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Abstract: The complexity of algorithms that compute strategies or operate on them typically depends 
on the representation length of the strategies involved. One measure for the size of a mixed strategy is 
the number of strategies in its support - the set of pure strategies to which it gives positive probability. 
This paper investigates the existence of "small" mixed strategies in extensive form games, and how 
such strategies can be used to create more efficient algorithms. The basic idea is that, in an extensive 
form game, a mixed strategy induces a small set of realization weights that completely describe its 
observable behavior. This fact can be used to show that for any mixed strategy p, there exists 
a realization-equivalent mixed strategy p' whose size is at most the size of the game tree. For a player 
with imperfect recall, the problem of finding such a strategy p' (given the realization weights) is 
NP-hard. On the other hand, if p is a behavior strategy, p' can be constructed from p in time 
polynomial in the size of the game tree. In either case, we can use the fact that mixed strategies need 
never be too large for constructing efficient algorithms that search for equilibria. In particular, we 
construct the first exponential-time algorithm for finding all equilibria of an arbitrary two-person 
game in extensive form. 

1 Introduction 

When attempting to implement various game-theoretic ideas, one often needs to 
construct algorithms that operate on strategies in various ways. For example, it 
may be necessary to compute strategies satisfying certain criteria (for example, 
equilibrium strategies), to store strategies for future use, and to use strategies for 
further computation or for playing the game. Clearly, the space required to 
represent the strategy often affects the complexity of the resulting algorithms. In 
this paper, we present a technique for reducing the amount of space required to 
represent mixed strategies for extensive-form games. 
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The extensive form is a natural way of representing a game: as a decision tree 
with information structure. For this form, three types of strategies for a player 
(say player 1) have been defined.' A pure strategy determines completely the 
moves of player 1 at each of his information sets. A mixed strategy defines 
a probability distribution over the entire set of pure strategies. When a mixed 
strategy is played, a pure strategy is chosen according to this distribution before 
the game starts, and then followed throughout the game. A behavior strategy 
randomizes locally rather than globally: for each information set, it prescribes 
a probability distribution over the possible moves. 

These different types of strategies differ considerably in terms of the space 
required to represent them. A pure strategy has one entry for each information set 
of the player. Its size is clearly linear in the size of the game tree. A behavior 
strategy assigns a probability to each possible decision of the player. Thus, it also 
can be represented in linear space. A mixed strategy assigns a probability to each 
pure strategy. The number of pure strategies is usually exponential in the size of 
the game tree [7,4]. Thus, the size of a mixed strategy may be exponential in the 
size of the tree. 

In many useful mixed strategies, however, only a small number of pure 
strategies receive positive probabilities. For a mixed strategy p, the set of pure 
strategies which receive positive probability under p is called the support of p. We 
use the size of p to denote the number of pure strategies in the support of p. Mixed 
strategies whose support is "small" can be specified with a sparse representation. 
The relatively "manageable" size of these strategies may reduce the space and 
time complexities of algorithms handling them. This idea was first utilized by 
Wilson [14] in his modified version of the Lemke-Howson algorithm [9]. This 
algorithm searches the space of mixed strategies pairs for an equilibrium of 
a general two-person game. Wilson's variant represents the strategies encoun- 
tered in the search sparsely; i.e. it maintains only the pure strategies in their 
support, and generates additional pure strategies, as needed, directly from the 
game tree. Wilson justifies his algorithm as follows: 

The advantages of such a modification will derive from the incidence of validity 
of three propositions commonly verified in computational experience on 
practical problems: (1) in practice most games arise in extensive form; (2) even 
simply described extensive forms commonly generate normal forms of enor- 
mous size, since the number of pure strategies increases exponentially with the 
number of information sets.. .; (3) the frequency of equilibria using only a very 
few of the available pure strategies is very high.. . 

Wilson's motivation, as we see, arose from "computational experience on practi- 
cal problems." In this paper, we describe and formally prove a result that, among 
other things, implies Wilson's proposition (3). 

From here on, without loss of generality, we describe strategies in terms of player 1 
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We begin by observing that a mixed strategy contains a large amount of 
information, most of which is irrelevant. The only relevant aspect of a mixed 
strategy is the observable behavior that it induces on the nodes of the game tree. 
This motivates the following definition. A strategy p of player 1 uniquely defines 
a weight distribution on the nodes of the game tree. Intuitively, the realization 
weight given to a node a by p is the probability that a is not ruled out by player 
1 when playing p (note that a can still be ruled out by the strategy of one of the 
other players). This is exactly the probability that a pure strategy chosen 
according to p is consistent with the player 1 choices on the path to a. Given the 
weight distribution defined by p, and any strategy combination of the other 
players, we can determine the probability of reaching any node in the tree without 
referring back to p. That is, the weight distribution on the nodes completely 
specifies the observable behavior of p. Realization weights were first introduced 
by Koller and Megiddo [4] in the context of perfect recall games. In their 
algorithm, and in the more recent ones of von Stengel [12] and of Koller, 
Megiddo, and von Stengel [6] ,  the realization weights corresponding to equilib- 
rium mixed strategies are computed directly. This relies on the fact that, for games 
with perfect recall, realization weights can be described using a small system of 
linear equations. As we discuss below, this is not the case for games with imperfect 
recall, a fact that prevents the application of these techniques to the general case. 
In this paper, we utilize realization weights in a very different way. Rather than 
using them directly as a new strategic representation, we use them indirectly, as 
a tool for constructing small mixed strategies. This allows us to apply our 
techniques to arbitrary games. 

Our main result is that mixed strategies need never be too large. That is, for 
every mixed strategy p there exists an equivalent "small" mixed strategy. We 
define two strategies of player 1 to be equivalent if for every payoff function and 
every strategy of the other players, they result in the same p a y ~ f f . ~  It can easily be 
shown that two strategies are equivalent if and only if they induce the same weight 
distribution over the leaves of the game tree. Hence, a weight distribution 
represents an entire class of equivalent strategies. This observation is the basis for 
our result. In order to state it formally, let T be a game tree, and let Z be the set of 
leaves in T. We measure the size of the tree in terms of the cardinality of Z and 
denote that number by I TI; this is justified since if each decision node has at least 
two choices, then more than half of all the nodes of Tare leaves. In Section 2 we 
show that for any mixed strategy p for player 1, there exists an equivalent strategy 
p' whose size does not exceed I TI (the number of leaves in the tree). Moreover, 
there exist games where some mixed strategies do not have equivalent strategies 
of smaller size. We therefore define a mixed strategy to be small if its size does not 
exceed 1 

This standard concept is sometimes calledpayoffequivalence and sometimes realization equivalence. 
Our result is actually stronger, in that the size of the strategies is often even smaller than I TI. For 
simplicity, we chose to define "small" based on I TI. See Section 2 for further discussion. 
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Next, we investigate the issue of finding a small strategy that is equivalent to 
some given mixed strategy. Given p, this can be done quite easily by a process that 
iteratively removes strategies one by one from the support of p. Unfortunately, 
the size of p can be exponential in the size of the game tree, so that this process is 
typically of little practical use. In Section 3 we investigate an alternative ap- 
proach: finding a small mixed strategy directly from the weight distribution on 
the leaves. We show that, in general, although the size of the input is now small 
(linear in the size of the tree), this does not help with respect to the complexity of 
the problem. The problem of deciding whether there even exists a mixed strategy 
that induces a given weight distribution is NP-complete. 

The situation is different, however, for the case of behavior strategies. Unlike 
general mixed strategies, it is easy to decide whether there exists a behavior 
strategy that induces a given weight distribution. In fact, such a behavior strategy 
can be computed in polynomial time from the weight distribution (see also [4]). 
In many interesting problems, behavior strategies play an important role. A player 
is said to have perfect recall if she remembers throughout the play everything she 
has known and done. Kuhn [8] showed that for a player with perfect recall, every 
mixed strategy has an equivalent behavior strategy. Thus, for such a player, it suffices 
to investigate only behavior strategies. In [4], we also make the point that for a player 
with imperfect recall, the use of an arbitrary mixed strategy (one not derived from 
a behavior strategy) may violate the spirit of the imperfect recall requirement. 
Thus, in this case one also often wishes to restrict attention to behavior strategies. 

In Section 4 we show how a small mixed strategy can be computed in 
polynomial time from a behavior strategy (or from the weight distribution 
induced by the behavior strategy). In particular, for any strategy of a player with 
perfect recall, a small mixed strategy can be found in polynomial time. For 
example, using the results of [4,12], a small optimal mixed strategy can be found 
for any player in a two-person zero-sum game with perfect recall. Similarly, using 
the results of [6], an equilibrium pair of small mixed strategies can be found in 
any two-person game with perfect recall. 

In general, the representation of a small mixed strategy might not be smaller 
than the representation of the behavior strategy that induces it. However, as 
many algorithms are based on mixed strategies, the ability to construct efficiently 
a small mixed strategy is often useful. In [5], for example, we demonstrate how 
the techniques of this paper can be applied to de-randomization of algorithms. 
But even the fact itself that mixed strategies need never be too large can help us in 
constructing more efficient algorithms. In Section 5 we demonstrate this by 
constructing an exponential time algorithm for enumerating all equilibria in 
two-person general-sum games. To our knowledge, this was the first exponential- 
time algorithm for this problem, and is still the only one that works for games 
with imperfect recall. (For the case of perfect recall games, the recent algorithms 
of [12] and [6] are better.) We also briefly discuss how this result can be used to 
construct an efficient variant of Wilson's algorithm [14]. In general, we believe 
that these techniques can also be used to construct efficient algorithms for many 
problems involving mixed strategies. 
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2 Existence of Small Strategies 

As we discussed in the introduction, in extensive form games, mixed strategies 
contain a large amount of irrelevant information. This leads us to hope that we 
might be able to find "small" mixed strategies where this redundancy is elimin- 
ated. In this section, we formalize this intuition. Let T be a game tree for some 
number of players (the number does not matter). For the rest of the paper, we 
restrict attention to player 1 (often referred to as "the player"), and to the problem 
of constructing small mixed strategies for player 1. Assume that the player's 
information sets in T are u, ,  . . . , u,, and that the set of choices available at 
information set u j  is Cj. Let Z = C, x C, x ... x C, denote the set of pure 
strategies for the player. For a pure strategy SEX, let sjeCj denote the choice 
made by s at information set uj, so s = (s,, . . . , s,). For example, in the game tree 
T* of Figure 1, player 1 has two information sets, u, and u,, with C, = {I, r) and 
C, = {c, dl. Therefore, Z = (1, r) x {c, d). Note that the tree T* is not completely 
specified. We did not describe the payoffs at the leaves nor the player to move at 
the root of the tree; these will be irrelevant to our discussion. 

Given a strategy p for player 1 in the game T, we would like to find an equivalent 
mixed strategy that is more compact. 

Dejinition 2.1: For a mixed strategy p and a pure strategy s, let p(s) denote the 
probability that p assigns to the pure strategy s. The support of p, denoted 
Supp(p), is the set of pure strategies {seZ:p(s) > 0). The size of p is the cardinality 
)Supp(p)J of its support. 

For example, consider a mixed strategy p* over T* such that: 

Fig. 1. A game tree T* 
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Fig. 2. A game tree with exponentially many pure strategies. 

Our goal is, given a mixed strategy p, to find another mixed strategy with 
a "small" support, that performs the same as p in all situations. 

Dejnition 2.2: Two mixed strategies p, and p, are said to be equivalent if for all 
payoff functions, all probability distributions at the chance nodes, and all 
strategies of the other players, the payoffs to all players under p ,  and under p,  are 
identical. 

At first glance it seems very difficult to check whether two mixed strategies are 
equivalent; it appears that it might be necessary to check infinitely many (or at 
least very many) variants of the game, corresponding to different assignments of 
payoffs and probabilities of the chance moves. However, it turns out that 
equivalence can be defined in terms of the following simple concepts. 

Consider the information sets intersected by the path from the root to some 
node a. In each of these information sets, only one decision leads to a. We can 
therefore characterize the set of pure strategies which may reach the node a as 
follows. 

Definition 2.3: We say that a pure strategy s potentially reaches a node a if, for 
every information set u j  on the path from the root to a, the strategy s at u j  takes 
the decision sj  leading to a. Let R(a)  denote the set of pure strategies ( s ~ Z : s  
potentially reaches a ) .  

Note that even if s potentially reaches a,  it is not necessarily the case that a is 
actually reached in a particular play of the game. This depends, of course, on the 
strategies of the other players and on the chance moves. The fact that s potentially 
reaches a means only that s does not unilaterally rule out the possibility of 
reaching a. For example, consider the strategy s = ( l d )  over the tree T*. This 
strategy potentially reaches z , , z 3 ,  and z,. Clearly, the node that is actually 
reached in a particular game depends on the move taken at the root. However, 
this is independent of the strategy of player 1. It is easy to see that: 
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The notion of potential reachability is often used to reduce the space of pure 
strategies. Consider some information set u. If a pure strategy s does not 
potentially reach any node in u, then the decision taken by s at u is irrelevant. The 
information set u is never reached in play, so the decision there cannot affect the 
outcome of the game. Pure strategies that differ only in choices at irrelevant 
information sets have been called equivalent by Kuhn [8] and even identified [7]. 
This identification can be done by leaving the choices at the irrelevant informa- 
tion sets blank. In this formulation, a pure strategy would represent an entire 
equivalence class of pure strategies. This reduction of the space of pure strategies 
forms the basis for the reduced normal form of an extensive game. Further 
reductions for a particular given payoff function have been considered by Dalkey 
[3] and by Swinkels [I 11, but these provide no additional savings in the context 
of a generic game. 

Unfortunately, the savings provided by the reduced normal form are often 
limited. Consider a game where the player has parallel information sets - ones 
where the player's actions cannot affect which is reached. For example u,  and u, 
in T* are parallel information sets. For a more extreme example, consider Figure 
2, where player 1 has 1 parallel information sets. The number of pure strategies in 
this case is 2', and none can be eliminated as equivalent to another. Hence, even 
the reduced normal form is often exponential in the size of the game tree. 

Our approach to reducing the size of mixed strategies is completely different. 
Rather than eliminating or identifying pure strategies, we define equivalence 
classes of mixed strategies. This process will allow us to find, in each equivalence 
class, a representative mixed strategy which is "small". We note that our 
technique also recognizes equivalence of pure strategies (in the above sense), so 
that it can be seen as generalizing the ideas behind the reduced normal form. The 
main idea we use is the following. 

Dejnition 2.4: Let p be a mixed strategy, and let a be some node. We define the 
realization weight that p induces on a by 

The realization weight that a mixed strategy p induces on a is simply the total 
probability (according to p) of the pure strategies that potentially reach A; that is, 
it is the probability according to p of potentially reaching a. Note that potential 
reachability is defined purely in terms of player 1's moves. Hence, the realization 
weight that p induces on some node a depends only on p, and not on the strategies 
of the other players or on the probabilities of the chance moves. For example, for 
p* defined above, 

(since R(z , )  = R(z,) = ((1,  c ) ,  (I, d )  1). 
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Now, let z be the set of leaves in T. The assignment of realization weights to all 
the leaves in the tree is called a weight distribution. As the following lemma shows, 
the weight distribution completely specifies all the relevant information about 
a mixed strategy. 

Lemma 2.5: Two mixed strategies p and p' are equivalent if and only if they 
induce the same weight distribution, i.e. for every Z E Z ,  p[z]  = pl[z] .  

Proo j  Suppose that p and p' are equivalent, and let z be an arbitrary leaf. Choose 
the strategies of the other players and the probabilities at the chance nodes so that 
they assign probability one to any decision on the path from the root to z. Choose 
the payoff function so that player 1 receives a payoff of one at z, and zero at every 
other leaf. The expected payoff to player 1 under any mixed strategy p is exactly 
p[z ] .  Since the payoffs under p and p' must be equal, we have p[z]  = p'[z]. 

To prove the converse, suppose that p[z] = pf[z]  for every leaf Z E Z .  Fix an 
arbitrary vector s-' of pure strategies for all the other players, and an arbitrary 
probability distribution at each chance node. For any mixed strategy p for player 
1, we can define the probability that z is actually reached under p and s - ' .  Let 
n,(z) denote that probability. If on the path from the root to z there is at least one 
decision not taken under s- ' ,  then n,(z) = 0 for every p; otherwise, n,(z) is clearly 
equal to the product of p[z]  and the probabilities of the chance moves along the 
path to z. By assumption, p[z]  = pl[z] ,  and therefore n,(z) = n,.(z) for all z. The 
associated payoffs for p and p' are thus also equal. Since a mixed strategy for the 
other players is a probability distribution over pure strategies, this must also hold 
if we allow the other players to play mixed strategies. 

This lemma asserts that equivalence of strategies is completely determined by 
the weight distribution they induce on the leaves of the tree. Hence, a weight 
distribution represents an entire equivalence class of mixed strategies. Note that 
the space of weight distributions has a much smaller dimension than the space of 
mixed strategies. This observation is at the heart of our proof that small mixed 
strategies are sufficiently expressive. Our definition of "small" is based on the 
precise dimension of this space, which is at most the number of leaves in T. This 
lemma provides the motivation for our definition (in the introduction) of the size 
of T as the number of leaves in T. 

Theorem 2.6: For any mixed strategy p, there exists an equivalent strategy p' 
whose size is at most I TI. 

ProoJ Let IZ: 1 = m, and denote the strategies in Z: by s l , .  . . , sm. Let r, denote 
p[z] .  In order for a mixed strategy I? to be equivalent to p, it has to satisfy q[z ]  = r ,  
for all leaves z. We can represent these constraints in terms of a system of linear 
equations and inequalities, as follows. Let the variable xi represent the probabil- 
ity assigned by a mixed strategy q to the pure strategy si ( i  = 1, .  . . , m). The vector 
x = (x,, . . . , x J T  describes an appropriate mixed strategy if and only if it satisfies 
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the system: 

C xi = r, (for every leaf z) 
i : s i ~ R ( z )  

xi>O ( i=  1, ..., m). (4) 

The number of constraints in equations (2) and (3) is I TI + 1. We now show that 
the constraint (3) is redundant if the numbers r, are induced by some mixed 
strategy p. For each node not belonging to player 1 (even for the chance nodes), 
select the first edge leading out of the node. Denote this set of choices by s- ', and 
let Z' be the set of leaves not ruled out by s- l .  It is clear that for any ZEZ' and any 
sieZ,  si potentially reaches z (sic R(z)) iff si reaches z under s- ' (since s- ' does not 
rule out any of the decisions on the path to z). Moreover, any strategy S'EZ is in 
R(z) for exactly one ~ € 2 ' :  the leaf z reached by the combined strategy (si,s- I). 
Thus the collection of the sets {R(z):zEZ') constitutes a partition of Z. Since the 
weights r, are induced by p, we deduce that: 

Thus, for any vector x satisfying constraint (2): 

Therefore, equation (3) is redundant. 
Let Ax = b be the matrix representation of the system of linear equations 

described in constraint (2) (AEIWI~I"~, x€IWrn, ~ E R I ~ I ) .  Let x be the vector 
corresponding to p: for all i ,  define xi to be p(si) so that by (I), x satisfies the 
constraints (2) and (4). Thus, the system Ax = b has a feasible solution x 2 0. 
A classical theorem in linear programming asserts that, in this case, there exists 
a basic solution to the same system. A basic solution is a vector x' 2 0 such that 
Ax' = b and the columns of A corresponding to the positive components of x' are 
linearly independent. Since A has I TI rows, there are at most I TI linearly 
independent columns in A. Therefore, the system Ax = b, x 2 0 has a basic 
solution x' with at most I TI positive xjs. Such a solution describes a mixed 
strategy p' as we need, by setting p'(si) = xi. 0 

This result is the motivation for our definition of "small". 

Definition 2.7: A mixed strategy p is said to be small if I Supp(p)I I I TI. 
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We note that our result is, in fact, stronger than implied by the statement of the 
theorem. Consider two leaves z and z' that are reachable using the same sequence 
of decisions of player 1; for example, in the tree T*, z, and z, are both reached 
precisely when the player's decision at u, is 1. For two such nodes z, z', necessarily 
R(z) = R(zf) and thus also p[z] = p[zf] for any mixed strategy p. In particular, the 
two nodes z and z' induce identical equations in (2). Hence, the number of distinct 
equations in (2) is at most the number of distinct sequences (decision-paths) of 
player 1 in the tree. We could have defined "small" based on this number, instead 
of on I TI. We choose to use the less precise definition for the sake of simplicity. 
The definition of sequences and realization plans over sequences also appears in 
the work of von Stengel [12], who utilizes them to define and solve a generalized 
sequence form of a multi-player game. We observe that, in the worst case, the 
number of distinct sequences matches its upper bound of I TI. 

3 Reducing the Size of a Mixed Strategy 

In this section we investigate the problem of finding a small mixed strategy p' that 
is equivalent to some given mixed strategy p. Our first result is obtained by 
re-examining the proof of Theorem 2.6. Recall that the mixed strategy p can be 
viewed as a non-negative solution to some linear system of equations; the small 
mixed strategy p', whose existence we proved in Theorem 2.6, is a basic solution 
to the same system. Hence, we can reduce p to p1 using any standard algorithm for 
basis crashing - converting a non-basic solution to a linear system into a basic 
one. In our context, the most standard algorithm essentially removes pure 
strategies from the support of ,u one at a time, while maintaining equivalence. 
Assuming that p is given to us in sparse representation, the standard basis- 
crashing algorithm requires O(ISupp(p)I.I TI2) arithmetic operations for this 
conver~ion.~ We can speed up this construction somewhat using a faster basis- 
crashing algorithm due to Beling and Megiddo [I], resulting in the following 
theorem: 

Theorem 3.1: Given a mixed strategy p in sparse representation, it is possible to 
construct a small equivalent strategy p' using O(JSupp(p)J-1 arithmetic 
operations. 

Note that the running time of this algorithm depends linearly on ISupp(p)I, 
which is often exponential in the size of the game tree. Hence, this algorithm is not 
an effective solution to the problem of constructing small mixed strategies. We 
would like to find a more efficient approach. As we observed, we cannot improve 

If the number of pure strategies is exponential in the size of the tree, and if p is not represented 
sparsely, then it clearly requires exponential time simply to scan all of p. 
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the running time if we need exponential time simply to read in p. This might often 
be the case even if p is represented sparsely. Hence, we must look for an 
alternative representation of our input. The obvious choice is the weight distribu- 
tion: it can be represented very compactly, while still being a complete description 
of the desired properties of our output p'. 

In this section we therefore investigate the following problem: given some 
weight distribution, find a small mixed strategy that induces it. Unfortunately, we 
are able to show that this problem is, in general, NP-hard, thus justifying the 
exponential behavior of our algorithm above. In fact, we even show that the 
problem of deciding whether a given weight distribution is induced by any mixed 
strategy is NP-complete. We begin with the lower bound. 

Theorem 3.2: Given a game tree T with Z the set of its leaves, and a weight 
distributions {r,),,,, it is NP-hard to decide whether there exists a mixed strategy 
p such that p[z] = r, for all ZEZ. 

Proof We prove the theorem by reduction from the 3-colorability problem 
for graphs, which is defined as follows: Given an undirected graph G = (V,E), 
find a coloring y: V+ {1,2,3), so that for any edge (i, j)eE, y(i) # y(j). Given an 
instance of this problem, we construct the following game tree. Intuitively, the 
game has two stages: First, some other player picks some edge (i, j)€E. Then 
player 1 must (separately) choose a color for i and a color for j. The player has 
n = ( VI information sets u,, . . . , u,, corresponding to the vertices of G. The decision 
of the player at ui corresponds to a choice of color for vertex i. Clearly, any pure 
strategy for player 1 corresponds precisely to a (possibly illegal) coloring of the 
nodes of the graph. We now define the weight distribution for this game. For an 
edge e = (i, j)eE, and a, b~{1,2,3), let z(e, a, b) be the leaf reached by choosing e at 
the root, a at the information set ui, and b at the information set uj. We define: 

It remains only to prove that there is a mixed strategy p generating this weight 
distribution if and only if there exists a legal 3-coloring for the original graph. 

Assume that p is a mixed strategy generating this weight distribution, and let 
s be any pure strategy in the support of p; that is, p(s) > 0. We have already shown 
that s describes a coloring in G by y(i) = si. Now, consider any edge e = (i, j)eE. If 
si = s j  = a, then s potentially reaches z(e, a, a). Since s has positive probability in p, 
by definition p[z(e, a, a)] > 0; since r,(,,,,,, = 0, this contradicts the assumption 
that p induces this weight distribution. Thus, for every edge (i, j)eE, si # s j ,  and 
therefore also y(i) # y( j); i.e. y is a legal coloring. 

Now, assume that there exists a legal coloring y for G. Let y,, . . . , y, denote the 
six colorings resulting from y by permuting the colors. More precisely, each yk is 
equal to y On where n is some permutation of {1,2,3). Let sk be the pure strategy 
representing y,:sf = yk(i). Let p be the mixed strategy such that p(sk) =; for 
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k = 1 , .  . . ,6 and p(s) = 0 for all other S E Z .  We want to prove that p induces the 
desired weight distribution. Since each sk represents a legal coloring, it does not 
potentially reach any leaf of the form z(e, a, a). Therefore, p[z(e, a, a ) ]  = 0 for any 
such leaf. On the other hand, a leaf z(e, a, b), where e = ( i ,  j )  and a # b is potentially 
reached by sk if and only if yk(i) = a and yk(j) = b. Because of our definition of 
y , ,  . . . , y,  as different permutations of y ,  this latter condition holds for precisely 
one coloring y,. The vertex z(e, a, b) is potentially reached by the corresponding 
sk but not by any sk', k' # k .  Therefore, p[z(e,a, b)]  = for all leaves z(e,a, b) 
where a # b. Therefore, this mixed strategy p generates the desired weight 
distribution. 

We note that this result relies on the fact that the player has imperfect recall. In 
the next section, we show that if the player has perfect recall, there exists 
a polynomial time algorithm for constructing a small mixed strategy from 
a weight distribution. On the other hand, the hardness result applies even to 
a very restricted class of games with imperfect recall: those where the player 
makes at most two decisions on every path, and where all information sets have at 
most three choices. In fact, the result also holds if we restrict to games where there 
are two decisions on each path and all information sets have two choices; see 
[5, Theorem 3.31 for more details. 

We now prove the matching upper bound to the lower bound of Theorem 
3.2. 

Theorem 3.3: Given a game tree T with Z its leaves, and a weight distribution 
{r,) , , , ,  it is NP-complete to decide whether there exists a mixed strategy p such 
that p[z] = r,. 

Proof We proved NP-hardness in the previous theorem. It remains only to 
prove that the problem is in NP. Recall that in Theorem 2.6, we represented the 
constraints on a mixed strategy p inducing a particular weight distribution as 
a set of linear equations and non-negativity constraints. That theorem also shows 
that if there exists any mixed strategy satisfying these constraints, then there exists 
one over a support whose size is at most I TI. 

We can use these facts to construct a nondeterministic polynomial time 
algorithm for this problem. First, the algorithm nondeterministically chooses 
a set Z' c .Z of at most I TI pure strategies (12'1 I I TI). This Z' is one possibility 
for the support of an appropriate mixed strategy p. The algorithm then attempts 
to solve the system of equations and non-negativity constraints in Equations (2), 
(3), and (4), over the subset of the variables xi for s ieZ'  (the others are set to 0).  
This is a linear programming problem (of a very simple type) with polynomially 
many equations and polynomially many variables; it can therefore be solved in 
polynomial time using any polynomial time linear programming algorithm. We 
know that there exists some mixed strategy p generating this weight distribution 
if and only if there is a solution to one of these systems. Since the algorithm 
described is an N P  algorithm, the problem is in NP. 
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4 From Behavior Strategies to Small Mixed Strategies 

In the previous section we analyzed the complexity of finding a small mixed 
strategy that is equivalent to a given mixed strategy. We first explained why this 
problem is uninteresting when the original mixed strategy is represented explicit- 
ly. We then showed that the problem is hard when the mixed strategy is 
represented succinctly, using its induced weight distribution. In this section, we 
investigate the same problem in the context of the more restricted class of 
behavior strategies. As we explained in the introduction, the class of behavior 
strategies is a very important subclass of mixed strategies. Kuhn [8] showed that 
for player with perfect recall, every mixed strategy has an equivalent behavior 
strategy. Hence, in those cases where the player has perfect recall, our results from 
this section apply to any mixed strategy of the player. On the other hand, in [4] 
we argued that for a player with imperfect recall, the use of an arbitrary mixed 
strategy may violate the spirit of the imperfect recall requirement. Hence, even in 
the case of imperfect recall, behavior strategies are of particular interest. 

In this section, we present a polynomial-time algorithm that receives a behav- 
ior strategy and produces a small mixed strategy equivalent to it. Our algorithm 
applies only to games where each information set intersects each path from the 
root to a leaf at most once. However, this restriction is not specific to our 
approach, but to the result itself. In games where this does not hold, there exist 
behavior strategies that do not have any realization-equivalent mixed ~ t r a t egy .~  

We present our algorithm as constructing a small mixed strategy from 
a behavior strategy represented in the standard way: as a tuple of probability 
distributions on moves at the different information sets. However, it works 
equally well when the behavior strategy is represented as a weight distribution. 
The reason is that, given a weight distribution {r ,) , , ,  (where 0 5 r, 5 1 for all z), 
we can compute in polynomial time a behavior strategy j? inducing it, if one exist. 
The procedure is as follows. First, by working up from the leaves, we define r, for 
each node a in the tree. This weight is already defined for the leaves in the tree. Let 
a , ,  . . . ,a, be the children of a node a in the tree, and assume that we have already 
defined r a i , .  . . , ra t .  If the node a belongs to player 1, we define ra = xi:=, rOi. 
Otherwise, define ra = raI if r,, = ... = rat. If this is not the case, then the weight 
distribution is not derived from a legal behavior strategy. Given this extended 
weight distribution, we can now define the appropriate behavior strategy. 
Consider any information set uj of player 1 .  We wish to define a probability 
distribution P j  over the set C j  of choices at uj. For any choice c € C j  and any aEuj, 
let a' be the child of a reached by taking the decision c. If for some nodes a, beuj  

Consider a one-player game where a player has two decision nodes belonging to the same 
information set. If he plays R at the first node, he receives a payoff of 0; if he plays L he arrives at the 
second decision node, where playing R results in a payoff of 1000, and playing Lin a payoffof0. Any 
pure strategy, and hence any mixed strategy, results in a payoff of 0, whereas there exist behavior 
strategies that given positive payoff. 
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and a choice c it is the case that r,, # r,, then again the weight distribution is not 
derived from a legal behavior strategy. Otherwise, there are two cases. If r, = 0 for 
some (and thus all ) a a j ,  then uj is an irrelevant information set, so that we can 
pick Pj arbitrarily. Otherwise, we define Pj(c) to be (ra,/ra) (this definition is now 
clearly independent of our choice of a). See [4,12] for further details and proof of 
correctness. 

A behavior strategy P induces a mixed strategy ji in the obvious way: 

Unfortunately, when Pis highly mixed (i.e. when Pj(c) > 0 for many j, c), I Supp(ji) I 
will be very large (exponential in I TI). In Section 2, we proved that there exists 
a mixed strategy p equivalent to P, such that ISupp(p)I I I TI. We now describe 
a polynomial time algorithm for constructing such a mixed strategy. 

The algorithm proceeds by incrementally constructing mixed strategies over 
more and more information sets. We define a sequence of trees To,  T1, T2,. . . , Tn, 
such that Tk is identical to T, except that all the nodes in the information sets 
uk+ ,, . . . , u, belonging to player 1 in T belong to some other arbitrary player in 
Tk. Note that in the tree Tn, all of u,, . . . , u, belong to player 1, so that Tn is equal 
to T. Recall that the ownership of the nodes not belonging to player 1 is irrelevant 
to the construction of equivalent strategies. Since only the ownership of the nodes 
in the tree changes, I TkI = I TI for all k. A projected pure strategy for Tk has the 
form (s,, . . . , s,), and is denoted sk. Similarly, a projected behavior strategy bk is 
(PI,. . . , Pk). A projected mixed strategy pk is a mixed strategy over the tree Tk. 
That is, it is a probability distribution over pure strategies that assign decision 
values only to the information sets u,, . . . , u,. We define Rk(z) to be R(z) in the 
tree Tk. 

We recursively construct a sequence of mixed strategies pk for k = 0,1,. . , n, 
such that: 

Condition 1: pk is equivalent to pk, 
Condition 2: ISupp(pk)( I I TI. 

Initially, k = 0; there are no nodes belonging to player 1 in To. Obviously, 
Po = ( ), the empty tuple consisting of no decisions. The only legal pure strategy 
in this tree is also ( ); we therefore define pO(( )) = 1. Clearly, both conditions 
are satisfied. 

Now, suppose we have defined pk that is equivalent to Pk, such that 
I Supp(pk) I 2 I TI. We will first define an intermediate mixed strategy v k +  that will 
turn out to be equivalent to Pk+ l: 

for any sk and sk + , E Ck + l, where for sk = (sl, .  . . , sk), skosk + = (sl, . . . , sk, sk + 
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Lemma 4.1: If pk is equivalent to bk, then qk" is equivalent to pk+ l .  

Prooj Let z be any leaf in T k + l .  We distinguish two cases: 

Case I :  On the path from the origin to z there is a node from information set 
uk+ ,. Let c be the decision chosen at that node along the path. Since the 
information set uk + , can intersect the path to z at most once, we have 

where Pk[z] is taken over T k .  On the other hand, by the assumption of the lemma, 

and therefore, by Equation 1, 

For any projected pure strategy sk, if sk reaches z in the tree Tk,  and if we extend sk 
by the move c at the information set uk+ ,, then the extended strategy reaches z in 
the tree T k + ' .  Similarly, if any strategy sk+' reaches z in T~~ ', then s:: = c and 
sk reaches z in Tk.  Therefore, using an obvious notation, 

Note that by the definition of q k t l :  

Using Equations (6) and (7), and the definition of qk+',  we obtain that 

Case I I :  The information set u k + ,  does not intersect the path to z. In this case 

For any projected pure strategy sk which reaches z in Tk, all projected pure 
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strategies skoc ( ceCk  + reach z in T k +  I .  Therefore, Rk+ ' (2)  = u ~ , ~ , +  ,(Rk(z)oc). 
We can thus deduce that: 

Using the lemma assumption and Equation (8), we deduce: 

Since one of the two cases holds for any leaf z, the claim follows from Lemma 2.5. 
0 

We have established that qk+' satisfies Condition 1. However, we only know 
that I S ~ p p ( ~ ~ +  ')I I ( S ~ p p ( ~ ~ ) ( .  ( C k + ,  1, and therefore, in general, Condition 2 will 
not be satisfied. Thus qk+' does not suffice for our purposes. Note, however, that 
qk+ ' is a nonnegative solution to the system of constraints (2)-(4) described in the 
proof of Theorem 2.6. Using the algorithm of Theorem 3.1, we can find a small 
mixed strategy pk+I that is equivalent to qk+'. It follows from Theorem 2.6 that 

I Supp(pk+ ' ) I  I I Tk+'  1 = I TI. Thus, pk+' satisfies Condition 2. Furthermore, 
pk+ ', qk+ ', and Ck+' are all equivalent, so that pk+' satisfies Condition 1. Hence, 
pk+' satisfies the requirements of the ( k  + 1)"' step of the recursive construction. 

Theorem 4.2: Given a behavior strategy C,  an equivalent small strategy p can be 
found in strongly polynomial time performing O(nCi= I Ckl 1 T12.62) = 

O(n1 T(3 .62)  arithmetic operations. 

Proof: For k = n, pk is a small mixed strategy over T which is equivalent to C. Let 
c, denote I C,(. The construction requires n iterations. Iteration k ( k  = 1 , .  . . , n) 
requires O(ckl T I )  operations to create qk from pk- l ,  and 0(I S U ~ ~ ( ~ ~ ) ( . I T ~ ' . ~ ~ )  = 

O(ck 1 T ) 2 . 6 2 )  operations for transforming qk into pk. The entire algorithm therefore 
requires O(nC;=, ck 1 T ( 2 . 6 2 )  = O(n 1 T (3 .62)  arithmetic operations. 

5 Solving Extensive Games Efficiently 

Our original motivation for investigating the existence of small mixed strategies is 
their potential usefulness in algorithms. Having shown that small mixed stra- 
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tegies are as expressive as arbitrary mixed strategies, we now use this fact to 
construct much faster algorithms for solving extensive games. The basis for our 
approach is the following corollary to Theorem 2.6. 

Corollary 5.1: Consider an N-player extensive-form game T. For any equilib- 
rium payoff vector h = (hl,. . . , hN), there exists an equilibrium strategy combina- 
tion p = (pl,. . . , pN) yielding h where all of the pi's are small mixed strategies. 

Proo) Consider some equilibrium combination resulting in the payoff vector h, 
and take the equivalent small mixed strategy for each player's strategy separately. 

0 

This corollary allows us to search for an equilibrium over the space of small 
mixed strategies rather than over all mixed strategies. For each player 
i =  1,. . . , N, let L" denote the set of pure strategies of player i. Our general 
approach takes a standard algorithm for computing equilibria in normal form 
games, and uses it to construct equilibria in small mixed strategies. The general 
outline is as follows. 

(i) For each i, choose a subset Si of Z:' of size at most I TI. 
(ii) For each such choice, enumerate all the candidate equilibria - equilibria over 

the normal form game derived from T by restricting each player i to the pure 
strategies in S'. 

(iii) For each such candidate equilibrium p = (pl , .  . . , pN), check whether it is also 
an equilibrium in the full game. In the worst case, this can be accomplished 
by generating each possible pure strategy for each player i, and checking its 
payoff against p-' .  If that payoff is better than hi(p) then p is not an 
eq~il ibr ium.~ 

We could apply this scheme to any of the algorithms for solving N-player 
normal form games, for example, the algorithms of Rosenmuller [lo] or Wilson 
[13]. This would result in an algorithm for finding equilibria in N-player 
extensive-form games. 

We now show how this scheme can be used to find equilibria in two-person 
extensive-form games. In this case, the problem of finding equilibria in a normal- 
form game can be described as a linear complementarity probelm (LCP) (see [2 ] ) .  
There are a number of standard algorithms for finding such equilibria. One 
possibility is to enumerate all the possible supports for a mixed strategy pair (a 
support for each of the two players), and attempt to find an equilibrium over that 
support pair. It is straightforward to show that, in the two-player case, an 
equilibrium over a given support pair is the solution to a system of linear 
equations [2, p. 171. The approach above modifies this construction by traversing 

Note that although this is an expensive procedure, its cost is negligible relative to the exhaustive 
enumeration of all possible supports. 
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only small supports for the two players. Corollary 5.1 shows that this can be done 
without loss of generality. Any equilibrium payoff that can be found using the 
standard exhaustive enumeration algorithm can also be found by enumerating 
only small supports. This allows us to construct an algorithm for finding 
equilibria of two-player extensive-form games. Note that, unlike previous algo- 
rithms, the running time of our algorithm is exponential in the size of the game 
tree, rather than in the size of the corresponding normal-form game. 

Theorem 5.2: The algorithm outlined above finds all payoffs, and strategies 
generating them, corresponding to the basic equilibria of a two-player game in 
extensive form. The algorithm runs in time exponential in the size of the game 
tree. 

Proof Let m,,m2 denote IZII and (Z21 respectively, and let t denote I TI. The 
number of supports examined by the algorithm for player i is xi=, (7, which is at 
most tm:. For each pair of supports, one for each player, the algorithm attempts to 
find an equilibrium over that pair. In this case, this procedure reduces to solving 
a set of linear equation, and can therefore be done in polynomial time. Finally, for 
each resulting candidate equilibrium (p ' ,p2) ,  the algorithm needs to check 
whether it is, in fact, an equilibrium; i.e. whether p1 is a best response to p2 and 
vice versa. This is done by checking, for any pure strategy si of player i, whether 
the payoff achieved by si against pj ( j  # i) is better than that achieved by pi. For 
any si this requires at most 0 ( t 2 )  operations: t for enumerating the pure strategies 
sj in the support of pj, and O(t )  for computing i's payoff given a pair of pure 
strategies si,  sj. Hence, we obtain an algorithm whose running time is: 

An alternative approach to the problem of finding equilibria was proposed by 
Lemke and Howson [9]. Their algorithm searches for a single equilibrium, and 
cannot be used to enumerate all of them. The algorithm generates a sequence of 
basic solutions to the underlying system of linear equations. Each basic solution 
supports a pair of mixed strategies (one for each player) which are "almost in 
equilibrium" (almost complementary). The algorithm moves between bases using 
pivoting operations similar to those used by the simplex algorithm. The algo- 
rithm terminates when a pair of supports defining an equilibrium is found. Using 
the same techniques described above , it is possible to modify this algorithm so 
that only small supports are traversed. This procedure was done by Wilson [14]. 
His algorithm "restrict(s) the computation to the ordinarily small portion 
corresponding to the strategies actually used by the players." Like the original 
Lemke-Howson algorithm, Wilson's variant traverses the space of mixed stra- 
tegies. However, rather than maintaining the entire representation of the inter- 
mediate mixed strategies in his search, it maintains only those pure strategies in 
their supports. Wilson also shows how to avoid searching the entire space of pure 
strategies when the algorithm calls for a new pure strategy to enter the support. 
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He shows that "in games with perfect recall these strategies can be generated as 
needed from an auxiliary analysis of the players' decision trees derived from the 
extensive form of the game." 

As suggested by our quote from Wilson's paper, the motivation for this 
algorithm is derived from the observation that, typically, mixed strategies have 
a small support. Since this was, at the time, only a "rule of thumb,  the running 
time of the algorithm could not have been analyzed formally. Our results can be 
viewed as providing a formal justification for Wilson's algorithm. We can, in fact, 
use our techniques to construct a variant of Wilson's algorithm whose running 
time is guaranteed to be exponential in the size of the game tree, in the worst case. 
As for the Lemke-Howson algorithm, in many cases the algorithm will not need 
to traverse of all the possible small supports, so that it should often run faster than 
our complete enumeration algorithm above. We chose not to present this revised 
algorithm and the associated analysis since, for the case of perfect recall games, 
a much better algorithm already exists [6]. There, we show how to use the notion 
of realization weights to construct a small LCP that can be represented explicitly 
and solved using the standard Lemke-Howson algorithm 
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