
International Journal of Game Theory (1996) 25: 73-92

Finding Mixed Strategies with Small Supports
in Extensive Form Games1

DAPHNE KOLLER

Computer Science Division, 387 Soda Hall, University of California, Berkeley, CA 94720, USA

NIMROD MEGIDDO
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099, and School of
Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

Abstract: The complexity of algorithms that compute strategies or operate on them typically depends
on the representation length of the strategies involved. One measure for the size of a mixed strategy is
the number of strategies in its support - the set of pure strategies to which it gives positive probability.
This paper investigates the existence of "small" mixed strategies in extensive form games, and how
such strategies can be used to create more efficient algorithms. The basic idea is that, in an extensive
form game, a mixed strategy induces a small set of realization weights that completely describe its
observable behavior. This fact can be used to show that for any mixed strategy p, there exists
a realization-equivalent mixed strategy p' whose size is at most the size of the game tree. For a player
with imperfect recall, the problem of finding such a strategy p' (given the realization weights) is
NP-hard. On the other hand, if p is a behavior strategy, p' can be constructed from p in time
polynomial in the size of the game tree. In either case, we can use the fact that mixed strategies need
never be too large for constructing efficient algorithms that search for equilibria. In particular, we
construct the first exponential-time algorithm for finding all equilibria of an arbitrary two-person
game in extensive form.

1 Introduction

When attempting to implement various game-theoretic ideas, one often needs to
construct algorithms that operate on strategies in various ways. For example, it
may be necessary to compute strategies satisfying certain criteria (for example,
equilibrium strategies), to store strategies for future use, and to use strategies for
further computation or for playing the game. Clearly, the space required to
represent the strategy often affects the complexity of the resulting algorithms. In
this paper, we present a technique for reducing the amount of space required to
represent mixed strategies for extensive-form games.

Research supported in part by ONR Contract N00014-91-C-0026, by the Air Force Office of
Scientific Research (AFSC) under Contract F49620-91-C-0080, and by a University of California
President's Postdoctoral Fellowship. Some of this work was done while Daphne Koller was at
Stanford University. The United States Government is authorized to reproduce and distribute
reprints for governmental purposes.

0020-7276/96/1/73-92S2.50 0 1996 Physica-Verlag, Heidelberg

74 D. Koller and N. Megiddo

The extensive form is a natural way of representing a game: as a decision tree
with information structure. For this form, three types of strategies for a player
(say player 1) have been defined.' A pure strategy determines completely the
moves of player 1 at each of his information sets. A mixed strategy defines
a probability distribution over the entire set of pure strategies. When a mixed
strategy is played, a pure strategy is chosen according to this distribution before
the game starts, and then followed throughout the game. A behavior strategy
randomizes locally rather than globally: for each information set, it prescribes
a probability distribution over the possible moves.

These different types of strategies differ considerably in terms of the space
required to represent them. A pure strategy has one entry for each information set
of the player. Its size is clearly linear in the size of the game tree. A behavior
strategy assigns a probability to each possible decision of the player. Thus, it also
can be represented in linear space. A mixed strategy assigns a probability to each
pure strategy. The number of pure strategies is usually exponential in the size of
the game tree [7,4]. Thus, the size of a mixed strategy may be exponential in the
size of the tree.

In many useful mixed strategies, however, only a small number of pure
strategies receive positive probabilities. For a mixed strategy p, the set of pure
strategies which receive positive probability under p is called the support of p. We
use the size of p to denote the number of pure strategies in the support of p. Mixed
strategies whose support is "small" can be specified with a sparse representation.
The relatively "manageable" size of these strategies may reduce the space and
time complexities of algorithms handling them. This idea was first utilized by
Wilson [14] in his modified version of the Lemke-Howson algorithm [9]. This
algorithm searches the space of mixed strategies pairs for an equilibrium of
a general two-person game. Wilson's variant represents the strategies encoun-
tered in the search sparsely; i.e. it maintains only the pure strategies in their
support, and generates additional pure strategies, as needed, directly from the
game tree. Wilson justifies his algorithm as follows:

The advantages of such a modification will derive from the incidence of validity
of three propositions commonly verified in computational experience on
practical problems: (1) in practice most games arise in extensive form; (2) even
simply described extensive forms commonly generate normal forms of enor-
mous size, since the number of pure strategies increases exponentially with the
number of information sets.. .; (3) the frequency of equilibria using only a very
few of the available pure strategies is very high.. .

Wilson's motivation, as we see, arose from "computational experience on practi-
cal problems." In this paper, we describe and formally prove a result that, among
other things, implies Wilson's proposition (3).

From here on, without loss of generality, we describe strategies in terms of player 1

Finding Mixed Strategies with Small Supports in Extensive Form Games 75

We begin by observing that a mixed strategy contains a large amount of
information, most of which is irrelevant. The only relevant aspect of a mixed
strategy is the observable behavior that it induces on the nodes of the game tree.
This motivates the following definition. A strategy p of player 1 uniquely defines
a weight distribution on the nodes of the game tree. Intuitively, the realization
weight given to a node a by p is the probability that a is not ruled out by player
1 when playing p (note that a can still be ruled out by the strategy of one of the
other players). This is exactly the probability that a pure strategy chosen
according to p is consistent with the player 1 choices on the path to a. Given the
weight distribution defined by p, and any strategy combination of the other
players, we can determine the probability of reaching any node in the tree without
referring back to p. That is, the weight distribution on the nodes completely
specifies the observable behavior of p. Realization weights were first introduced
by Koller and Megiddo [4] in the context of perfect recall games. In their
algorithm, and in the more recent ones of von Stengel [12] and of Koller,
Megiddo, and von Stengel [6] , the realization weights corresponding to equilib-
rium mixed strategies are computed directly. This relies on the fact that, for games
with perfect recall, realization weights can be described using a small system of
linear equations. As we discuss below, this is not the case for games with imperfect
recall, a fact that prevents the application of these techniques to the general case.
In this paper, we utilize realization weights in a very different way. Rather than
using them directly as a new strategic representation, we use them indirectly, as
a tool for constructing small mixed strategies. This allows us to apply our
techniques to arbitrary games.

Our main result is that mixed strategies need never be too large. That is, for
every mixed strategy p there exists an equivalent "small" mixed strategy. We
define two strategies of player 1 to be equivalent if for every payoff function and
every strategy of the other players, they result in the same p a y ~ f f . ~ It can easily be
shown that two strategies are equivalent if and only if they induce the same weight
distribution over the leaves of the game tree. Hence, a weight distribution
represents an entire class of equivalent strategies. This observation is the basis for
our result. In order to state it formally, let T be a game tree, and let Z be the set of
leaves in T. We measure the size of the tree in terms of the cardinality of Z and
denote that number by I TI; this is justified since if each decision node has at least
two choices, then more than half of all the nodes of Tare leaves. In Section 2 we
show that for any mixed strategy p for player 1, there exists an equivalent strategy
p' whose size does not exceed I TI (the number of leaves in the tree). Moreover,
there exist games where some mixed strategies do not have equivalent strategies
of smaller size. We therefore define a mixed strategy to be small if its size does not
exceed 1

This standard concept is sometimes calledpayoffequivalence and sometimes realization equivalence.
Our result is actually stronger, in that the size of the strategies is often even smaller than I TI. For
simplicity, we chose to define "small" based on I TI. See Section 2 for further discussion.

76 D. Koller and N. Megiddo

Next, we investigate the issue of finding a small strategy that is equivalent to
some given mixed strategy. Given p, this can be done quite easily by a process that
iteratively removes strategies one by one from the support of p. Unfortunately,
the size of p can be exponential in the size of the game tree, so that this process is
typically of little practical use. In Section 3 we investigate an alternative ap-
proach: finding a small mixed strategy directly from the weight distribution on
the leaves. We show that, in general, although the size of the input is now small
(linear in the size of the tree), this does not help with respect to the complexity of
the problem. The problem of deciding whether there even exists a mixed strategy
that induces a given weight distribution is NP-complete.

The situation is different, however, for the case of behavior strategies. Unlike
general mixed strategies, it is easy to decide whether there exists a behavior
strategy that induces a given weight distribution. In fact, such a behavior strategy
can be computed in polynomial time from the weight distribution (see also [4]).
In many interesting problems, behavior strategies play an important role. A player
is said to have perfect recall if she remembers throughout the play everything she
has known and done. Kuhn [8] showed that for a player with perfect recall, every
mixed strategy has an equivalent behavior strategy. Thus, for such a player, it suffices
to investigate only behavior strategies. In [4], we also make the point that for a player
with imperfect recall, the use of an arbitrary mixed strategy (one not derived from
a behavior strategy) may violate the spirit of the imperfect recall requirement.
Thus, in this case one also often wishes to restrict attention to behavior strategies.

In Section 4 we show how a small mixed strategy can be computed in
polynomial time from a behavior strategy (or from the weight distribution
induced by the behavior strategy). In particular, for any strategy of a player with
perfect recall, a small mixed strategy can be found in polynomial time. For
example, using the results of [4,12], a small optimal mixed strategy can be found
for any player in a two-person zero-sum game with perfect recall. Similarly, using
the results of [6], an equilibrium pair of small mixed strategies can be found in
any two-person game with perfect recall.

In general, the representation of a small mixed strategy might not be smaller
than the representation of the behavior strategy that induces it. However, as
many algorithms are based on mixed strategies, the ability to construct efficiently
a small mixed strategy is often useful. In [5], for example, we demonstrate how
the techniques of this paper can be applied to de-randomization of algorithms.
But even the fact itself that mixed strategies need never be too large can help us in
constructing more efficient algorithms. In Section 5 we demonstrate this by
constructing an exponential time algorithm for enumerating all equilibria in
two-person general-sum games. To our knowledge, this was the first exponential-
time algorithm for this problem, and is still the only one that works for games
with imperfect recall. (For the case of perfect recall games, the recent algorithms
of [12] and [6] are better.) We also briefly discuss how this result can be used to
construct an efficient variant of Wilson's algorithm [14]. In general, we believe
that these techniques can also be used to construct efficient algorithms for many
problems involving mixed strategies.

Finding Mixed Strategies with Small Supports in Extensive Form Games

2 Existence of Small Strategies

As we discussed in the introduction, in extensive form games, mixed strategies
contain a large amount of irrelevant information. This leads us to hope that we
might be able to find "small" mixed strategies where this redundancy is elimin-
ated. In this section, we formalize this intuition. Let T be a game tree for some
number of players (the number does not matter). For the rest of the paper, we
restrict attention to player 1 (often referred to as "the player"), and to the problem
of constructing small mixed strategies for player 1. Assume that the player's
information sets in T are u, , . . . , u,, and that the set of choices available at
information set u j is Cj. Let Z = C, x C, x ... x C, denote the set of pure
strategies for the player. For a pure strategy SEX, let sjeCj denote the choice
made by s at information set uj, so s = (s,, . . . , s,). For example, in the game tree
T* of Figure 1, player 1 has two information sets, u, and u,, with C, = {I, r) and
C, = {c, dl. Therefore, Z = (1, r) x {c, d). Note that the tree T* is not completely
specified. We did not describe the payoffs at the leaves nor the player to move at
the root of the tree; these will be irrelevant to our discussion.

Given a strategy p for player 1 in the game T, we would like to find an equivalent
mixed strategy that is more compact.

Dejinition 2.1: For a mixed strategy p and a pure strategy s, let p(s) denote the
probability that p assigns to the pure strategy s. The support of p, denoted
Supp(p), is the set of pure strategies {seZ:p(s) > 0). The size of p is the cardinality
)Supp(p)J of its support.

For example, consider a mixed strategy p* over T* such that:

Fig. 1. A game tree T*

D. Koller and N. Megiddo

Fig. 2. A game tree with exponentially many pure strategies.

Our goal is, given a mixed strategy p, to find another mixed strategy with
a "small" support, that performs the same as p in all situations.

Dejnition 2.2: Two mixed strategies p, and p, are said to be equivalent if for all
payoff functions, all probability distributions at the chance nodes, and all
strategies of the other players, the payoffs to all players under p , and under p, are
identical.

At first glance it seems very difficult to check whether two mixed strategies are
equivalent; it appears that it might be necessary to check infinitely many (or at
least very many) variants of the game, corresponding to different assignments of
payoffs and probabilities of the chance moves. However, it turns out that
equivalence can be defined in terms of the following simple concepts.

Consider the information sets intersected by the path from the root to some
node a. In each of these information sets, only one decision leads to a. We can
therefore characterize the set of pure strategies which may reach the node a as
follows.

Definition 2.3: We say that a pure strategy s potentially reaches a node a if, for
every information set u j on the path from the root to a, the strategy s at u j takes
the decision sj leading to a. Let R(a) denote the set of pure strategies (s ~ Z : s
potentially reaches a) .

Note that even if s potentially reaches a, it is not necessarily the case that a is
actually reached in a particular play of the game. This depends, of course, on the
strategies of the other players and on the chance moves. The fact that s potentially
reaches a means only that s does not unilaterally rule out the possibility of
reaching a. For example, consider the strategy s = (l d) over the tree T*. This
strategy potentially reaches z , , z 3 , and z,. Clearly, the node that is actually
reached in a particular game depends on the move taken at the root. However,
this is independent of the strategy of player 1. It is easy to see that:

Finding Mixed Strategies with Small Supports in Extensive Form Games 79

The notion of potential reachability is often used to reduce the space of pure
strategies. Consider some information set u. If a pure strategy s does not
potentially reach any node in u, then the decision taken by s at u is irrelevant. The
information set u is never reached in play, so the decision there cannot affect the
outcome of the game. Pure strategies that differ only in choices at irrelevant
information sets have been called equivalent by Kuhn [8] and even identified [7].
This identification can be done by leaving the choices at the irrelevant informa-
tion sets blank. In this formulation, a pure strategy would represent an entire
equivalence class of pure strategies. This reduction of the space of pure strategies
forms the basis for the reduced normal form of an extensive game. Further
reductions for a particular given payoff function have been considered by Dalkey
[3] and by Swinkels [I 11, but these provide no additional savings in the context
of a generic game.

Unfortunately, the savings provided by the reduced normal form are often
limited. Consider a game where the player has parallel information sets - ones
where the player's actions cannot affect which is reached. For example u, and u,
in T* are parallel information sets. For a more extreme example, consider Figure
2, where player 1 has 1 parallel information sets. The number of pure strategies in
this case is 2', and none can be eliminated as equivalent to another. Hence, even
the reduced normal form is often exponential in the size of the game tree.

Our approach to reducing the size of mixed strategies is completely different.
Rather than eliminating or identifying pure strategies, we define equivalence
classes of mixed strategies. This process will allow us to find, in each equivalence
class, a representative mixed strategy which is "small". We note that our
technique also recognizes equivalence of pure strategies (in the above sense), so
that it can be seen as generalizing the ideas behind the reduced normal form. The
main idea we use is the following.

Dejnition 2.4: Let p be a mixed strategy, and let a be some node. We define the
realization weight that p induces on a by

The realization weight that a mixed strategy p induces on a is simply the total
probability (according to p) of the pure strategies that potentially reach A; that is,
it is the probability according to p of potentially reaching a. Note that potential
reachability is defined purely in terms of player 1's moves. Hence, the realization
weight that p induces on some node a depends only on p, and not on the strategies
of the other players or on the probabilities of the chance moves. For example, for
p* defined above,

(since R(z ,) = R(z,) = ((1, c) , (I, d) 1).

80 D. Koller and N. Megiddo

Now, let z be the set of leaves in T. The assignment of realization weights to all
the leaves in the tree is called a weight distribution. As the following lemma shows,
the weight distribution completely specifies all the relevant information about
a mixed strategy.

Lemma 2.5: Two mixed strategies p and p' are equivalent if and only if they
induce the same weight distribution, i.e. for every Z E Z , p[z] = pl[z] .

Proo j Suppose that p and p' are equivalent, and let z be an arbitrary leaf. Choose
the strategies of the other players and the probabilities at the chance nodes so that
they assign probability one to any decision on the path from the root to z. Choose
the payoff function so that player 1 receives a payoff of one at z, and zero at every
other leaf. The expected payoff to player 1 under any mixed strategy p is exactly
p[z] . Since the payoffs under p and p' must be equal, we have p[z] = p'[z].

To prove the converse, suppose that p[z] = pf[z] for every leaf Z E Z . Fix an
arbitrary vector s-' of pure strategies for all the other players, and an arbitrary
probability distribution at each chance node. For any mixed strategy p for player
1, we can define the probability that z is actually reached under p and s - ' . Let
n,(z) denote that probability. If on the path from the root to z there is at least one
decision not taken under s- ' , then n,(z) = 0 for every p; otherwise, n,(z) is clearly
equal to the product of p[z] and the probabilities of the chance moves along the
path to z. By assumption, p[z] = pl[z] , and therefore n,(z) = n,.(z) for all z. The
associated payoffs for p and p' are thus also equal. Since a mixed strategy for the
other players is a probability distribution over pure strategies, this must also hold
if we allow the other players to play mixed strategies.

This lemma asserts that equivalence of strategies is completely determined by
the weight distribution they induce on the leaves of the tree. Hence, a weight
distribution represents an entire equivalence class of mixed strategies. Note that
the space of weight distributions has a much smaller dimension than the space of
mixed strategies. This observation is at the heart of our proof that small mixed
strategies are sufficiently expressive. Our definition of "small" is based on the
precise dimension of this space, which is at most the number of leaves in T. This
lemma provides the motivation for our definition (in the introduction) of the size
of T as the number of leaves in T.

Theorem 2.6: For any mixed strategy p, there exists an equivalent strategy p'
whose size is at most I TI.

ProoJ Let IZ: 1 = m, and denote the strategies in Z: by s l , . . . , sm. Let r, denote
p[z] . In order for a mixed strategy I? to be equivalent to p, it has to satisfy q[z] = r ,
for all leaves z. We can represent these constraints in terms of a system of linear
equations and inequalities, as follows. Let the variable xi represent the probabil-
ity assigned by a mixed strategy q to the pure strategy si (i = 1, . . . , m). The vector
x = (x,, . . . , x J T describes an appropriate mixed strategy if and only if it satisfies

Finding Mixed Strategies with Small Supports in Extensive Form Games 81

the system:

C xi = r, (for every leaf z)
i : s i ~ R (z)

xi>O (i= 1, ..., m). (4)

The number of constraints in equations (2) and (3) is I TI + 1. We now show that
the constraint (3) is redundant if the numbers r, are induced by some mixed
strategy p. For each node not belonging to player 1 (even for the chance nodes),
select the first edge leading out of the node. Denote this set of choices by s- ', and
let Z' be the set of leaves not ruled out by s- l . It is clear that for any ZEZ' and any
sieZ, si potentially reaches z (sic R(z)) iff si reaches z under s- ' (since s- ' does not
rule out any of the decisions on the path to z). Moreover, any strategy S'EZ is in
R(z) for exactly one ~ € 2 ' : the leaf z reached by the combined strategy (si,s- I).
Thus the collection of the sets {R(z):zEZ') constitutes a partition of Z. Since the
weights r, are induced by p, we deduce that:

Thus, for any vector x satisfying constraint (2):

Therefore, equation (3) is redundant.
Let Ax = b be the matrix representation of the system of linear equations

described in constraint (2) (AEIWI~I"~, x€IWrn, ~ E R I ~ I) . Let x be the vector
corresponding to p: for all i , define xi to be p(si) so that by (I), x satisfies the
constraints (2) and (4). Thus, the system Ax = b has a feasible solution x 2 0.
A classical theorem in linear programming asserts that, in this case, there exists
a basic solution to the same system. A basic solution is a vector x' 2 0 such that
Ax' = b and the columns of A corresponding to the positive components of x' are
linearly independent. Since A has I TI rows, there are at most I TI linearly
independent columns in A. Therefore, the system Ax = b, x 2 0 has a basic
solution x' with at most I TI positive xjs. Such a solution describes a mixed
strategy p' as we need, by setting p'(si) = xi. 0

This result is the motivation for our definition of "small".

Definition 2.7: A mixed strategy p is said to be small if I Supp(p)I I I TI.

82 D. Koller and N. Megiddo

We note that our result is, in fact, stronger than implied by the statement of the
theorem. Consider two leaves z and z' that are reachable using the same sequence
of decisions of player 1; for example, in the tree T*, z, and z, are both reached
precisely when the player's decision at u, is 1. For two such nodes z, z', necessarily
R(z) = R(zf) and thus also p[z] = p[zf] for any mixed strategy p. In particular, the
two nodes z and z' induce identical equations in (2). Hence, the number of distinct
equations in (2) is at most the number of distinct sequences (decision-paths) of
player 1 in the tree. We could have defined "small" based on this number, instead
of on I TI. We choose to use the less precise definition for the sake of simplicity.
The definition of sequences and realization plans over sequences also appears in
the work of von Stengel [12], who utilizes them to define and solve a generalized
sequence form of a multi-player game. We observe that, in the worst case, the
number of distinct sequences matches its upper bound of I TI.

3 Reducing the Size of a Mixed Strategy

In this section we investigate the problem of finding a small mixed strategy p' that
is equivalent to some given mixed strategy p. Our first result is obtained by
re-examining the proof of Theorem 2.6. Recall that the mixed strategy p can be
viewed as a non-negative solution to some linear system of equations; the small
mixed strategy p', whose existence we proved in Theorem 2.6, is a basic solution
to the same system. Hence, we can reduce p to p1 using any standard algorithm for
basis crashing - converting a non-basic solution to a linear system into a basic
one. In our context, the most standard algorithm essentially removes pure
strategies from the support of ,u one at a time, while maintaining equivalence.
Assuming that p is given to us in sparse representation, the standard basis-
crashing algorithm requires O(ISupp(p)I.I TI2) arithmetic operations for this
conver~ion.~ We can speed up this construction somewhat using a faster basis-
crashing algorithm due to Beling and Megiddo [I], resulting in the following
theorem:

Theorem 3.1: Given a mixed strategy p in sparse representation, it is possible to
construct a small equivalent strategy p' using O(JSupp(p)J-1 arithmetic
operations.

Note that the running time of this algorithm depends linearly on ISupp(p)I,
which is often exponential in the size of the game tree. Hence, this algorithm is not
an effective solution to the problem of constructing small mixed strategies. We
would like to find a more efficient approach. As we observed, we cannot improve

If the number of pure strategies is exponential in the size of the tree, and if p is not represented
sparsely, then it clearly requires exponential time simply to scan all of p.

Finding Mixed Strategies with Small Supports in Extensive Form Games 83

the running time if we need exponential time simply to read in p. This might often
be the case even if p is represented sparsely. Hence, we must look for an
alternative representation of our input. The obvious choice is the weight distribu-
tion: it can be represented very compactly, while still being a complete description
of the desired properties of our output p'.

In this section we therefore investigate the following problem: given some
weight distribution, find a small mixed strategy that induces it. Unfortunately, we
are able to show that this problem is, in general, NP-hard, thus justifying the
exponential behavior of our algorithm above. In fact, we even show that the
problem of deciding whether a given weight distribution is induced by any mixed
strategy is NP-complete. We begin with the lower bound.

Theorem 3.2: Given a game tree T with Z the set of its leaves, and a weight
distributions {r,),,,, it is NP-hard to decide whether there exists a mixed strategy
p such that p[z] = r, for all ZEZ.

Proof We prove the theorem by reduction from the 3-colorability problem
for graphs, which is defined as follows: Given an undirected graph G = (V,E),
find a coloring y: V+ {1,2,3), so that for any edge (i, j)eE, y(i) # y(j). Given an
instance of this problem, we construct the following game tree. Intuitively, the
game has two stages: First, some other player picks some edge (i, j)€E. Then
player 1 must (separately) choose a color for i and a color for j. The player has
n = (VI information sets u,, . . . , u,, corresponding to the vertices of G. The decision
of the player at ui corresponds to a choice of color for vertex i. Clearly, any pure
strategy for player 1 corresponds precisely to a (possibly illegal) coloring of the
nodes of the graph. We now define the weight distribution for this game. For an
edge e = (i, j)eE, and a, b~{1,2,3), let z(e, a, b) be the leaf reached by choosing e at
the root, a at the information set ui, and b at the information set uj. We define:

It remains only to prove that there is a mixed strategy p generating this weight
distribution if and only if there exists a legal 3-coloring for the original graph.

Assume that p is a mixed strategy generating this weight distribution, and let
s be any pure strategy in the support of p; that is, p(s) > 0. We have already shown
that s describes a coloring in G by y(i) = si. Now, consider any edge e = (i, j)eE. If
si = s j = a, then s potentially reaches z(e, a, a). Since s has positive probability in p,
by definition p[z(e, a, a)] > 0; since r,(,,,,,, = 0, this contradicts the assumption
that p induces this weight distribution. Thus, for every edge (i, j)eE, si # s j , and
therefore also y(i) # y(j); i.e. y is a legal coloring.

Now, assume that there exists a legal coloring y for G. Let y,, . . . , y, denote the
six colorings resulting from y by permuting the colors. More precisely, each yk is
equal to y On where n is some permutation of {1,2,3). Let sk be the pure strategy
representing y,:sf = yk(i). Let p be the mixed strategy such that p(sk) =; for

84 D. Koller and N. Megiddo

k = 1 , . . . ,6 and p(s) = 0 for all other S E Z . We want to prove that p induces the
desired weight distribution. Since each sk represents a legal coloring, it does not
potentially reach any leaf of the form z(e, a, a). Therefore, p[z(e, a, a)] = 0 for any
such leaf. On the other hand, a leaf z(e, a, b), where e = (i , j) and a # b is potentially
reached by sk if and only if yk(i) = a and yk(j) = b. Because of our definition of
y , , . . . , y, as different permutations of y , this latter condition holds for precisely
one coloring y,. The vertex z(e, a, b) is potentially reached by the corresponding
sk but not by any sk', k' # k . Therefore, p[z(e,a, b)] = for all leaves z(e,a, b)
where a # b. Therefore, this mixed strategy p generates the desired weight
distribution.

We note that this result relies on the fact that the player has imperfect recall. In
the next section, we show that if the player has perfect recall, there exists
a polynomial time algorithm for constructing a small mixed strategy from
a weight distribution. On the other hand, the hardness result applies even to
a very restricted class of games with imperfect recall: those where the player
makes at most two decisions on every path, and where all information sets have at
most three choices. In fact, the result also holds if we restrict to games where there
are two decisions on each path and all information sets have two choices; see
[5, Theorem 3.31 for more details.

We now prove the matching upper bound to the lower bound of Theorem
3.2.

Theorem 3.3: Given a game tree T with Z its leaves, and a weight distribution
{r,) , , , , it is NP-complete to decide whether there exists a mixed strategy p such
that p[z] = r,.

Proof We proved NP-hardness in the previous theorem. It remains only to
prove that the problem is in NP. Recall that in Theorem 2.6, we represented the
constraints on a mixed strategy p inducing a particular weight distribution as
a set of linear equations and non-negativity constraints. That theorem also shows
that if there exists any mixed strategy satisfying these constraints, then there exists
one over a support whose size is at most I TI.

We can use these facts to construct a nondeterministic polynomial time
algorithm for this problem. First, the algorithm nondeterministically chooses
a set Z' c .Z of at most I TI pure strategies (12'1 I I TI). This Z' is one possibility
for the support of an appropriate mixed strategy p. The algorithm then attempts
to solve the system of equations and non-negativity constraints in Equations (2),
(3), and (4), over the subset of the variables xi for s ieZ' (the others are set to 0).
This is a linear programming problem (of a very simple type) with polynomially
many equations and polynomially many variables; it can therefore be solved in
polynomial time using any polynomial time linear programming algorithm. We
know that there exists some mixed strategy p generating this weight distribution
if and only if there is a solution to one of these systems. Since the algorithm
described is an N P algorithm, the problem is in NP.

Finding Mixed Strategies with Small Supports in Extensive Form Games

4 From Behavior Strategies to Small Mixed Strategies

In the previous section we analyzed the complexity of finding a small mixed
strategy that is equivalent to a given mixed strategy. We first explained why this
problem is uninteresting when the original mixed strategy is represented explicit-
ly. We then showed that the problem is hard when the mixed strategy is
represented succinctly, using its induced weight distribution. In this section, we
investigate the same problem in the context of the more restricted class of
behavior strategies. As we explained in the introduction, the class of behavior
strategies is a very important subclass of mixed strategies. Kuhn [8] showed that
for player with perfect recall, every mixed strategy has an equivalent behavior
strategy. Hence, in those cases where the player has perfect recall, our results from
this section apply to any mixed strategy of the player. On the other hand, in [4]
we argued that for a player with imperfect recall, the use of an arbitrary mixed
strategy may violate the spirit of the imperfect recall requirement. Hence, even in
the case of imperfect recall, behavior strategies are of particular interest.

In this section, we present a polynomial-time algorithm that receives a behav-
ior strategy and produces a small mixed strategy equivalent to it. Our algorithm
applies only to games where each information set intersects each path from the
root to a leaf at most once. However, this restriction is not specific to our
approach, but to the result itself. In games where this does not hold, there exist
behavior strategies that do not have any realization-equivalent mixed ~ t r a t egy .~

We present our algorithm as constructing a small mixed strategy from
a behavior strategy represented in the standard way: as a tuple of probability
distributions on moves at the different information sets. However, it works
equally well when the behavior strategy is represented as a weight distribution.
The reason is that, given a weight distribution {r ,) , , , (where 0 5 r, 5 1 for all z),
we can compute in polynomial time a behavior strategy j? inducing it, if one exist.
The procedure is as follows. First, by working up from the leaves, we define r, for
each node a in the tree. This weight is already defined for the leaves in the tree. Let
a , , . . . ,a, be the children of a node a in the tree, and assume that we have already
defined r a i , . . . , ra t . If the node a belongs to player 1, we define ra = xi:=, rOi.
Otherwise, define ra = raI if r,, = ... = rat. If this is not the case, then the weight
distribution is not derived from a legal behavior strategy. Given this extended
weight distribution, we can now define the appropriate behavior strategy.
Consider any information set uj of player 1 . We wish to define a probability
distribution P j over the set C j of choices at uj. For any choice c € C j and any aEuj,
let a' be the child of a reached by taking the decision c. If for some nodes a, beuj

Consider a one-player game where a player has two decision nodes belonging to the same
information set. If he plays R at the first node, he receives a payoff of 0; if he plays L he arrives at the
second decision node, where playing R results in a payoff of 1000, and playing Lin a payoffof0. Any
pure strategy, and hence any mixed strategy, results in a payoff of 0, whereas there exist behavior
strategies that given positive payoff.

86 D. Koller and N. Megiddo

and a choice c it is the case that r,, # r,, then again the weight distribution is not
derived from a legal behavior strategy. Otherwise, there are two cases. If r, = 0 for
some (and thus all) a a j , then uj is an irrelevant information set, so that we can
pick Pj arbitrarily. Otherwise, we define Pj(c) to be (ra,/ra) (this definition is now
clearly independent of our choice of a). See [4,12] for further details and proof of
correctness.

A behavior strategy P induces a mixed strategy ji in the obvious way:

Unfortunately, when Pis highly mixed (i.e. when Pj(c) > 0 for many j, c), I Supp(ji) I
will be very large (exponential in I TI). In Section 2, we proved that there exists
a mixed strategy p equivalent to P, such that ISupp(p)I I I TI. We now describe
a polynomial time algorithm for constructing such a mixed strategy.

The algorithm proceeds by incrementally constructing mixed strategies over
more and more information sets. We define a sequence of trees To, T1, T2,. . . , Tn,
such that Tk is identical to T, except that all the nodes in the information sets
uk+ ,, . . . , u, belonging to player 1 in T belong to some other arbitrary player in
Tk. Note that in the tree Tn, all of u,, . . . , u, belong to player 1, so that Tn is equal
to T. Recall that the ownership of the nodes not belonging to player 1 is irrelevant
to the construction of equivalent strategies. Since only the ownership of the nodes
in the tree changes, I TkI = I TI for all k. A projected pure strategy for Tk has the
form (s,, . . . , s,), and is denoted sk. Similarly, a projected behavior strategy bk is
(PI,. . . , Pk). A projected mixed strategy pk is a mixed strategy over the tree Tk.
That is, it is a probability distribution over pure strategies that assign decision
values only to the information sets u,, . . . , u,. We define Rk(z) to be R(z) in the
tree Tk.

We recursively construct a sequence of mixed strategies pk for k = 0,1,. . , n,
such that:

Condition 1: pk is equivalent to pk,
Condition 2: ISupp(pk)(I I TI.

Initially, k = 0; there are no nodes belonging to player 1 in To. Obviously,
Po = (), the empty tuple consisting of no decisions. The only legal pure strategy
in this tree is also (); we therefore define pO(()) = 1. Clearly, both conditions
are satisfied.

Now, suppose we have defined pk that is equivalent to Pk, such that
I Supp(pk) I 2 I TI. We will first define an intermediate mixed strategy v k + that will
turn out to be equivalent to Pk+ l:

for any sk and sk + , E Ck + l, where for sk = (sl, . . . , sk), skosk + = (sl, . . . , sk, sk +

Finding Mixed Strategies with Small Supports in Extensive Form Games

Lemma 4.1: If pk is equivalent to bk, then qk" is equivalent to pk+ l .

Prooj Let z be any leaf in T k + l . We distinguish two cases:

Case I : On the path from the origin to z there is a node from information set
uk+ ,. Let c be the decision chosen at that node along the path. Since the
information set uk + , can intersect the path to z at most once, we have

where Pk[z] is taken over T k . On the other hand, by the assumption of the lemma,

and therefore, by Equation 1,

For any projected pure strategy sk, if sk reaches z in the tree Tk, and if we extend sk
by the move c at the information set uk+ ,, then the extended strategy reaches z in
the tree T k + ' . Similarly, if any strategy sk+' reaches z in T~~ ', then s:: = c and
sk reaches z in Tk. Therefore, using an obvious notation,

Note that by the definition of q k t l :

Using Equations (6) and (7), and the definition of qk+', we obtain that

Case I I : The information set u k + , does not intersect the path to z. In this case

For any projected pure strategy sk which reaches z in Tk, all projected pure

88 D. Koller and N. Megiddo

strategies skoc (ceCk + reach z in T k + I . Therefore, Rk+ ' (2) = u ~ , ~ , + ,(Rk(z)oc).
We can thus deduce that:

Using the lemma assumption and Equation (8), we deduce:

Since one of the two cases holds for any leaf z, the claim follows from Lemma 2.5.
0

We have established that qk+' satisfies Condition 1. However, we only know
that I S ~ p p (~ ~ + ')I I (S ~ p p (~ ~) (. (C k + , 1, and therefore, in general, Condition 2 will
not be satisfied. Thus qk+' does not suffice for our purposes. Note, however, that
qk+ ' is a nonnegative solution to the system of constraints (2)-(4) described in the
proof of Theorem 2.6. Using the algorithm of Theorem 3.1, we can find a small
mixed strategy pk+I that is equivalent to qk+'. It follows from Theorem 2.6 that

I Supp(pk+ ') I I I Tk+' 1 = I TI. Thus, pk+' satisfies Condition 2. Furthermore,
pk+ ', qk+ ', and Ck+' are all equivalent, so that pk+' satisfies Condition 1. Hence,
pk+' satisfies the requirements of the (k + 1)"' step of the recursive construction.

Theorem 4.2: Given a behavior strategy C, an equivalent small strategy p can be
found in strongly polynomial time performing O(nCi= I Ckl 1 T12.62) =

O(n1 T(3 .62) arithmetic operations.

Proof: For k = n, pk is a small mixed strategy over T which is equivalent to C. Let
c, denote I C,(. The construction requires n iterations. Iteration k (k = 1 , . . . , n)
requires O(ckl T I) operations to create qk from pk- l , and 0(I S U ~ ~ (~ ~) (. I T ~ ' . ~ ~) =

O(ck 1 T) 2 . 6 2) operations for transforming qk into pk. The entire algorithm therefore
requires O(nC;=, ck 1 T (2 . 6 2) = O(n 1 T (3 .62) arithmetic operations.

5 Solving Extensive Games Efficiently

Our original motivation for investigating the existence of small mixed strategies is
their potential usefulness in algorithms. Having shown that small mixed stra-

Finding Mixed Strategies with Small Supports in Extensive Form Games 89

tegies are as expressive as arbitrary mixed strategies, we now use this fact to
construct much faster algorithms for solving extensive games. The basis for our
approach is the following corollary to Theorem 2.6.

Corollary 5.1: Consider an N-player extensive-form game T. For any equilib-
rium payoff vector h = (hl,. . . , hN), there exists an equilibrium strategy combina-
tion p = (pl,. . . , pN) yielding h where all of the pi's are small mixed strategies.

Proo) Consider some equilibrium combination resulting in the payoff vector h,
and take the equivalent small mixed strategy for each player's strategy separately.

0

This corollary allows us to search for an equilibrium over the space of small
mixed strategies rather than over all mixed strategies. For each player
i = 1,. . . , N, let L" denote the set of pure strategies of player i. Our general
approach takes a standard algorithm for computing equilibria in normal form
games, and uses it to construct equilibria in small mixed strategies. The general
outline is as follows.

(i) For each i, choose a subset Si of Z:' of size at most I TI.
(ii) For each such choice, enumerate all the candidate equilibria - equilibria over

the normal form game derived from T by restricting each player i to the pure
strategies in S'.

(iii) For each such candidate equilibrium p = (pl , . . . , pN), check whether it is also
an equilibrium in the full game. In the worst case, this can be accomplished
by generating each possible pure strategy for each player i, and checking its
payoff against p-' . If that payoff is better than hi(p) then p is not an
eq~il ibr ium.~

We could apply this scheme to any of the algorithms for solving N-player
normal form games, for example, the algorithms of Rosenmuller [lo] or Wilson
[13]. This would result in an algorithm for finding equilibria in N-player
extensive-form games.

We now show how this scheme can be used to find equilibria in two-person
extensive-form games. In this case, the problem of finding equilibria in a normal-
form game can be described as a linear complementarity probelm (LCP) (see [2]) .
There are a number of standard algorithms for finding such equilibria. One
possibility is to enumerate all the possible supports for a mixed strategy pair (a
support for each of the two players), and attempt to find an equilibrium over that
support pair. It is straightforward to show that, in the two-player case, an
equilibrium over a given support pair is the solution to a system of linear
equations [2, p. 171. The approach above modifies this construction by traversing

Note that although this is an expensive procedure, its cost is negligible relative to the exhaustive
enumeration of all possible supports.

90 D. Koller and N. Megiddo

only small supports for the two players. Corollary 5.1 shows that this can be done
without loss of generality. Any equilibrium payoff that can be found using the
standard exhaustive enumeration algorithm can also be found by enumerating
only small supports. This allows us to construct an algorithm for finding
equilibria of two-player extensive-form games. Note that, unlike previous algo-
rithms, the running time of our algorithm is exponential in the size of the game
tree, rather than in the size of the corresponding normal-form game.

Theorem 5.2: The algorithm outlined above finds all payoffs, and strategies
generating them, corresponding to the basic equilibria of a two-player game in
extensive form. The algorithm runs in time exponential in the size of the game
tree.

Proof Let m,,m2 denote IZII and (Z21 respectively, and let t denote I TI. The
number of supports examined by the algorithm for player i is xi=, (7, which is at
most tm:. For each pair of supports, one for each player, the algorithm attempts to
find an equilibrium over that pair. In this case, this procedure reduces to solving
a set of linear equation, and can therefore be done in polynomial time. Finally, for
each resulting candidate equilibrium (p ' ,p2) , the algorithm needs to check
whether it is, in fact, an equilibrium; i.e. whether p1 is a best response to p2 and
vice versa. This is done by checking, for any pure strategy si of player i, whether
the payoff achieved by si against pj (j # i) is better than that achieved by pi. For
any si this requires at most 0 (t 2) operations: t for enumerating the pure strategies
sj in the support of pj, and O(t) for computing i's payoff given a pair of pure
strategies si, sj. Hence, we obtain an algorithm whose running time is:

An alternative approach to the problem of finding equilibria was proposed by
Lemke and Howson [9]. Their algorithm searches for a single equilibrium, and
cannot be used to enumerate all of them. The algorithm generates a sequence of
basic solutions to the underlying system of linear equations. Each basic solution
supports a pair of mixed strategies (one for each player) which are "almost in
equilibrium" (almost complementary). The algorithm moves between bases using
pivoting operations similar to those used by the simplex algorithm. The algo-
rithm terminates when a pair of supports defining an equilibrium is found. Using
the same techniques described above , it is possible to modify this algorithm so
that only small supports are traversed. This procedure was done by Wilson [14].
His algorithm "restrict(s) the computation to the ordinarily small portion
corresponding to the strategies actually used by the players." Like the original
Lemke-Howson algorithm, Wilson's variant traverses the space of mixed stra-
tegies. However, rather than maintaining the entire representation of the inter-
mediate mixed strategies in his search, it maintains only those pure strategies in
their supports. Wilson also shows how to avoid searching the entire space of pure
strategies when the algorithm calls for a new pure strategy to enter the support.

Finding Mixed Strategies with Small Supports in Extensive Form Games 9 1

He shows that "in games with perfect recall these strategies can be generated as
needed from an auxiliary analysis of the players' decision trees derived from the
extensive form of the game."

As suggested by our quote from Wilson's paper, the motivation for this
algorithm is derived from the observation that, typically, mixed strategies have
a small support. Since this was, at the time, only a "rule of thumb, the running
time of the algorithm could not have been analyzed formally. Our results can be
viewed as providing a formal justification for Wilson's algorithm. We can, in fact,
use our techniques to construct a variant of Wilson's algorithm whose running
time is guaranteed to be exponential in the size of the game tree, in the worst case.
As for the Lemke-Howson algorithm, in many cases the algorithm will not need
to traverse of all the possible small supports, so that it should often run faster than
our complete enumeration algorithm above. We chose not to present this revised
algorithm and the associated analysis since, for the case of perfect recall games,
a much better algorithm already exists [6]. There, we show how to use the notion
of realization weights to construct a small LCP that can be represented explicitly
and solved using the standard Lemke-Howson algorithm

Acknowledgements: The authors wish to acknowledge Moni Naor for providing a greatly simplified
proof of Theorem 3.2, and an anonymous referee for useful comments. They also thank Bernhard von
Stengel for many useful comments and references.

References

[I] Beling PA, Megiddo N (1993) Using fast matrix multiplication to find basic solutions. Tech
Report RJ 9234, IBM Research Division

[2] Cottle RW, Pang J-S, Stone RE (1992) The linear complementarity problem. Academic Press,
San Diego

131 Dalkey N (1953) Equivalence of information patterns and essentially indeterminate games. In:
contributions to the theory of games I1 (Princeton) Kuhn HW, Tucker AW (eds) Princeton,
University Press, 217-243

[4] Koller D, Megiddo N (1992) The complexity of two-person zero-sum games in extensive form.
Games and Economic Behavior 4: 528-552

[5] Koller D, Megiddo N (1994) Finding small sample spaces satisfying given constraints. SIAM
Journal on Discrete Mathematics: 260-274

[6] Koller D, Megiddo N, von Stengel B. Fast algorithms for finding randomized strategies in game
trees. Proceedings of the 26th ACM Symposium on Theory of Computing 750-759

[7] Kuhn HW (1950) Extensive games. Proc National Academy of Sciences ofthe USA 36: 570-576
[8] Kuhn HW (1953) Extensive games and the problem of information. In: Contributions to the

theory of games I1 (Princeton) Kuhn HW, Tucker AW (eds) Princeton University Press 193-216
[9] Lemke CW, Howson Jr JT (1964) Equilibrium points in bimatrix games. Journal of the Society

for Industrial and Applied Mathematics 12: 413-423
[t o] Rosenmiiller J (1971) On a generalization of the Lemke-Howson algorithm to noncooperative

N-person games. SIAM Journal on Applied Mathematics 21: 73-79
[11] Swinkels J (1989) Subgames and the reduced normal form. Tech Report 344 Econometric

Research Program, Princeton University

92 D. Koller and N. Megiddo

[12] von Stengel B (1993) LP representation and efficient computation of behavior strategies. Tech
Report S-9301 University of the Federal Armed Forces at Munich

[13] Wilson R (1971) Computing equilibria of N-person games. SIAM Journal on Applied Mathe-
matics 21: 80-87

[14] Wilson R (1972) Computing equilibria of two-person games from the extensive form. Manage-
ment Science 18: 448-460

Received March 1992
Revised version September 1994

