
A General NP�Completeness Theorem

Nimrod Megiddo�

�Revised�

Abstract� A detailed model of a random access computation over an ab�

stract domain is presented� and the existence of an NP�complete problem is proven

under broad conditions which unify Cook�s theorem and recent results in the real

number model by Blum� Shub and Smale�

�� Introduction

Blum� Shub and Smale ��� formalized a model of computation over a general ring� They

proved an analogue of Cook�s theorem ��� over the reals� Smale �	� has recently raised
the question of existence of NP
complete problems relative to �linear� machines� i�e��
machines which add� subtract� multiply by constants� and branch� depending on the sign

of a number�

My motivation for writing up this note is the encouragement I received from Steve
Smale� In a number of conversations we had on the subject at IMPA� I said I could prove
a general theorem on the existence of NP
complete problems� but I was not particularly

excited about dealing with all the details� Steve convinced me to a certain extent that
there were some subtleties involved� and that I should indeed work under a precise model�

In this note I indeed state a theorem about the existence of NP
complete problems
in general� The model of computation uni
es the results of Cook and of Blum� Shub
and Smale� In particular� it gives an a�rmative answer to Smale�s question� I prefer to

present the model in terms more familiar to computer scientists� namely� using RAMs
instead of �owcharts� In Section � I de
ne an abstract domain of computation� The
model is described in Section �� The problem of satis
ability over the abstract domain

is discussed in Section 	 and its NP
completeness is proven�

�IBM Almaden Research Center� ��� Harry Road� San Jose� California ����������� and School of

Mathematical Sciences� Tel Aviv University� Tel Aviv� Israel� Parts of this work were done during a visit

to IMPA� Rio de Janeiro�

�



�� An abstract domain

Let D be any set such that jDj � �� and consider any �nite set of binary operations over
D� A typical operation will be denoted by �� so that for any �� � � D� � � � � � � D is

well
de
ned� The 
niteness assumption is crucial� However� a single binary operation in

duces a possibly in
nite set of unary operations corresponding to operating on constants�
For example� even if the only operation is that of multiplying two reals� we may still
consider the in
nite set of multiplications of a variable by some real constant� Denote by

O� the 
nite set of operations which may be applied to any two variable values� and let
O� denote the set of operations which induce the unary operations as explained above�

Let T be a nonempty proper subset of D� Members of D are assigned with truth

values� so that the members of T are �true� and the others are �false�� For � � T we

write � ��� � �� and otherwise � ��� � �� For the convenience of presentation� let us 
x
two elements� true � T and false � D n T � We denote by D � hD�O��O�� T i the
underlying domain of computation� If D � ftrue� falseg and O� � O� � �� our model
gives Cook�s original theorem� A linear machine over the reals can be handled using this

formalism by choosing D to be the set of real numbers� O� � f���g� O� � f�g �where
� is multiplication over the reals� and T is the set of positive reals� The �real number�
model corresponds to O� � O� � f�������g�

�� Random Access Machines over abstract domains

To distinguish the model of the present paper from that of Blum� Shub and Smale� I talk
about programs� rather than machines�

Two models of computation are considered equivalent if they induce the same set of

computable functions� and the time complexities of the computable functions are related
polynomially� There are many equivalent models of computation� I have chosen to
generalize the model of a RAM as described by Aho� Hopcroft and Ullman ���� so I try
to stay as close as possible to the notation used by those authors�

A RAM has a memory and two tapes� a read
only input tape and a write
only
output tape� The input consists of a 
nite sequence of members of D and a 
nite
sequence of positive integers� The combined length of these sequences is called the size

of the input� The output consists of a sequence of members of D� I would like to deal

with computation over an abstract domain� and also use indirect addressing� Indirect
addressing is important since one 
nite program can explicitly use only a 
xed number of
addresses� whereas the input problems may be of arbitrary size and need more addresses
than the ones that appear in the program explicitly� The addresses are given by integers�

Thus� I have to distinguish two types of memory registers� The registers of the 
rst type
are denoted R�� R�� � � � and each of them is capable of holding one member of D or a

�



blank� The registers of the second type are denoted I�� I�� � � � and each of them is capable
of holding an integer of arbitrary magnitude� These integers are used for addresseing
only and as we shall see later� the computational capability associated with them is very
limited�

Operands

All computation over D takes place in the register R� whereas all computation over the
integers takes place in I�� Each instruction of the program consists of an operation code

and an address� The possible operands are�

�i� �i� indicating the integer i�

�ii� A nonnegative integer i� indicating the contents of either Ri or Ii� depending on
the instruction�

�iii� �i� the contents of either Rj or Ij� where j � � is the integer currently stored in
register Ii�

�iv� �� �where � � D�� indicating the element ��

We denote the integer held in Ii by j�i� and the element �or the blank� held in Ri by

c�i�� The output tape is always assumed to be blank initially� By deterministic computa�

tion we mean that initially j�i� � � and c�i� is a blank for all i � �� By nondeterministic

computation we mean that the memory may initially hold a 
nite number of members of

D and integers in the respective registers��

The value v�a� of an operand a depends on the instruction and is de
ned as follows�

�i� v��i� � i and v���� � ��
�ii� v�i� � j�i� if the instruction operates on integers� and v�i� � c�i� if it operates on

members of D�
�iii� v��i� � j�j�i�� if the instruction operates on integers� and v��i� � c�j�i�� if it

operates on members of D�

Instructions

The RAM instructions are�

�i� HALT� Stop the execution�
�ii� ILOAD a� This instruction operates on integers� It assigns v�a� to j����
�iii� DLOAD a� This instruction operates on members of D �or blanks�� If v�a� is not

a blank then it assigns it to c���� otherwise� HALT�

�The class NP will be de	ned more precisely later�

�



�iv� ISTORE i� Assign j��� to j�i��
�v� ISTORE �i� If j�i� � �� then assign j��� to j�j�i��� otherwise� HALT�
�vi� DSTORE i� Assign c��� to c�i��
�vii� DSTORE �i� If j�i� � �� then assign c��� to c�j�i��� otherwise� HALT�

�viii� � a �for any � � O��� This instruction operates on members of D �or blanks�� If
v�a� is not a blank then assign c��� � v�a� to c���� otherwise� HALT�

�ix� �� �for any � � O� and any � � D�� Assign � � c��� to c����
�x� INC� Assign j��� � � to j����

�xi� DEC� Assign j���� � to j����
�xii� READ i� Assign the current input symbol to c�i� �and move the input head one

step ahead��
�xiii� READ �i� If j�i� � �� then assign the current input symbol to c�j�i��� otherwise�

HALT�
�xiv� WRITE a� This instruction operates on members of D �or blanks�� If v�a� is not a

blank� then print it on the output tape �and move the output head one step ahead��

otherwise� HALT�
�xv� JUMP �� Go to the instruction labeled ��
�xvi� JUMPT �� If c��� � T � then go to the instruction labeled �� otherwise� go to the

next instruction�

�xvii� JUMP� �� If j��� � �� then go to the instruction labeled �� otherwise� go to the
next instruction�

The classes P and NP

We assume the uniform cost model� i�e�� the running time of the program equals the

number of instructions executed� A program is said to run in polynomial time if its
running time is bounded by some polynomial in terms of the input size� Denote by D�

the set of all 
nite sequences of members of D� Similarly� denote by Z� the set of all

nite sequences of integers�

A subset of D� � Z� is called a language� A language L is said to be in the class P if

there exists a �deterministic� RAM which runs in polynomial time and outputs true if
the input ��� �� � D� � Z� is in L and false otherwise�

A language L � D� � Z� is in the class NP if there exists a RAM with the prop

erties as follows� There exists a polynomial nk such that if ��� �� � L� then with some

initialization of the registers R�� R�� � � � with either members of D or blanks� and with
some initialization of the registers I�� I�� � � � with integers� the RAM runs in time nk and
outputs true� if ��� �� � D� nL� then there is no initialization of the memory with which

the machine outputs true and halts�

	



NP�completeness

As usual� a language L� is said to be NP
complete if for every L in NP� there exists a
polynomial
timeRAMwhich converts members of L into members of L� and nonmembers
of L into nonmembers of L�� We prove below the existence of an NP
complete language�

�� Satis�ability over D

In this section we introduce a certain computational problem and prove its completeness
for NP� More speci
cally� we show that if L is in NP� then the problem of recognizing

whether or not a given input is in L can be reduced in polynomial time to the problem
of recognizing the existence of members of D and integers� which together satisfy a
certain system of constraints� A precise de
nition of this satis
ability problem is given
in Subsection 	���

��� De�nition of Satis�ability over D

The problem of satis
ability over D is stated as a conjunction of constraints as follows�

We use three types of variables�

�i� xj � attains any value in D�

�ii� yj � attains a value in ftrue� falseg � D�
�iii� zj � attains any integer value�

Using the above variables� we build elementary propositions of the following types�

�i� xj � � �for any � � D�

�ii� xj � xk

�iii� xj � xk �x� �for any � � O��
�iv� xj � xk � � �for any � � O� and � � D�
�v� xj � T

�vi� xj 	� T

�vii� yj � true

�viii� yj � false

�ix� zj � i �for any integer i�

�x� zj 	� i �for any integer i�
�xi� zj � zk
�xii� zj � zk � �

A constraint is either an elementary proposition or an implication of the form�

�� 
 �� 
 �� � �� �

where ��� ��� �� and �� are elementary propositions�

�



��� Satis�ability over D is in NP

In this subsection we prove that there exists a nondeterministic RAM which solves the
satis
ability problem over D in polynomial time�

Encoding

We 
rst discuss how an instance of the satis
ability problem over D is encoded as an
element of D� � Z�� i�e� a pair consisting of a 
nite string of elements of D and a 
nite
sequence of integers� As explained above� an instance is a conjunction of constraints� We
assume we have an alphabet where each element � � D is represented by a symbol � and

each integer n is represented by a symbol n� The integers used here are either subscripts
of names of variables or integer constants that appear in the constraints� For simplicity�
let us omit the underbars� Besides elements of D and integer constants� an instance of
satis
ability consists of objects from a 
nite set for which we have to design an encoding

scheme� �i� the start of a new conjunct� �ii� members of O� and O�� and �iii� the symbols
x� y� z� �� 	�� �� �� 	�� T and �� Obviously� one can easily design a binary encoding
scheme using the symbols � and �� say� to encode all the necessary information�

Testing a solution

We claim that the problem of satis
ability over D can be solved in nondeterministic
polynomial time� To prove this claim we have to exhibit a RAM which receives a code
of a set of constraints as input� If there are values of the variables that satisfy the
constraints� the RAM con
rms this fact� We have to con
rm a conjunction of constraints�

each of which is either an elementary proposition or an implication involving at most
four elementary propositions� Thus� it su�ces to show how each type of an elementary
proposition can be con
rmed� Let us interpret the initial contents of the registers Ri

�i � �� � � � � n� as the �guesses� of values for the variables xi� respectively� Similarly� the

contents of Rn�i will be the guess for the yi�s and that of Ii will the guess for zi� For
each type of a constraint there will a segment in the program where that constraint is
tested� If a violated constraint is detected� the program halts with no output� If the

validity of all the constraints has been con
rmed� the program outputs true and halts�
It is straightforward to see how each type of elementary proposition is con
rmed�

��� Reducing problems in NP to Satis�ability over D

Suppose L is in NP and let nk be a polynomial time bound for a corresponding nondeter

ministic RAM which we denote by �� Without loss of generality� we also assume that nk

is a bound on the index i of any register Ri or Ii which is used throughout the execution

�



of the algorithm� Moreover� we assume without loss of generality that the integers which
are held in any register Ii are nonnegative and not greater than nk�

Given an input ��� �� of length n� let m � nk� We construct a system of constraints
on the values �in D� of variables x��� x��� � � � � x�m� representing the initial contents of
registers R�� R�� � � � � Rm� respectively� and a system of constraints on the �integer� values
of the variables z��� z��� � � � � z�m� representing the initial contents of registers I�� I�� � � � � Im�

These variables may be viewed as the independent variables� while the values of the
auxiliary variables introduced below are determined by the values of the x�j�s and the
z�j�s� In particular� let xtj denote the contents of Rj after t time units� Analogously� let

ztj denote the contents of Ij after t time units�

We assume the instructions of � are labeled by consecutive integers � � �� � � � � s

�s � ��� Without loss of generality� assume the instruction labeled s is the only HALT
in the program�

For each instruction labeled �� and for t � �� � � � �m� let yt� be a variable such that
yt� � true � D if the instruction that is executed during the t�th time unit is the one
labeled �� and yt� � false � D otherwise� Similarly� for every i �i � �� � � � � n� let uti be

a variable such that uti � true if during the t�th time unit the input head is positioned
over the i�th square of the input tape� and uti � false otherwise� Also� for every i

�i � �� � � � �m� let vti be a variable such that vti � true if during the t�th time unit

the output head is positioned over the i�th square of the output tape� and vti � false

otherwise� Finally� denote by �j �j � �� � � � �m� the contents of the j�th square of the
output tape at the end of the run�

Below we state constraints ensuring the correct interpretation of the variables de
ned
above�

��� Constraints

We 
rst introduce constraints to ensure that at most one instruction is executed during
each time unit� and the input head and the output head are each positioned over at most
one square�

General constraints

For t � �� �� � � � �m� we impose the following constraints�

�i� For � � �� � � � � s and q 	� �� q � �� � � � � s�

�yt� � true�� �ytq � false� �

and also
y�� � true 	

�



�ii� For i � �� � � � � n and j 	� i� j � �� � � � � n�

�uti � true�� �utj � false� �

and also
u�� � true 	

�iii� For i � �� � � � �m and j 	� i� j � �� � � � �m�

�vti � true�� �vtj � false� �

and also
v�� � true 	

The RAM recognizes an instance of L by printing true in the 
rst square of the
output tape� Thus� we impose the constraint�

�� � true 	

The rest of the constraints are derived directly from the de
nitions of the various
instructions�

Consider any instruction whose label is �� We impose a set of constraints� as a function
of t� for t � �� � � � �m� depending on the nature of the instruction�

�i� If the instruction is one of the following� ILOAD� DLOAD� ISTORE� DSTORE� ��
��� INC� DEC� READ and WRITE� then we impose the following constraint�

�yt� � true�� �yt������ � true� 	

�ii� If the instruction is one of the following� ILOAD� ISTORE� WRITE� JUMP�
JUMPT and JUMP�� then we impose the following constraint�

�yt� � true�� �xti � xt���i� �i � �� � � � �m� 	

�iii� If the instruction is one of the following� DLOAD� DSTORE� �� ��� READ� WRITE
JUMP� JUMPT� JUMP�� then we impose the following constraint�

�yt� � true�� �zti � zt���i� �i � �� � � � �m� 	

�iv� For any instruction other than READ�

�yt� � true�� �ut���i � ut�i� �i � �� � � � � n� 	

�v� For any instruction other than WRITE�

�yt� � true�� �vt���i � vt�i� �i � �� � � � �m� 	

More instruction related constraints are as follows�

�



HALT�

Recall that we have assumed the only HALT in the program is the last instruction� We
impose the following constraint�

�yts � true�� �yt���s � true� 	

ILOAD a

Here a may be either �i� i or �i� First� we impose

�yt� � true�� �ztj � zt���j� �j � �� � � � �m� 	

Next� if a is �i� we write�

�yt� � true�� �zt� � i� �

and if a is i� we write�
�yt� � true�� �zt� � zt���i� 	

If a is �i� we write for every j� j � �� � � � �m�

��yt� � true� 
 �zt���i � j��� �zt� � zt���j� 	

DLOAD a�

Here a is either ��� i or �i� First�

�yt� � true�� �xtj � xt���j� �j � �� � � � �m� 	

Without loss of generality we assume that v�a� is a member of D �rather than a blank��
Next� if a is ��� we write�

�yt� � true�� �xt� � �� �

and if a is i� we write�
�yt� � true�� �xt� � xt���i� 	

If a is �i� we write for every j� j � �� � � � �m�

��yt� � true� 
 �zt���i � j��� �xt� � xt���j� 	

ISTORE i�

�i� �yt� � true�� �ztj � zt���j� �j � �� � � � �m� j 	� i��
�ii� �yt� � true�� �zti � zt������

�



ISTORE �i�

�i� ��yt� � true� 
 �zt���i 	� j��� �ztj � zt���j� �j � �� � � � �m��
�ii� ��yt� � true� 
 �zt���i � j��� �ztj � zt����� �j � �� � � � �m��

DSTORE i�

�i� �yt� � true�� �xtj � xt���j� �j � �� � � � �m� j 	� i��
�ii� �yt� � true�� �xti � xt������

DSTORE �i�

�i� ��yt� � true� 
 �zt���i 	� j��� �xtj � xt���j� �j � �� � � � �m��
�ii� ��yt� � true� 
 �zt���i � j��� �xtj � xt����� �j � �� � � � �m��

� a and ���

First�

�yt� � true�� �xtj � xt���j� �j � �� � � � �m� 	

In the case of ���
�yt� � true�� �xt� � xt���� � �� 	

In the case of � a� if a is i then

�yt� � true�� �xt� � xt���� �xt���i� �

and if a is �i� then we write for every j� �j � �� � � � �m�

��yt� � true� 
 �zt���i � j��� �xt� � xt���� �xt���j� 	

INC and DEC�

�i� �yt� � true�� �ztj � zt���j� �j � �� � � � �m��
�ii� �yt� � true�� �zt� � zt���� � �� �� in the case of INC� � in the case of DEC��

READ i�

�i� ��yt� � true� 
 �utj � true��� �xti � �j� �j � �� � � � � n�	

�ii� ��yt� � true� 
 �utj � true��� �ut���j�� � true� �j � �� � � � � n�	

��



READ �i�

�i� ��yt� � true� 
 �utj � true� 
 �zt���i � q�� � �xtq � �j� �j � �� � � � � n� q �
�� � � � �m�	

�ii� ��yt� � true� 
 �utj � true��� �ut���j�� � true� �j � �� � � � � n�	

WRITE i�

�i� ��yt� � true� 
 �vtj � true��� ��j � xti� �for j � �� � � � �m��

�ii� ��yt� � true� 
 �vtj � true��� �vt���j�� � true� �for j � �� � � � �m��

WRITE �i�

�i� ��yt� � true� 
 �vtj � true� 
 �zt���i � q�� � ��j � xtq� �for j � �� � � � �m and
q � �� � � � �m��

�ii� ��yt� � true� 
 �vtj � true�� �vt���j�� � true� �for j � �� � � � �m��

JUMP �
��

�yt� � true�� �yt����� � true��

JUMPT ���

�i� ��yt� � true� 
 �xt���� � T ��� �yt����� � true�	
�ii� ��yt� � true� 
 �xt���� 	� T ��� �yt������ � true�	

JUMP� �
��

�i� ��yt� � true� 
 �zt���� � ���� �yt����� � true�	
�ii� ��yt� � true� 
 �xt���� 	� ���� �yt������ � true�	

Proposition ���� For any language L in NP and any nondeterministic polynomial�time

RAM for recognizing instances in L� given an input ��� ��� the system of constraints

de�ned in Subsection ��� can be constructed in polynomial time� Moreover� the string

��� �� is in L if and only if there exists an assignment of appropriate values to the variables

xti� yti� zti� uti� vti� and �j � so that all the constraints are satis�ed�

Proof� The proof follows from the fact if the interpretation of the variables is correct

�and this is guaranteed if the constraints are satis
ed�� then the state of the machine
at every stage of the execution is described precisely by these variables�

��



To summarize the reduction� suppose a description of a RAM � in NP is given� Recall
that the constraints are imposed for each time unit t� It is easy to see from the above that
we can write a program �� �i�e�� a RAM� that does the following� It receives as input
any pair ��� �� which is presented to �� Recognizing the length the input� �� develops

the set of constraints de
ned above and creates an instance of the satis
ability problem�

Acknowledgement� Helpful conversations with Steve Smale are gratefully ac

knowledged�

References

��� A� V� Aho� J� E� Hopcroft and J� D� Ullman� The design and analysis of computer

algorithms� Addison
Wesley� Reading� MA� �����
��� L� Blum�M� Shub and S� Smale� �On a theory of computation and complexity over the

real numbers� NP
completeness� recursive functions and universal machines��Bulletin
of the American Mathematical Society �� ������ ��	��

��� S� A� Cook� �The complexity of theorem proving procedures�� Proceedings of the �rd

Annual ACM Symposium on Theory of Computing ������� pp� ��������

�	� S� Smale� Talk at the Workshop on Computational Complexity� IMPA� Rio de Janeiro�
January� �����

��


