A General NP-Completeness Theorem

Nimrod Megiddo*

(Revised)

Abstract. A detailed model of a random access computation over an ab-
stract domain is presented, and the existence of an NP-complete problem is proven
under broad conditions which unify Cook’s theorem and recent results in the real
number model by Blum, Shub and Smale.

1. Introduction

Blum, Shub and Smale [2] formalized a model of computation over a general ring. They
proved an analogue of Cook’s theorem [3] over the reals. Smale [4] has recently raised
the question of existence of NP-complete problems relative to “linear” machines, i.e.,
machines which add, subtract, multiply by constants, and branch, depending on the sign
of a number.

My motivation for writing up this note is the encouragement I received from Steve
Smale. In a number of conversations we had on the subject at IMPA, I said I could prove
a general theorem on the existence of NP-complete problems, but I was not particularly
excited about dealing with all the details. Steve convinced me to a certain extent that
there were some subtleties involved, and that I should indeed work under a precise model.

In this note I indeed state a theorem about the existence of NP-complete problems
in general. The model of computation unifies the results of Cook and of Blum, Shub
and Smale. In particular, it gives an affirmative answer to Smale’s question. I prefer to
present the model in terms more familiar to computer scientists, namely, using RAMs
instead of flowcharts. In Section 2 I define an abstract domain of computation. The
model is described in Section 3. The problem of satisfiability over the abstract domain
is discussed in Section 4 and its NP-completeness is proven.

*IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, and School of
Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel. Parts of this work were done during a visit
to IMPA, Rio de Janeiro.

2. An abstract domain

Let D be any set such that |D| > 2, and consider any finite set of binary operations over
D. A typical operation will be denoted by o, so that for any &, € D, (=¢&on € D is
well-defined. The finiteness assumption is crucial. However, a single binary operation in-
duces a possibly infinite set of unary operations corresponding to operating on constants.
For example, even if the only operation is that of multiplying two reals, we may still
consider the infinite set of multiplications of a variable by some real constant. Denote by
O, the finite set of operations which may be applied to any two variable values, and let
O, denote the set of operations which induce the unary operations as explained above.

Let T' be a nonempty proper subset of D. Members of D are assigned with truth-
values, so that the members of T are “true” and the others are “false.” For £ € T we
write 7(£) = 1, and otherwise 7(£) = 0. For the convenience of presentation, let us fix
two elements: true € T and false € D\ T. We denote by D = (D, 01,0, T) the
underlying domain of computation. If D = {true,false} and O; = Oy =), our model
gives Cook’s original theorem. A linear machine over the reals can be handled using this
formalism by choosing D to be the set of real numbers, O; = {4, —}, Oz = {x} (where
X is multiplication over the reals) and 7' is the set of positive reals. The “real number”
model corresponds to O = Oy = {4, —, x, = }.

3. Random Access Machines over abstract domains

To distinguish the model of the present paper from that of Blum, Shub and Smale, I talk
about programs, rather than machines.

Two models of computation are considered equivalent if they induce the same set of
computable functions, and the time complexities of the computable functions are related
polynomially. There are many equivalent models of computation. I have chosen to
generalize the model of a RAM as described by Aho, Hopcroft and Ullman [1], so I try
to stay as close as possible to the notation used by those authors.

A RAM has a memory and two tapes: a read-only input tape and a write-only
output tape. The input consists of a finite sequence of members of D and a finite
sequence of positive integers. The combined length of these sequences is called the size
of the input. The output consists of a sequence of members of D. 1 would like to deal
with computation over an abstract domain, and also use indirect addressing. Indirect
addressing is important since one finite program can explicitly use only a fixed number of
addresses, whereas the input problems may be of arbitrary size and need more addresses
than the ones that appear in the program explicitly. The addresses are given by integers.
Thus, I have to distinguish two types of memory registers. The registers of the first type
are denoted Ry, Ry,... and each of them is capable of holding one member of D or a

blank. The registers of the second type are denoted Iy, I1, ... and each of them is capable
of holding an integer of arbitrary magnitude. These integers are used for addresseing
only and as we shall see later, the computational capability associated with them is very
limited.

Operands

All computation over D takes place in the register Ry whereas all computation over the
integers takes place in Iy. Each instruction of the program consists of an operation code
and an address. The possible operands are:

(i) =1, indicating the integer 1.
(ii) A nonnegative integer ¢, indicating the contents of either R; or I, depending on
the instruction.
(iii) *i, the contents of either R; or I;, where j > 0 is the integer currently stored in
register [;.
(iv) =¢ (where £ € D), indicating the element £.

We denote the integer held in [; by j(¢) and the element (or the blank) held in R; by
¢(2). The output tape is always assumed to be blank initially. By deterministic computa-
tion we mean that initially j(¢) = 0 and ¢(¢) is a blank for all 7 > 0. By nondeterministic
computation we mean that the memory may initially hold a finite number of members of

D and integers in the respective registers.!

The value v(a) of an operand a depends on the instruction and is defined as follows:

(i) v(=i) =7 and v(=£) = £.
(ii) v(2) = j(2) if the instruction operates on integers, and v(¢) = ¢(¢) if it operates on
members of D.
(iii) v(*2) = j(y(7)) if the instruction operates on integers, and v(*i) = ¢(j(¢)) if it
operates on members of D.

Instructions

The RAM instructions are:

(i) HALT: Stop the execution.
(ii) ILOAD a: This instruction operates on integers. It assigns v(a) to j(0).
(iii) DLOAD a: This instruction operates on members of D (or blanks). If v(a) is not
a blank then it assigns it to ¢(0); otherwise, HALT.

IThe class NP will be defined more precisely later.

(iv) ISTORE ¢: Assign j(0) to j(7).
(v) ISTORE x¢: If j(¢) > 0, then assign j(0) to j(j(¢)); otherwise, HALT.
(vi) DSTORE ¢: Assign ¢(0) to ¢(2).
) DSTORE xi: If j(¢) > 0, then assign ¢(0) to ¢(j(¢)); otherwise, HALT.
) o a (for any o € Oy): This instruction operates on members of D (or blanks). If
v(a) is not a blank then assign ¢(0)ov(a) to ¢(0); otherwise, HALT.
(ix) og (for any o € Oy and any £ € D). Assign £0¢(0) to ¢(0).
(x) INC: Assign j(0) 4+ 1 to j(0).
(xi) DEC: Assign 7(0) — 1 to j(0).
(xii) READ ¢: Assign the current input symbol to ¢(¢) (and move the input head one

(vii
(viii

step ahead).

(xiii) READ =i If j(¢) > 0, then assign the current input symbol to ¢(j(7)); otherwise,
HALT.

(xiv) WRITE a: This instruction operates on members of D (or blanks). If v(a) is not a
blank, then print it on the output tape (and move the output head one step ahead);
otherwise, HALT.

(xv) JUMP ¢: Go to the instruction labeled /.

(xvi) JUMPT ¢: If ¢(0) € T, then go to the instruction labeled /; otherwise, go to the
next instruction.

(xvii) JUMPO ¢: If j(0) = 0, then go to the instruction labeled ¢; otherwise, go to the
next instruction.

The classes P and NP

We assume the uniform cost model, i.e., the running time of the program equals the
number of instructions executed. A program is said to run in polynomial time if its
running time is bounded by some polynomial in terms of the input size. Denote by D*
the set of all finite sequences of members of . Similarly, denote by Z* the set of all
finite sequences of integers.

A subset of D* x Z* is called a language. A language L is said to be in the class P if
there exists a (deterministic) RAM which runs in polynomial time and outputs true if
the input (o,v) € D* x Z* is in L and false otherwise.

A language I C D* x Z* is in the class NP if there exists a RAM with the prop-
erties as follows. There exists a polynomial n* such that if (o,v) € L, then with some
initialization of the registers Ry, Ry, ... with either members of D or blanks, and with
some initialization of the registers Iy, Iy, ... with integers, the RAM runs in time n* and
outputs true; if (o,v) € D*\ L, then there is no initialization of the memory with which
the machine outputs true and halts.

NP-completeness

As usual, a language L is said to be NP-complete if for every L in NP, there exists a
polynomial-time RAM which converts members of L. into members of Ly and nonmembers
of L into nonmembers of Ly. We prove below the existence of an NP-complete language.

4. Satisfiability over D

In this section we introduce a certain computational problem and prove its completeness
for NP. More specifically, we show that if L is in NP, then the problem of recognizing
whether or not a given input is in L can be reduced in polynomial time to the problem
of recognizing the existence of members of D and integers, which together satisfy a
certain system of constraints. A precise definition of this satisfiability problem is given
in Subsection 4.1.

4.1 Definition of Satisfiability over D

The problem of satisfiability over D is stated as a conjunction of constraints as follows.
We use three types of variables:

(i) x; — attains any value in D,
(ii) y; — attains a value in {true,false} C D,
(iii) z; — attains any integer value.

Using the above variables, we build elementary propositions of the following types:
(i) a; =& (for any £ € D)
(11 Tj = T

(iii) @; = xoxy (for any o € Oy)

(iv) ;= a,0& (for any o € Oz and £ € D)
(v) 2, €T

(vi) ;¢ T

(vii) y; = true

)

)

)

(viii) y; = false

(ix) z; =1 (for any integer ¢)
)
)
A

(x

(xi

¢ (for any integer 1)

O
1 N

Zk

)
)
)
ii)
)
(xii) zj =z + 1

constraint is either an elementary proposition or an implication of the form:

P1 NP2 N 93 = ¢4,

where ¢1, ¢o, @3 and ¢4 are elementary propositions.

4.2 Satisfiability over D is in NP

In this subsection we prove that there exists a nondeterministic RAM which solves the
satisfiability problem over D in polynomial time.

Encoding

We first discuss how an instance of the satisfiability problem over D is encoded as an
element of D* x Z*, i.e, a pair consisting of a finite string of elements of D and a finite
sequence of integers. As explained above, an instance is a conjunction of constraints. We
assume we have an alphabet where each element { € D is represented by a symbol £ and
each integer n is represented by a symbol n. The integers used here are either subscripts
of names of variables or integer constants that appear in the constraints. For simplicity,
let us omit the underbars. Besides elements of D and integer constants, an instance of
satisfiability consists of objects from a finite set for which we have to design an encoding
scheme: (i) the start of a new conjunct, (ii) members of Oy and Oy, and (iii) the symbols
x, Yy, z, =, #, %, €, &, T and =. Obviously, one can easily design a binary encoding
scheme using the symbols 0 and 1, say, to encode all the necessary information.

Testing a solution

We claim that the problem of satisfiability over D can be solved in nondeterministic
polynomial time. To prove this claim we have to exhibit a RAM which receives a code
of a set of constraints as input. If there are values of the variables that satisty the
constraints, the RAM confirms this fact. We have to confirm a conjunction of constraints,
each of which is either an elementary proposition or an implication involving at most
four elementary propositions. Thus, it suffices to show how each type of an elementary
proposition can be confirmed. Let us interpret the initial contents of the registers R;
(1 =1,...,n) as the “guesses” of values for the variables x;, respectively. Similarly, the
contents of R,.; will be the guess for the y;’s and that of I; will the guess for z;. For
each type of a constraint there will a segment in the program where that constraint is
tested. If a violated constraint is detected, the program halts with no output. If the
validity of all the constraints has been confirmed, the program outputs true and halts.
It is straightforward to see how each type of elementary proposition is confirmed.

4.3 Reducing problems in NP to Satisfiability over D

Suppose L is in NP and let n* be a polynomial time bound for a corresponding nondeter-
ministic RAM which we denote by II. Without loss of generality, we also assume that n*
is a bound on the index 2 of any register R; or I; which is used throughout the execution

of the algorithm. Moreover, we assume without loss of generality that the integers which
are held in any register I; are nonnegative and not greater than n*.

Given an input (o,v) of length n, let m = n*. We construct a system of constraints

on the values (in D) of variables xo, %01, ..., Zom, representing the initial contents of
registers Ro, R1,. .., Ry, respectively, and a system of constraints on the (integer) values
of the variables zgo, 201, - - . , Zom, representing the initial contents of registers Iy, I1, ..., [,,.
These variables may be viewed as the independent variables, while the values of the
auxiliary variables introduced below are determined by the values of the z¢;’s and the
zp;'s. In particular, let ;; denote the contents of R; after ¢ time units. Analogously, let
z; denote the contents of I; after ¢ time units.

We assume the instructions of Il are labeled by consecutive integers { = 1,...,s
(s > 2). Without loss of generality, assume the instruction labeled s is the only HALT
in the program.

For each instruction labeled ¢, and for ¢t = 1,...,m, let y;; be a variable such that
Yy = true € D if the instruction that is executed during the #’th time unit is the one
labeled ¢, and y;, = false € D otherwise. Similarly, for every ¢ (: = 1,...,n) let uy be
a variable such that u,; = true if during the #’th time unit the input head is positioned
over the ¢'th square of the input tape, and uy; = false otherwise. Also, for every ¢
(¢ = 1,...,m) let v; be a variable such that v; = true if during the ¢'th time unit
the output head is positioned over the ¢’th square of the output tape, and v, = false
otherwise. Finally, denote by 7; (7 = 1,...,m) the contents of the j'th square of the
output tape at the end of the run.

Below we state constraints ensuring the correct interpretation of the variables defined
above.

4.4 Constraints

We first introduce constraints to ensure that at most one instruction is executed during
each time unit, and the input head and the output head are each positioned over at most
one square.

General constraints

Fort =0,1,...,m, we impose the following constraints:
(i) For 4 =1,...,sand ¢ # (, g =1,...,s,
(yu = true) = (y;, = false) ,

and also
Yo1 = true .

(ii) Fori=1,...,nand j #4¢,5=1,...,n,
(uy; = true) = (uy; = false) ,

and also
ugy = true .

(iii) Fori=1,...,mand j #4¢,5=1,...,m,
(v4i = true) = (vy; = false) ,

and also
vgp = true .

The RAM recognizes an instance of L by printing true in the first square of the
output tape. Thus, we impose the constraint:

71 = true .

The rest of the constraints are derived directly from the definitions of the various
instructions.

Consider any instruction whose label is {. We impose a set of constraints, as a function
of t,fort =1,...,m, depending on the nature of the instruction.

(i) If the instruction is one of the following: ILOAD, DLOAD, ISTORE, DSTORE, o,
og, INC, DEC, READ and WRITE, then we impose the following constraint:

(yu = true) = (yi41441 = true) .

(ii) If the instruction is one of the following: ILOAD, ISTORE, WRITE, JUMP,
JUMPT and JUMPO, then we impose the following constraint:

(yu = true) = (x4 = x4-1;) (=0,...,m).

(iii) If the instruction is one of the following: DLOAD, DSTORE, o, o, READ, WRITE
JUMP, JUMPT, JUMPO, then we impose the following constraint:

(yo = true) = (24 = z21,) (1=0,...,m) .
(iv) For any instruction other than READ,

(yoo = true) = (w1, =w;) (t=1,...,n).
(v) For any instruction other than WRITE,

(Yoo = true) = (v, =ve;) (2=1,...,m).

More instruction related constraints are as follows.

HALT:

Recall that we have assumed the only HALT in the program is the last instruction. We
impose the following constraint:

(yis = true) = (yiy1,5 = true) .

ILOAD «
Here a may be either =2, ¢ or *2. First, we impose

(ytﬁ e true) = (Zt] = Zt_L]‘) (] = 17 e 7m) .

Next, if a is =1, we write:
(yu = true) = (z40 = 1) ,

and if a is 7, we write:
(yu = true) = (z40 = z4-1,i) -

It a is %2, we write for every 7, 5 =0,...,m,

((yoo = true) A (zi-1 = J)) = (210 = 21-1,5) -

DLOAD a:
Here a is either =£, 7 or *i. First,
(yoo = true) = (v =a2421;) (J=1,....,m).

Without loss of generality we assume that v(a) is a member of D (rather than a blank).
Next, if a is =£, we write:
(yu = true) = (x40 =¢) ,

and if a is 7, we write:
(yu = true) = (x40 = T4-1,) -

It a is %2, we write for every 7, 5 =0,...,m,

((yze = true) A (21, = 7)) = (Ti0 = T415) -

ISTORE ::

(i) (yu =true) = (2 = 2z-14) (1 =0,...,m, j #1).
(i) (yu = true) = (zy = z_10)-

ISTORE x::

(1) (g = true) A (zei 7 j)) = (21 = zi-1,5) (7 = 0,...,m).
(i) ((yee = true) A (zi—1,,=J)) = (2j = z1—10) (J =0,...,m).

DSTORE ::

(i) (yu = true) = (v =a4-14) (J=0,...,m, j #1).
(i) (yw = true) = (x4 = x41p).

DSTORE x::

(1) (e = true) A(zeai 7 j)) = (2 = wi1y) (5 =0,...,m).
(i) ((yee = true) A (zi—1,, =J)) = (z4j = x4210) (J =0,...,m).

o a and og:

First,
(yu = true) = (v, = 2421,) (G=1,...,m).
In the case of og,
(yu = true) = (x40 = x4-100¢) .

In the case of o «a, if @ is 7 then

(ytf = true) = (ilito = T4-100 51?15—1,2’))

and if a is *7, then we write for every j, (j =0,...,m)

((ytﬁ = tI'UE) A (Zt—l,i =])) = (wto = T¢-1,00 $t_17j) .

INC and DEC:

(1) (yu =true) = (z; = z-1;) (J=1,...,m).
(ii) (yw = true) = (210 = zt—10 = 1) (+ in the case of INC, — in the case of DEC).

READ

(1) ((ywe = true) A (uy; = true)) = (zy=0;) (1 =1,...,n).
(i) ((ye = true) A (ug; = true)) = (ugpqr ;41 = true) (7 =1,...,n).

10

READ xi:

(i) ((ygr = true) A (uy; = true) A (zim1 = q)) = (2y = 03) (J = 1,...

L...,m).
(i) ((ye = true) A (ug; = true)) = (ugpqr ;41 = true) (7 =1,...,n).

WRITE ::

(1) ((yue = true) A (vy; = true)) = (1; = xy;) (for y =1,...,m).
(i) ((yee = true) A (vg; = true)) = (vy1,j41 = true) (for j =1,...,m).

WRITE x*::

(i) ((yzr = true) A (vy; = true) A (zi-1; = q)) = (17 = a4q) (for j = 1,...,

=1,...,m).

(Yo = true) A (v = true) = (vi4y ;41 = true) (for j =1,...,m).

A;Q

(i)

JUMP ('

(ytﬁ e true) = (yt-l—l,f' = true).

JUMPT (':

(1) ((ygr = true) A (24210 € T)) = (Y4410 = true).
(ii) ((yee = true) A(zi—10 € 1)) = (Ye41,441 = true).

JUMPO (':

(1) ((yee = true) A (zi—10=0)) = (Y410 = true).
(ii) ((yee = true) A (zi—10 # 0)) = (Ye41,41 = true).

m and

Proposition 4.1. For any language L in NP and any nondeterministic polynomial-time

RAM for recognizing instances in L, given an input (o,v), the system of constraints

defined in Subsection 4.4 can be constructed in polynomial time. Moreover, the string

(o,v) isin L if and only if there exists an assignment of appropriate values to the variables

Tii, Yiis Zei, Ugi, Vg, and Tj, so that all the constraints are satisfied.

Proof: The proof follows from the fact if the interpretation of the variables is correct

(and this is guaranteed if the constraints are satisfied), then the state of the machine

at every stage of the execution is described precisely by these variables. g

11

To summarize the reduction, suppose a description of a RAM Il in NP is given. Recall
that the constraints are imposed for each time unit ¢. It is easy to see from the above that
we can write a program II* (i.e., a RAM) that does the following. It receives as input
any pair (o,v) which is presented to II. Recognizing the length the input, II* develops
the set of constraints defined above and creates an instance of the satisfiability problem.

Acknowledgement. Helpful conversations with Steve Smale are gratefully ac-
knowledged.

References

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The design and analysis of computer
algorithms, Addison-Wesley, Reading, MA, 1976.

[2] L. Blum, M. Shub and S. Smale, “On a theory of computation and complexity over the
real numbers: NP-completeness, recursive functions and universal machines,” Bulletin
of the American Mathematical Society 21 (1989) 1-46.

[3] S. A. Cook, “The complexity of theorem proving procedures,” Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing (1971), pp. 151-158.

[4] S. Smale, Talk at the Workshop on Computational Complexity, IMPA, Rio de Janeiro,
January, 1990.

12

