . , O ) T  E R ~ " .  The standard form of the problem is to maxi- 
mize cTx ( x  € R ~ " )  subject to Ax = e,  where the underlying matrix is 
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and e = (1,. . . ,1) E R". Let T, = 1 - x, ( J  = 1,. . . , n) and let us restrict attention to 
- 

vectors of the form x = (x,,. . . , x,,, x,,. . . , X,)T E R ~ " .  We denote by D a diagonal 
- - 

matrix of order 2n whose diagonal entries are x,, . . . , x,,, x,, . . . , x,,. The vector field 
associated with the linear rescaling algorithm assigns to a point x the vector 

Now, 

It follows that 

We now have the expression for the vector field: 

It is interesting to examine the orbits in this vector field. Fortunately, the underlying 
differential equations are separable. For every J (j = 1,. . . , n), 

It follows that 

The solution is given implicitly by 

where 

It follows that for every J ( J  = 1,. . . , n) the function x, = x,(t) is monotone increas- 
ing or decreasing as e, is positive or negative, with x,(- co) = 0 or x,( - co) = 1 and 
x,(oo) = 1 or and x,(w) = 0, respectively. Suppose, for simplicity, that c = (1,. . . , 
It is easy to verify that for every c > 0, if C, - C, > 2/c then there exists a time t such 
that x,(t) > 1 - c while x,(t) < c.  Consider any permutation (I,, . . . , I,) of the 
indices (1,. . . , n). For simplicity of notation, let us assume though that (i,, . . . , in) = 
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(1, . . . , n) .  Suppose we choose the initial point x(0)  to be of the form x0 = x0 (6 )  = 

( 6 ,  S2, .  . . , where 6 > 0. For every 6 > 0, there exists a S > 0 such that the orbit 
through the point xO(S )  visits the vertices (0, .  . . , O)T, (1,0, .  . . , O ) T ,  (I,], 0 , .  . . , O ) T , .  . . , 
(1 , .  . . , in this order. Note that there is a one-to-one correspondence between such 
permutations of the set of indices and ascending paths of vertices of the hypercube. 
Thus, the following is true: 

PROPOSITION A.1. For any linear programming problems on the unit hypercube, every 
ascending path of adjacent vertices can be approximated by an orbit in the vector Jield 
induced by the linear rescaling algorithm. 

Appendix B. Projective rescaling trajectories on the unit simplex. We consider 
linear programming problems on the unit simplex A ,  that is, problems of the form 

Minimize crx 

( s )  subject to e 'x = 1 ,  

where e = (1 , .  . . , C ,  x E Rn. Furthermore, to simplify the statement of the projec- 
tive rescaling algorithm, we restrict attention to those problems in which the optimal 
value of the objective function is zero. Let x be any interior point, that is, x E R", 
x > 0 and eTx = 1 and let D = D, = Diag(x,, . . . , x,). Obviously, De = x. 

The projection of any vector u E Rn on the subspace { z :  eTz = 0 )  is equal to 

The search direction is derived as follows. The interior point x determines a projective 
transformation T, defined by 

Thus, T,(x) = e /n .  The search direction in the image space is computed by projecting 
the vector Dc on the subspace { z :  eTz = 0 ) .  This projection equals 

1 
Dc - - - (eT~c)e  

and also 

1 
Dc - - ( c T x ) e .  n 

Thus, in the image space the algorithm moves from the point e /n  to a point of the 
form 

where t > 0 is a certain scalar. The inverse image of such a point is equal to 
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Now subtract x as in $1 to find a negative multiple of t,, which is proportional to 
- D ~ C  + ( e T g 2 c ) x .  In other words, 

PROPOSITION B.1. The search direction is at x is a multiple of 

A useful interpretation of the search direction is as follows. Imagine the vertices of 
the simplex (that is, the unit vectors e l , .  . . , e " )  are repelling. Suppose the force at x 
that pushes away from el  is proportional to x;!,. Then the direction of the resultant of 
these forces is the search direction at x.  In particular, if c = el = (1,O, . . . , o ) ~  then for 
every x ( x  > 0, eTx = I ) ,  the movement at x is away from the point el. This means 
that all the trajectories are straight lines, namely, starting at an interior point x, we 
move along the line determined by x and el,  away from el,  until we hit the face where 
the first coordinate vanishes. The following proposition generalizes this observation. 

PROPOSITION B.2. Suppose the objective function c has the form c = (c,, . . . , c k ,  

0, .  . . ,O)' where c,, . . . , C ,  > 0 ( k  < n ) .  Let x0 be an interior point of the simplex. 
Under these conditions, the trajectory induced by c, starting at xO, has the following 
properties: 

(i) For every i ,  j > k ,  for any x along the path, 

and, moreover, the path hits the point 

(ii) The projection of the path on the set of the first k coordinates is the same as the 
projection on the first k coordinates of the path starting at (xp, . . . , x:, I:=, + ,  x ; ) ~  where 
the problem is 

Minimize c,x, + . . . + c,x, 

subject to x ,  + . . .  +x,,  , = 1 ,  

PROOF. It is easy to verify the claims by looking at the differential equations 
defining the path: 

i , = x ,  ( i = k + l ,  ..., n ) .  

Let us denote by z h  an n-vector in the unit simplex, consisting of 0's in the first k 



BOUNDARY BEHAVIOR OF INTERIOR POINT ALGORITHMS 135 

positions followed by equal coordinates in the last n - k positions. Thus, 

and so on. The next proposition asserts that there exist objective functions that induce 
on the simplex trajectories that visit the neighborhoods of all the points z' ( i  = 

O , l ,  ..., n - 1). 

PROPOSITION B.3. For any 8 > 0 ,  there exists an objective function vector c ( c ,  > 0 ,  
i = 1, .  . . , n - 1, cn = 0) ,  such that in the problem ( S ) ,  the trajectory starting at the 
center zO visits the &neighborhoods of the points zl ,  . . . , z " -  and then hits the optimal 
point zn-' = en.  

PROOF. Let 8 > 0 be any number. Consider first the problem ( S )  with the 
objective function vector c0 = e1 = (1,0,  . . . , o)? With this vector, starting at zO,  the 
trajectory hits the point zl. Let us now consider an objective function vector of 
the form c1 = (1 ,  E ,  0,. . . , O)T, where E > 0. With the vector cl,  starting at zo ,  the 
trajectory hits the point z2.  However, by continuity, there exists an Z l  such that the 
trajectory will also visit the 6-neighborhood of zl ,  provided r < Z,. Let us now set 
c = r1 where O < rl < E,, so c' = (1,  r,,O,. . . , O)T. Suppose, by induction, we have 
defined 

as an objective function vector such that with ck ,  the trajectory starting at zO, visits the 
&neighborhoods of the points z l , .  . . , zk  and then hits the point zk+' .  Consider now 
an objective function vector of the form ck+' = (1, e l ,  . . . , c k ,  q 0 , .  . . , o)', where c > 0. 
With the vector ck+', starting at zO,  the trajectory hits the point z k .  However, by 
continuity, there exists an E,,, such that the trajectory will also visit the &neighbor- 
hoods of the points zl ,  z2 , .  . . , z k + ' ,  provided c < ;,+ ,. We now set r = € ,+ ,  where 
0 < € ,+I  < f k + l ,  SO 

Our proposition follows with k = n - 2. 

COROLLARY B.4. For every 8 > 0, there exist an objective function vector c und un 
interior point of the simplex, x ,  such that the projective rescaling trajectory induced by c, 
starting at x ,  visits the 8-neighborhoods of all the vertices of the simplex. 

PROOF. First, for any r > 0 ,  consider a projective scaling transformation, T, defined 
by 

Every face of the unit simplex is invariant under T,. It is easy to verify that when r 
tends to zero, the point z' tends to the vertex el+' ( i  = 0 , 1 , .  . . , n - 1). It follows 
from Proposition B.3 that for every r there exist objective functions inducing trajec- 
tories that visit the neighborhoods of the points T , ( z i )  ( i  = 0 ,1 , .  . . , n) .  This implies 
our claim. 
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It is easy to see that the arguments used in this appendix actually suffice for proving 
a stronger result: 

PROPOSITION B.5. Let P E R" be any convex polyhedral set of dimension n and 
suppose x E P is any nondegenerate vertex. Under these conditions, there exist n pairwise 
distinct points x l ,  . . . , x n  E P,  belonging to faces of decreasing dimensions which contain 
x, such that for every 6 > 0, there exists an objective function vector c that satisjies the 
following: 

(i) the vertex x maximizes the function cTx over P ,  and 
(ii) the projective rescaling trajectory through x1  visits the 6-neighborhoods of all the 

points x l ,  . . . , xn. 

Appendix C. A lemma on orthogonal projections. The following lemma is a special 
case of Corollary 1 in [PI. We thank L. D. Pyle for giving us this reference. 

LEMMA C.1. Let A E Rml X n  and B E Rm2 '" be matrices such that ABT = 0. Under 
these conditions, the orthogonal projection of any vector u E R" on the intersection of the 
nullspaces of A and B can be obtained as follows. First, project v orthogonally into the 
nullspace of B ,  and then project this projection orthogonally into the nullspace of A.  

PROOF. Without loss of generality, assume A and B are of full rank. Let 

Since A B T  = 0,  it follows that 

Also, since AAT and B B ~  are nonsingular (even positive-definite), C c T  is nonsin- 
gular. The orthogonal projection of v into the nullspace of C is given by 
[ I  - C T ( ~ ~ T ) p l ~ ] ~ .  It follows that 

On the other hand, the sequence of projections stated in the lemma results in the vector 
[ I  - A ~ ( A A ~ ) ~ ' A ] [ I  - B T ( B B T ) - ' ~ ] u .  The lemma now follows since ABT = 0. 

Appendix D. On the general barrier method in inequality form. In this appendix we 
consider a more general barrier function technique, where the barrier function is not 
necessarily the logarithm function. We also work here with the linear programming 
problem in the inequality form 

Minimize cTx 

subject to A x  2 b 

where A E Rn'X"  is of full rank. We assume the feasible domain is of full dimension. 
The barrier function method works with a related function 
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where A, denotes the ith row of the matrix A, p is a positive parameter which is 
driven by the algorithm to zero, and g(() is a strictly convex function over the positive 
reals (g"(x) > 0 for x > 0) such that g(5) tends to infinity as 5 tends to zero. The 
common choice, which was discussed throughout this paper, is g(5) = -In 5. 

The Newton barrier function technique amounts to taking a Newton step with 
respect to the problem of minimizing f(x) ,  followed by an update of the value of p. 
Let x be a point such that Ax > b and let DL denote a diagonal matrix of order m: 

Di  = ~ i a ~ ( g ' ( A , x  - b,), . . . , g ' ( ~ , x  - b,)). 

It is easy to check that the gradient of f (x )  is 

where e = (1,. . . , l )T  E Rm. Let 

Dd' = Diag(gU(A,x - b,), .  .., gU(Amx - b,)) 

The Hessian matrix is thus 

H,(x) = p ~ T ~ ; t ~ .  

The direction given by Newton's method is the same as the direction of the vector 

So far we have not specified the choice and update rule of p. Consider first the case 
where p is taken at its limit, that is, we set p to zero after the Newton direction has 
been computed. In other words, u = (ATD;'A)-'c. 

REMARK D.1. We note that with g(() = -In ( this choice of p yields the analogue 
of the linear rescaling method for the problem in inequality form (see also [GMSTW]). 
The latter can be seen as follows. Given an interior point x, consider the ellipsoid 

In other words, 

E = { y :  (ID,-'(AY - b)  - ell < 1). 

The direction u corresponds to moving towards the minimum of the function cTy over 
E. Thus, consider the following optimization problem with respect to u: 

Minimize cT(x + U )  

subject to I ( D , - ' [ ~ ( x  + u) - b] - ell = 1. 

Since DXp1(Ax - b) = e ,  it follows that this problem is equivalent to 

Minimize cTu 

subject to I(DclAu(l = 1 
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However, we are interested only in the direction of the vector u ,  so we can write the 
following set of equations for the optimality conditions: ( A T ~ c 2 ~ ) u  = C .  This implies 
our claim that the choice p = 0 yields the analogue of the linear rescaling algorithm. 
Notice how the linear rescaling algorithm is simplified when the problem is posed in 
the inequality form rather than the standard form. 

We now return to general barrier functions g and consider the limiting behavior of 
the direction 

as the point x approaches the boundary of the feasible domain. Recall that the matrix 
A is assumed to be of full rank and the diagonal entries of D," are positive. The vector 
u = u(x) is the solution of the system (ATD,"A)u = c. An equivalent system is 
obtained by defining w = D,"Au: 

Let R = R(x)  denote the following diagonal matrix: 

The equations that determine u and w are the optimality conditions of the problem 

Minimize 1 1  RW 11  

subject to ATw = C .  

For an interior point x, the optimal solution is unique, w = w(x). The optimization 
problem ((O(F)) is well-defined but the solution is not necessarily unique. Suppose x 
tends to a boundary point 2. Let us assume that the function g(5) that underlies the 
barrier method is convex, twice continuously differentiable, and g"(5) tends to infinity 
as 5 tends to zero. Since g"(0) = co, the matrix R tends to a finite limit R (with some 
diagonal entries equal to zero), which we denote by R(2). Assume, without loss of 
generality, that for i = 1,. . . , I, A,2 > b,, whereas for i = I + 1,. . . , m,  A,2 = b,. Let 
us rewrite the optimization problem in the form 

subject to AFwl +  AT^' = c ,  

where the indices 1 and 2 correspond to the first I and the last m - 1 rows of A ,  
respectively, and describe submatrices accordingly. Denote the optimal value of the 
optimization problem (O(x)) by f (x). 

PROPOSITION D.2. lim,,, f (x)  = f (F). 

PROOF. First, for any w such that ATw = C, 
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and hence 

limsup f ( x )  G ] l R ( ~ ) w 1 1 ~ .  
s+x' 

Let Z be an optimal solution for (O(X)). It follows that 

limsup f ( x )  < I ( R ( X ) Z ~ ] ~  = f(X) 
2. + .T 

Second, 

It follows that 

lirn inf f ( x )  2 lirn inf]~R'(x)  w1(x))12 
x - 4 4  x-x 

and ( 1  R1(x) w1(x)ll is bounded in a neighborhood of X, since f (x)  is. This implies that 
wl(x) is bounded in a neighborhood of X. Now, let w* be any accumulation point of 
wl(x) as x tends to 2 such that 

11~'(X)w*ll = liminf](R1(x) wl(x)ll. 
.x + ? 

Obviously, 

This finally implies our claim. 

P R ~ P ~ S I T ~ ~ N  D.3. The vector R(x)w(x) converges as x tends to 2. 

PROOF. Let L denote the set of all vectors w1 E R'  for which there exists a vector 
w 2  R " l - ~  such that Arw '  + A ; W ~  = C. Let us denote by wl(F) the unique solution of 
the following optimization problem (in terms of wl): 

Minimize 1 1  ~ ' ( 2 )  w1)12 

subject to w' E L .  

Since R2(X) = 0, 

On the other hand, for any x we have wl(x) E L, so 

Since R(x )  tends to R(X), 

liminf)) R1(X) W ' ( X ) ~ ) ~  > f (X) and 
,y+\- 

lirn inf 1 1  R1(x) wl(x) 1 1 2  > f (X). 
x 4 x '  
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From Proposition D.2 it follows that 

This implies that ~ [ R * ( X ) W ~ ( X ) ( ~ ~  tends to zero, so R 2 ( x ) w 2 ( x )  converges to zero. 
Moreover, i t  now follows that ~ ~ ~ ' ( x ) w ' ( x ) l l '  converges, and its limit is necessarily 
equal to f ( x ) .  Any accumulation point of w l ( x )  (as x tends to ,?) is an optimal 
solution to ( O , ( x ) ) .  However, the latter has a unique optimal solution. It finally 
follows that w l ( x )  converges to wl(.F). This completes the proof. 

The behavior of the direction of u ( x )  as x approaches a boundary point is 
summarized in the following theorem. 

THEOREM D.4. Suppose the function g ( 5 )  is convex, twice continuously differentiable, 
and ~ " ( 5 )  tends to injnity as 6 tends to zero. Under these conditions, the vector jeld 
u = v ( x )  extends continuously to the boundary of the feusible domain. Moreover, the 
direction of v ( x )  tends to a direction parallel to any face as x approaches @. 

PROOF. In Proposition D.2 we showed that, as x tends to F, the vector Rw tends to 
a vector of minimum norm relative to 3. Thus, (D:')-'w also tends to a finite limit, 
and Au tends to the same. Since A is of full rank, u converges to a limit. Moreover, for 
every i such that A,F = b,, (D,")i lw, tends to zero so, necessarily, A,u tends to zero. 
Obviously, this means that the direction of u tends to a direction parallel to the face 
that contains the point .F in its interior. 

Theorem D.4 generalizes to any fixed value of p. The direction u is given in general 
by the equation 

where d;  = D.:e. Let 

We now have an equivalent system 

With R denoting the same matrix as above, the equations that determine u and u are 
precisely the optimality conditions of the problem 

7' 
Minimize ill Rull' + [ (  ~ , " ) ' d : ]  u 

subject to ATu = c 

We first observe the following: 

PROPOSITION D.5. Suppose g ( 5 )  is a real-valued function satisfving the following 
conditions: 

(i) g ( t )  is differentiable in an open interrial (0,  a ) ,  
(ii) g ( 5 )  tends to injnity as 5 tends to zero, 
(iii) the derivative g r ( t )  is monotone. 

Under these conditions, the ratio g ( t ) / g f ( ( )  tends to zero with 5. 
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PROOF. Since g' is monotone, g' tends to - co at 0. Thus, g is monotone 
decreasing, and hence invertible, in a neighborhood of 0. For y near 0, let y* denote 
the smallest value such that g(y*) = $g(y). Obviously, y* > y. Since g is convex and 
differentiable, 

Thus, 

It suffices to show that y - y* tends to 0 with y. Now pick x, and define x ,  
(0 6 x ,  < x,_,) by g ( x , )  = 2 g ( x , _ , )  for I >, 1. Obviously, the sequence {x,) is 
monotone decreasing and converges to 0, so x , - ,  - x ,  tends to 0. If y lies between x ,  
and x , - ,  then y* lies between x , - ,  and x ,  -,. It follows that 

which tends to 0. 
The asymptotic behavior of the direction of u in the general case is summarized as 

follows: 

THEOREM D.6. Suppose the function g(5) is convex, twice d~flerentiable continuous@, 
and g"(6) tends monotonically to injinity as 6 tends to zero. Under these conditions, the 
vector field 

(where I*, is fixed ) extends continuously to the boundary of the feasible domain. Moreover, 
the direction of u ( x )  tends to a direction parallel to any face @ us x approaches @. 

PROOF. By Proposition D.5 and our assumptions about the underlying function 
g(<), the vector d = (D,")-'d: tends to a finite limit and, moreover, if A,x - h, tends 
to zero then also dl  tends to zero. As in the proof of Proposition D.3, it follows that 
here the vector Ru approaches a finite limit and hence the vector Av = R2u + pd 
approaches a finite limit. Moreover, it also follows that the direction of u tends to be 
parallel to the face as before. 

Appendix E. The behavior of the barrier method in inequality form near vertices. 
Let us now consider the behavior of the general Newton barrier algorithm (for 
problems in inequality form) in the neighborhood of a nondegenerate vertex. Let V 
denote any nondegenerate vertex of the feasible polyhedron and suppose, without loss 
of generality, that the first n constraints are tight at V. Let B denote the ( n  X n) -  
submatrix of A consisting of the first n rows. Thus, B is nonsingular. Also, let N 
denote the submatrix consisting of the other m - n rows of A. Let DL, D;, D; and 
D /  denote the square submatrices of Di and D," corresponding to the indices of B 
and N as suggested by the notation. Obviously, 

When the point x tends to the vertex V,  the diagonal entries of DL tend to infinity 
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while those of D{ tend to some finite limits. It follows that 

so ( ATDifA)-'  is asymptotically equal to B ( D ' B  T .  

Consider the approximate field in the neighborhood of the vertex V. The underlying 
differential equation of the approximate field is the following: 

We gain more insight if we change variables as follows. Let s = Bx - b,. The problem 
in terms of s is 

Minimize c7B s 

subjectto A B - ' > ~ - A B - ~ ~ , .  

Let 5 = B-'c. Also, note that S = BR. It follows that the differential equation in terms 
of s is the following: 

Note that 

Under our assumptions about the function g, the dominant term in the latter is 
- p ( D : ) - ' ~ h e .  Interestingly, when g ( [ )  = -In([) this has a very simple form: 
- D(;)- 'Dhe = s .  This shows that for any fixed p > 0, if x is sufficiently close to the 
vertex V then x is repelled from V. 

Appendix F. Differentiability of the linear rescaling vector field. In this appendix we 
prove the differentiability of the linear rescaling vector field on the entire feasible 
region. Thus, we have here another proof of the continuity already proven in $2. We 
use the same notation as in $2. 

We consider points x in P = { x :  Ax = b, x 0}, where the problem is to maxi- 
mize c7x. Suppose the point x tends to Y. Denote N = (1,. . . , n } .  Let I,  denote the 
set of indices i such that 2, > 0 and let I, = N \ I,. Let A, ,  i = 1,2, denote the 
submatrix of A consisting of the columns with indices in I,. Let R ,  and R ,  denote 
the subspaces of Rn corresponding to the sets I,, I,. Also, for any n-vector x denote by 
x' a subvector corresponding to I,. 

We use the following notation: 
E = { y :  Ay = 0 ) ;  this is a fixed subspace in R", 
c-The objective function vector; this is a fixed vector in Rn,  
El = E n R, ;  this is a fixed subspace in R", 
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PROOF. Since g' is monotone, g' tends to - oo at 0. Thus, g is monotone 
decreasing, and hence invertible, in a neighborhood of 0. For y near 0,  let y* denote 
the smallest value such that g ( y * )  = i g ( y ) .  Obviously, y* > y. Since g is convex and 
differentiable, 

Thus, 

It suffices to show that y - y* tends to 0 with y. Now pick x ,  and define x ,  
( 0  < x ,  < x , _ ~ )  by g ( x l )  = 2 g ( ~ , - ~ )  for i 2 1. Obviously, the sequence ( x , )  is 
monotone decreasing and converges to 0,  so x , - ,  - x ,  tends to 0. If y lies between x ,  
and x , _ ,  then y *  lies between x ,-., and x ,-,. It follows that 

which tends to 0.  
The asymptotic behavior of the direction of v in the general case is summarized as 

follows: 

THEOREM D.6. Suppose the function g ( c )  is convex, twice diferentiable continuously, 
and g"(5) tends monotonically to injinity as [ tends to zero. Under these conditions, the 
vector jield 

(where p is fixed ) extends continuously to the boundary of the feasible domain. Moreover, 
the direction of v ( x )  tends to a direction parallel to any face cP as x approaches a. 

PROOF. By Proposition D.5 and our assumptions about the underlying function 
g ( [ ) ,  the vector d = (Di')- 'd; tends to a finite limit and, moreover, if A,x - h, tends 
to zero then also d ,  tends to zero. As in the proof of Proposition D.3, it follows that 
here the vector Ru approaches a finite limit and hence the vector Av = R2u + pd 
approaches a finite limit. Moreover, it also follows that the direction of v tends to be 
parallel to the face as before. 

Appendix E. The behavior of the barrier method in inequality form near vertices. 
Let us now consider the behavior of the general Newton barrier algorithm (for 
problems in inequality form) in the neighborhood of a nondegenerate vertex. Let V 
denote any nondegenerate vertex of the feasible polyhedron and suppose, without loss 
of generality, that the first n constraints are tight at V. Let B denote the ( n  x n)-  
submatrix of A consisting of the first n rows. Thus, B is nonsingular. Also, let N 
denote the submatrix consisting of the other m - n rows of A. Let DL, D;, D; and 
DG denote the square submatrices of Di and D,:' corresponding to the indices of B 
and N as suggested by the notation. Obviously, 

When the point x tends to the vertex V, the diagonal entries of D i  tend to infinity 
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while those of D; tend to some finite limits. It follows that 

so ( ATD;'A) '  is asymptotically equal to B-'(  D ; ) ' B  T. 
Consider the approximate field in the neighborhood of the vertex V. The underlying 

differential equation of the approximate field is the following: 

We gain more insight if we change variables as follows. Let s = Bx - b,. The problem 
in terms of s is 

Minimize cTB - 's 

subject to AB-'  > b - A B -  'b, .  

Let F = B - T ~ .  Also, note that 4 = B i .  It follows that the differential equation in terms 
of s is the following: 

Note that 

Under our assumptions about the function g, the dominant term in the latter is 
- p ( D ; ) - l D ~ e .  Interestingly, when g ( t )  = -In(() this has a very simple form: 
- D 1 D ; e  = s. This shows that for any fixed p > 0,  if x is sufficiently close to the 
vertex V then x is repelled from V. 

Appendix F. Differentiability of the linear rescaling vector field. In this appendix we 
prove the differentiability of the linear rescaling vector field on the entire feasible 
region. Thus, we have here another proof of the continuity already proven in 52. We 
use the same notation as in 52. 

We consider points x in P = {x:  Ax = b, x >, 0 ) ,  where the problem is to maxi- 
mize cTx. Suppose the point x tends to x. Denote N = (1,. . . , n) .  Let I, denote the 
set of indices i such that 2, > 0 and let I ,  = N \ I,. Let A, ,  i = 1,2, denote the 
submatrix of A consisting of the columns with indices in I,. Let R,  and R ,  denote 
the subspaces of Rn corresponding to the sets I,, I, .  Also, for any n-vector x denote by 
x' a subvector corresponding to I,. 

We use the following notation: 
E = {y:  Ay = 0); this is a fixed subspace in R", 
c-The objective function vector; this is a fixed vector in R", 
El = E n R,; this is a fixed subspace in R", 
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F-The orthogonal complement of El in E; also fixed, 
7,-The orthogonal projection of D,c into D;'E, eventually extended continuously 

to P; 
F,-The orthogonal complement of D,-'El in D,-'E, 
qF,-The orthogonal projection of D,v into F,. 
We wish to show that DJ, is differentiable as a function of the point x even at 

boundary points Y of P. We will show below that D,q,, is differentiable with zero 
derivative on the boundary, and that qF, tends to zero as x tends to F. 

PROPOSITION F.1. For euety K > 0, there exists a neighborhood NK of X such that for 
all interiorpoints x E NK and u E D,-'F, llu211 >/ ~llu'l l .  

PROOF. Since E n Rl = El, we have F n R, = 0. Thus, the angle between any 
vector in F and any vector in R ,  is bounded away from zero. In other words, there 
exists a constant C > 0 such that, for u = (ul, u2) E F, ~ l l u ~ 1 1  > llulll (with equality 
holding at u1 = u2 = 0). It follows that for every x > 0, 

minix,: j E I,) 
1 1  D , - ' U ~ I I  C 1 1  D;'ulll and 

maxix,: j E 1 2 )  

lim 1 1  D,?u211 = CO. 
X + X  1 1 ~ ; ~ ~ ~ 1 1  

(Note that min{x,: j E Zl) tends to a positive limit whereas max{x,: j E 12)  tends to 
zero.) This implies our claim. 

PROPOSITION F.2. Given K > 0, let NK be a neighborhood of Z satisfying the 
condition of Proposition F.1. Let x E NK be an interior point, let w = (wl, w2) E D,-'F, 
and let u be a unit vector in DL1E1. Under these conditions, 

PROOF. Since u2 = 0, we have 

By Proposition F.l, 

and this completes the proof. 
For any flat M c R" and any w E R", let n ( w ;  M)  denote the orthogonal projec- 

tion of w into M. 

PROPOSITION F.3. Given K > 0, let NK be a neighborhood of F as in Proposition F.1. 
Let I denote the dimension of Fl. Under these conditions, for every w E DL'F, 

and 
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PROOF. Let { u l , .  . . , u ' )  be an orthonormal basis of DL1E1. Then, by Proposition 
F.2, 

Recall that F, is the orthogonal complement of D-;'El in D;'E, so 

since w E DLIF. This implies the rest of the claim. 

PROPOSITION F.4. Under the conditions of Proposition F.3, for every f = ( f  ' ,  f 2 ,  E 

Fx 9 

PROOF. There is a point e = e( f )  E DLIE, such that f + e( f )  E D;'F. Thus by 
Proposition F.2 

and since f and e( f )  are orthogonal, Proposition F.3 gives 

PROPOSITION F.5. The orthogonal projection II(D,c; F,) tends to zero as x tends 
to x. 

PROOF. Let { f ', . . . , f 7 be an orthonormal basis of F1. We represent the subvec- 
tors of f '  corresponding to the sets I ,  and I ,  by f ( ' 3 ' )  and f respectively. We have 
for every i 

By Proposition F.4, there exist constants K, and C,, both tending to zero as x tends to 
F, such that 

~ l f ( ~ ~ ' ) l \  G ~ ~ ~ ~ f ( ~ ~ ~ ) ~ ~  and ~ ~ j ( ' - l ) ~ ~  G C,. 

We now use the Cauchy-Schwartz inequality to estimate 

G IIxlllm llclllCx + llx211, llc211 l l f ( 1 ' 2 ) 1 1  

Thus, (D,c)TfJ tends to 0 as x tends to x and 

tends to zero. 
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Let vD,lEI denote the orthogonal projection of Dxc on DF'E,. Then q, ;~, ,  is real 
analytic in a neighborhood of 2. Thus the vector 9 ,  = vF, + qD,  l C 1  extends continu- 
ously to the boundary point 2 with qFy = 0. Note that at a boundary point 2, 7 7 ,  is the 
orthogonal projection of D,IC' into D,IE,. Now, 

From the proof of Proposition F.l and Proposition F.4, 

c min{x,: j E I,) 
vf"/ .  max{r,: j t I,) IF\' 

and qF,, tends to zero, SO 

Since max{x,: j E I,)/((x - 211 is bounded and l(qFy21( tends to zero we have 
1 1  DgF, l ( / l lx  - 211 tending to zero as x tends to 2 .  We finally have 

THEOREM F.6. DJ,  is differentiable at 2 and D,qF, has zero derivative at i. 

PROOF. The computation above applies to every face in which 2 lies, to prove that 
D g F ,  has zero derivative at 2 .  

REMARK F.7. Having proven the differentiability, we can now give an explicit 
expression for the derivative. Let us denote U = U(x) = D J ,  E R" and let U1(x) E 
~ n X n  denote the derivative. If x is interior the vector U is determined by the following 
set of equations in U and W: 

Differentiation gives 

The interpretation of this system is that the j t h  column of U t ( x )  is equal to D,, times 
the orthogonal projection of the j th  column of the matrix M = 2DT3D,(, ,  into the 
nullspace of the matrix AD,. However, since M is diagonal, the j th  column of U' 
turns out to be the orthogonal projection of Ci,(x)e//(xf) into that nullspace. 
Interpretations can be developed for higher order derivatives using the same idea. 
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