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ABSTRACT: 

A database is populated with a set of points represented by n-tuples of real numbers. A query 
consists of a point q (not necessarily in the database) and an integer k, asking for the k "nearest" 
database points to the query point. The exact output for the query consists of the k nearest 
points, but if the database is large and a quick response is required, a good approximate output is 
sought. All currently known methods require at query time calculation of distances fiom the 
query point to many database points. The computational effort is dominated by the number of 
such distance calculations since points have to be fetched fiom random locations in the database 
and the high dimension implies that current database indexes cannot significantly restrict the 
number of points that have to be fetched. In many cases, a complete linear scan of the database 
beats the currently known methods. The number of such distance calculations performed by 
current methods grows with the number of points in the database. 

The method described in this report has shown (in experiments on databases with tens of 
thousands of points with hundreds of dimensions, and asking for about 100 nearest neighbors) to 
provide very good approximate output sets while limiting the number of distance calculations to a 
few hundreds. Theoretical analysis predicts that the number of required distance calculations 
depends on the dimension and not on the number of points in the database. Therefore, when 
more points are added to a database the dominant factor in the query effort does not change. 
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1 Introduction 

1 .  The nearest neighbors problem 

Imagine a database DB consisting of points from S = V1 x x V,,, where D; C I[$. Each 
V; usually consists of either integers or floats. Our results can be extended to this general 
case, but here we restrict attention to the case of S = D" where V is the set of rational 
numbers in [0, 1) whose denominators are powers of 2. 

A k-nearest neighbors query consists of a point q E 2)" and a positive integer k. An 
(exact) output set 0 consists of k points from the database such that 

The actual problem in some database management system (DBMS) applications is how 
to process such queries so that a good approximate output (the sense of the approximation 
will be discussed later) is returned within the desired response time. The goodness of an 
approximate output depends of course on the application, and the response time depends 
on the processing needs, such as disk 1/0 and CPU time. For example, in image DBMSs, 
features of images are sometimes mapped into 2r" and the similarity of images is determined 
by the distance between the features in 27". Since this similarity metric is an approximation 
of the desired similarity, adding another small approximation error does not hurt the results 
much. 

1.2 Motivation 

Various approaches have been tried for near neighbor searching. It appears that most of the 
approaches are defeated by the dimensionality. The intuition offered by two- and three- 
dimensional observations can be quite misleading. We review some of these approaches 
briefly. 



Bounding boxes or spheres 

Many hierarchical structures have been proposed for indexing mult: 
database management systems. These structures collect data points 
compute bounds on the points in the disk page. Usually, the bound is tl 
box that is par+ ts  the axes, but &Q s p k m  and convex g~bhe 
The collection of disk pages that contain the points is stored at the 
hierarchical structure. The level above it is created by taking the collec 
the bounding boxes) and treating them as data points. These are cc 
each fitting on a disk page, and for each group a new bound is comput 
is of the same type as the bounds of the lower level (i.e., if we used bc 
levels use boxes as well). We continue to create levels until the top 1 
page- 

The most known structures are the R-tree family (see R. Guttman), 
the TV-tree (C. Faloutsos) and many others, all use bounding boxes. 
?) uses spheres. The cell-tree (Gunther) uses convex polyhedra. The 
are used in practice are those of the R-tree family. 

A query to these structures amounts to specifying a regionpoint 
sought by going down the structure. If the region overlaps the bound 
subtree under that page may contain points that are in the region. 
query is processed as a query about a small spherical region. If the res 
enough points, then the region is enlarged (e.g., by doubling the radiu 

This method works well as long as the index structure behaves we 
the complexity of searching for points in a region should be proport 
of that region (assuming it is convex and "nicen). This assumption rr 
in very low dimension (ie., up to 4). Experiments show that careful 
structure may push this up a bit (to dimension 6 or 7). In higher dim( 
method behaves far worst: than a sequential scan of the entire data set 
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One-dimensional projections induce orderings on the set of database 
jection of a query point can be quickly located within these 
continuous, so close points have close projections. On the other han 
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comes. When candidates or nearest neighbors are picked from am 
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space, so. if there are sufficiently many orderings, it sufEces to consider candidates who are 
close in at least one of the orderings. 

Clustering 

Placing the database points in clusters reflecting proximity is believed to help in the search 
for near neighbors. Each cluster is represented either by a database point in it or by the 
centroid of the cluster. The cluster whose representative point is cloeest to the query point 
is searched first. Other clusters are searched in order of proximity of their representatives 
to the query point or based on bounds that are derived in various ways. The search is 
expected to end without checking all the database points. As with other approaches, in 
high dimension this approach may break down since it may not be possible to identify 
sufficiently many clusters as distant. 

2 The one-dimensional encoding 

Our near neighbors algorithm is based on locating neighbors of the query point with respect 
to several linear orderings over the database points. In this section we introduce a family of 
suitable orderings of the data space D" that can be used for ordering the database points. 
We start by daining a canonical ordering based on a one-dimensional code C : 23'' + D 
and then explain how to generate from it the other orderings. In order to describe the 
calculation of C(v) for v E P, we use a convenient representation of v as follows. Suppose 
v = (vn,. . . ,v1) wherevj = zzl vij2-' (vij E (0, I), j = I,. . . ,n, i = 1,. . . ,m). Then we 
can represent v = 2-'v', where v' = (vil, v*, . . . ,vin) (i = 1,. . . ,m). The encoding 
can be defined, recursively in terms of m, using the following objects which will be defined 
later: 

1. A code J : (0, lIn + (0, . . . ,2" - 1) (which is essentially the inverse of a Gray code), 

2. Affine transformations Ar of Rn, for I = 0, . . . ,2" - 1. 

2.1 Gray code and its inverse 

For every x = (x,, . . . , xl) ( x i  E ( O , l ) ,  i = 1,. . . , n), the code J(x) is represented as 

where y, E (0, I), so 0 5 J(x)  < 2". It is calculated by the following algorithm: 

Algorithm J ; input : ( X  . . , x )  ; output : (ynl. . . , yl) 



1. yn := 2, 

2. f o r  i = n - 1 downto 1 do 
9; := Xi @ X;+l 

Intuitively, the code J defines a linear ordering on the vertices o 
so that con~cutive vertices in the linear ordering are a h  adjacent i~ 
J (0 , .  . . ,0) = 0 so (0 , .  . . ,0) is the fmt in this ordering. Similarly, J 
so (1,0, . . . , 0) is the last. These two vertices are also adjacent. 

The fallowing fact follows fiom the definition of J: 

Fact 2.1 

We also use the Gray code itself (i.e., the inverse of J) G(I) w 
I = y; 2'" to a vector x = (x,,. . . ,xl) (s; E (O , i ) ,  i = 1,. . . 
following algorithm: 

Algorithm G ; input : (yn, . . . , yl) ; output : (x*, . . . , sl) 

The following fact fiom the definition of G: 

Fact 2.2 For I >_ 2"-l, 

Using these recursive formulas given in Facts 2.1 and 2.2, we can 

Fact 2.3 The mappings J and G are the inverse folnctions of each o 

When we wish to determine the order relation between any two pc 
a d  q = (qn,. . . , ql) in [0, I)", the first phase is based on the code 
a unique binary representation for any number, we always choose be 
two equivalent tail expansions: 1000 ... and 0111 ... Let pj = L2pj J 
these are obtained by discarding all the bits except for the first one). 
we first compare J(p;, . . . , pi) and J(qA, . . . , q;). If the latter are dis* 
has been decided. Otherwise1, we proceed to perform a comparison 

'It is interesting to observe that if the points are picked independently from a 1 
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bits, and so on. Here, however, we do not use the function J directly. Since the ordering 
is expected to reflect distance, we have to transform the points as explained below. 

The code J induces an ordering on the 2" sub-cubes of the unit cube, obtained by 
cutting the latter with the hyperplanes (xi = 0.5) (i = 1,. . . , n). More precisely, for every 
a = (an, . . . , al) E (0, l)", let 

The sub-cubes S(a) are disjoint and o r d h d  the function J (i .e. ,  S(a) comes before 
S(at) if and only if J(a) < J(al)). If p and q b&ng to distinct S(a)'s, they inherit their 
ordering relation from the ordering on these sub-cubes. Otherwise, they are in the same 
S(a) and the sub-cubes of S(a) itself have to be considered. It is crucial though that the 
orderings on the sub-cubes of the S(a)'s will be such that for every a (except the last 
sub-cube) the last sub-cube of S(a) would be adjacent to the first sub-cube of S(a'), where 
S(at) is the sub-cube that s~cceeds S(a) in the ordering over the sub cubes of the unit 
cube. If this condition is not satisfied, then there would be h o  distant points in the cube 
that are arbitrarily close in the linear order, and in order for our indexing scheme to be 
efficient this should never happen. Thus, the ordering on the sub cubes of each S(a) will 
be determined by first applying a suitable &ne transformation, and then applying the 
function J. 

To summarize the discussion so far, the comparisons are based on a one-dimensional 
code C : [O, 1)" + [O, 1) that has a fractal nature which can be described as follows. For 
v = ( v ~ , .  . . , vl) E 10, I)", denote 

For I = 0, . . . ,2" - 1 we define below an &ne transformation AI of Wn that maps boolean 
vectors to boolean vectors. An accurate sha tma t  requires &at we define C with respect 
to all kinds of cubes Zl x . x z, where each & is either [O,1) or (€),I], and with sespect 
to all the permutations of the coordjnates. For siimplici4y of notation, however, we prefer 
to state it as follows. 

2.2 The affine transformations 

We now define for each I E (0,. . . ,2" - 1) an affine transformation AI of Rn that maps 
the set (0, l j n  onto itself. It is essential for our application that the transformations could 
be computed in time proportional to the dimension of the space. The transformation AI 
is composed of a "reflection" component represented by a vector s = s(I )  f (0, I}", and 
a "swap" component represented by a permutation matrix P = P(d)  of order n x n that 
swaps coordinate n with some coordinate i = i(I) (i.e., if i # n then the only difference 
between P and the n x n identity matrix is that Pin = P& = 1 and Pi; = Pnn = 0). The 
composition is: 

AI(v) = P(I )  - (~(1) 8 v)) . 

5 



2.2.1 The reflection 

The reflection component, s(I) ,  of AI is calculated by the following all 
(0, . . . , 0 , l ) :  

Algorithm s ;  input : I ;  output : s = s(I)  
if I = O  then s :=0 
else if I 1 (mod 2) then s := G(I - 1)  
e lse  if I  z 2 (mod 4) then s := G(I - 1)  - el 
else if I  E 0 (mod 4) then s := G ( I  - 1 )  + el 

F k t  2.4 For odd k, s(k + 1)  = G(k - 1)  whde for even k,  s(k + 1 )  = ( 
k ,  s (k  + 1)  = s ( k ) .  

Proof: It f&ms from the debition of the Gray code that if k 
G(k) = G(k - 1) + el, in which m e  

and if k r 3 (mod 4) then G(k) = G(k - 1)  - el, in which case agai 

For even k, by definition s ( k +  1) = G ( k ) .  

2.2.2 The swap 

The s w ~ p  component P = P(I) is determined by the index i = i(l 
that is swapped under f with coordiaate n. We d&e i(Q) = i(3" 
I = C:==, xi2'-' such that 0 < I  < 2" - 1, i (1 )  is the largest index j 2 
for all 2 5 k  < j .  

This index is calculated by the following algorithm: 

Algorithm i ; input : I ;  output : i  = i ( I )  
if I =  0 or I = 2 " -  1 then i  := 1 
else 

1. 2 := 2 

2. I  := [ ( I  + 1)/2J 

3. while I  EE 0 (mod 2)  do 

( a )  i  : = i + 1  
(b )  I  := 11/21 

Fact 2.5 For even k  > 0, i ( k )  = i (k  - 1 ) .  

ithm, where el = 

k). Thecs, for odd 

1  (mod 41, then 



Proof: In Step 2 of the d g & t h  we convert I to [ (k  + 1)/2 f (for input k), and to 
Lk/2J (for input k - 1). If k > 0 is even then [ (k  + 1)/2J = l k / 2 J ,  so the result of the 
algorithm is thesame fork and L - 1 .  4 

Fact 2.6 For 0 < k < 2" - 1, G ( k  + 1)  ccnd G(k - 1) dtfler in coordifu1tes 1 and i ( k ) .  

The transformations in the case n = 2 are summarized in the following table: 

The transformations in the case n = 3 are summarized in the following table: 

The transformations in the case n = 4 are summarized in the following table: 



2.3 The algorithm for computing the mapping C 

We are now ready to describe the algorithm that calculates the code ( 
v = (vn, . . . ,vl), where each vj is an m-bit number, vj = xz, vij2 
1, . . . , n, i = 1, . . . , m). The algorithm produces the representation 
(0 5 I, < 2" (i = 1,. . . , m). It also produces the representation v : 
v' = (vil, v;~, . . . , win) ( 2  = 1, . . . , m). All the operations on vectors 

Algorithm C; input : v = (v,, . . . ,vl); output : C = C(v) = Ci"_ - 

1. i : = l ;  s:=O; P = I  

2. while v # O  do 

2.1 Convert v into a bit vector and a remainder : 
(a) vi := L2vl 

(b) v := 2v - vi 
2.2 Compute I, : 

I; := J(P . (s 8 v')) 
2.3 Compute the new tmnsfomation : 

(a) s := s @ (P . ~(1;)) 
(b) P := P . P ( I ; )  

2.4 Increment i : 
i .- . - i + 1  

2.4 Properties of the mapping C 

We first prove that the mapping C is adequate for unambiguous codi 
data. 

Theorem 2.7 The mapping C is one-to-one. 

Proof: Suppose p and q are distinct points in [0,1)". There exist un 
p = xzl pa 2-' and q = Czl q'2-', where c {O, 1)" (i : 
every natural N and every j (1 5 j 5 n), there exist k,L > N suc. 
Let i (i >_ 1) be the smallest index such that pi # q'. It follows tl 
of the sub-cubes of the unit cube (obtained by repeatedly halving 
there exists a sub-cube So of the unit cube whose edges are of leng 
{p, q) C So, whereas there exist two disjoint sub-cubes Sl, S2 of So, 
length 2-', such that p E S1 and q E Sz. The points of Sl and S2 a 
into two disjoint intervals of [O, 1) (each of length 2-"), hence J (p )  

Before stating the main claims, we introduce notation as follows. I; 

v) of a given point 

of n-dimensional 

Le represent ations 
1,2,. . .), and for 
,hat & = qi = 0. 
in the hierarchy 
the dimensions), 
2-'+', such that 

hose edges are of 
mapped under J, 
w. 1 

m =  l ,2,  ..., 



1. For k,, . . . ,k,, such that 0 5 kj 5 2" - 1 ( j  = 1,. . . ,n), define the cube 

2. Denote by S(m) the collection of all the cubes S(kl, . . . , k,,; m). 

3. For every S E S(m), denote by S(m + 1; S) those members of S(m + 1) that are 
contained in S. Also, if S E S(m) is not the sub-cube that is mapped under C into 
[I- 2-"", I), then denote by S' the member of S(m) that succeeds S in the ordering 
induced by C, i e . ,  if S is mapped into [k 2-"", (k + 1) 2-"), then S' is mapped into 
[(k + 1)2-"", (k + 2)2-"). 

Note that for each m, the members of S(m) are mapped under C into 2mn disjoint (half 
open) subintervals of [0, I), each of length 2-"". 

Lemma 2.8 For m = 1,2,. . . , and for every S E S(m) except for the last one (relative 
to the ordering induced by C), the last member of S(m + 1;  S) and the first member of 
S(m + 1; S') are adjacent sub-cubes ( i e . ,  they have a common facet). 

Proof: The proof goes by induction on m. Let us fist  consider the case m = 1. Suppose 
S E S(l) is mapped into the interval 

where 0 2 k 2 2n - 2. Thus, the last member of S(2; S) is mapped into the interval 

T' G T(2, 2"(k + 1) - 1) = [(k + 1) 2-" - 2-2n , (k + 1) 2-") , 

while the first member of S(2; S') is mapped into 

TR z T(2, Zn(k + I))  = [(k + 1) 2-" , (k + 1) 2-" + 2-2n) . 

If a point VR = ivk + iv; + ER (where vk E (0, I)", i = 1,2, and s~ E (0, f)") has 
C(vR)  E TR, then it means that the first two values that Algorithm C calculates for it 
are Il = k + 1 and Iz = 0. Thus, necessarily, 

which is the same as 

v i  = G(k + 1) 

NOW, the first values of the other objects computed by Algorithm C are 

1 
SR = S$ @ (P: . ~ ( k  + 1)) = ~ ( k  + 1) 

and P; = P; - P ( k  + 1) = P(k + 1) . 



Thus, the other n&asary condition for V R  = $v& + fvi + c to be 

which, since G(0) = 0, is the same as s(k + 1 )  8 vi = 0,  or simply 

Similarly, if a point VL = ivi + ivi  + rL has C(vL) E TL, then it mt 
values that Algorithm C calculates for it are Il = k and I2 = 2" - 1 

which is the same as 

Since the first values of the other objects computed by Algorithm 
P; = P ( k )  , the other necessary condition for v~ = f vi + jvi + E t 
is: 

2" - 1 = I2 = J ( P ~  . (s: 8 v:)) = J ( P ( k )  - (~(k) 8 

Since G(2" - 1) = en, this is equivalent to 

(where ej denotes a unit vector with 1 in ooordinste j). Obvimlj 
G(k) and v& = Gfk + 1) implies that points mapped into TL a 
respectively, to adjacent members of S(1), but in order to prove 
adjacent members of S(2) we have to rely on vi and vi. In fact, it 
the latter always differ in one coordinate. By Fact 2.4, 

1. if k is odd then 

and 

so vi and vi differ in precisely one coordinate, namely, i ( k ) ;  

2. if k is even, then 

and 

~pped into TR is: 

1 that the first two 
'hus, necessarily, 

r e  s i  = s(k) and 
e mapped into TL 

le fact that v i  = 
TR must belong, 
rt they belong to 
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(a) if k = 0, then vi = O and < 5 el, so vk and 6 di&r in precisely rme 
coordinate; 

(b) if k = 0 (mod 4) and k > 0, then s(k) = G(k - 1) +el ,  so 

whereas V; = G(k).  But G{k) and G(k - 2) differ only in coordinates 1 and 
i(k - 1) (Fact 2.6). Also i (k )  = i(k - 1) (Fad 2.5). Thus, v& and vi differ in 
only one coordinate, namely* coordinate 1; 

(c) if k E 2 (mod 4) and k > 0, then s(k) = G(k - 1) - el, so 

V; = (G(k - 1) - el) 8 ea = G(k - 2) 63 e;(q 

hence, as in the previous case, vk and vi  differ in only one coordinate, i(k). 

Finally, consider the inductive step. Given S E S(m), where m > 1, denote by R 
ihe member of S(1) that contains S. By the fractal formula, the induction hypothesis 
applies to the hierarchical structure of sub-cubes of R, and that implies our claim. m 

Theorem 2.9 For every two points p, q in [O, I)", 

Proof: Given p, q E [0, l)n, denote by m the number such that 

Without loss of generditg, suppose Cfq) < C(p). Sinwe the 2-mn 5 C(p) - C(q), and 
since each member of S(m) is mapped by C into a half open. interval of length 2-mn, it 
follows that the points p and q cannot belong to the same member of S(m). On the 
other hand, since C(p) - C(q) <+2-(m-1b, there exists a k, 1 < k < 2(m-1)n - 1, such 
that 

(k  - 1) 2-(m-1)n 5 C(q) < C(p) < (k + 1) z-(~-')") . 

If either C(p) < k 2-('-lIn or C(q) 2 k 2-("-')", then both p and q belong to the same 
member of S(m) and hence 

IIP - q l l m  < 2-" = (2-mn)1/n I le(~) - c(q)tljn . 

Otherwise, 

C(q) < k2-('-')" < - C(p) . 

In this case p and q belong to distinct me& of S(m) which are mapped under C into 
commtive i n t d s  [(k - 1) 2-mn, k 2-mn) and [k 2-mn, (k  + 1) 2-nbn). By Lemma 2.8, 
these members of S(m) musi be adjacent. Thus, 

I I P  - 91 1- < 2 -2-" I 2 V(P) - c(s)ll'" . 



3 Implementation of multi-orderings in relational 
database 

3.1 A search based on a single one-dimensional en(coding 

Suppose C : [O, 1)" + [0,1) is a mapping with the following (i) G is one- 
toone, (ii) the inverse mapping C-' : 2 
continuous. Since C is one-to-one into an 

The linear ordering un be implemented as a siQIple relation R with y two attributes: 
point-id and value. Each p, has one entry in R where point-id equals ' and d u e  equals 
C(P~). 

A query consists of two components: a point q E [0, l)n and a numb r k E W. An exact 
answer to the query consists a set 0 c P of size k so that 

VX E VY E ( p  \ 0) IIx - qII h IJY - qII I 
Since C-' is continuous, the points in R(6) are likely to be close in t space [0, 1)". A 
good implementation for one such index in a conventional DBMS is to b 'Id a B-tree index 
in attribute value. f 
3.2 Employing a multitude of one-dimensional enc dings I 
The definition of C lends itself to a multitude of other possible o 
that the dimensions 1,. . . , n can be arbitrarily permuted and each tation defines a 

different ordering. Sub-cubes that are distant relative to one p 
relative to another one. Hawever, the sub-cubes hierarchy its 
permutations. In order to obtain further.orderings that do not 
we define a new ordering based on C by using a translation 
mapping CE : [O, 1)" + [O, 1) by 



We employ a fixed number of orderings, using a positive parameter d as follows: 

1. Pick l vectors &I,. . . , E L .  

2. For each ordering d e k  a relation & similar to R, based on Ce, instead of C .  

3. For a query (q, k) return a candidate set 

4. For each point in R(6; q), calculate its distance from q and findy return the k closest 
points. 

3.3 Implement at ion of the query in a conventional DBMS 

Suppose we work with data set P and have defined orderings based on l one-dimensional 
codes Cz,  . . . , Ct. We create a single relation2 R with attributes indez-id, point-id, value. 
For each pi E P and for each 1 5 j  5 1 we include an entry ( j ,  a, CEj(pi) )  in R (i.e., 
index-id equals j ,  point-id equals i ,  and vaSue equals CEj(pi). W e  create a B-tree index 
on the combination of attributes < index-id,value >. This means that two entries in the 
tree are compared by their index-id and only if their index-id's are equal, the comparison 
is resolved based on value. 

A query is implemented as follows. Suppose q is a query point. We create a relation Q 
with attributes indez-id, value. For each j ,  j = 1 ,  . . . , l ,  we put one tuple in the relation 
Q, where index-id equals j and vulue equals CeJ (q). We choose a small d and perform a 
query in SQL as follows: 

SELECT DISTINCT point-id 
FROM R,Q 
WHERE R.index-id = Q.index-id 
AND R.value <= Q.value + d 
AND R.value >= Q.value - d 

This SQL query returns R(d; q). If we are satisfied with this result, we can find the k 
nearest neighbors from this candidate set. Otherwise, we can get a larger candidate set by 
increasing d. The new candidate set will be a superset of R ( d ;  q). 

We are indebted to Bruce Lindsay for this idea. 



4 Obtaining an exact result 

As indicated above, the set of candidates (obtained as the union of t 
provided by the various orderings) is not guaranteed to contain all the 
Our experiments show that in many cases a very good approximation 
terms of the overlap with the set of the true k nearest neighbors, or i 
distances between the query point and the reported neighbors, comp 
between the query point and the true k nearest neighbors. In this I 
method of finding the true k nearest neighbors. This extended featurt 
if it is essential to get the exact result. If an exact output is desire 
be extended and a stopping rule has to be developed so that when tl 
is guaranteed to have found the exact result. The method works as 
axe obtained by enlarging the scanned intervals within each of the or4 
time, lower bounds are calculated for various cubes, giving the minim 
any point in the cube and the query point. The algorithm stops the 8 

available bounds imply that no unchecked database point is closer tc 
of the current k nearest neighbors. The sub-cubes are stored in the s 
the linear orders. 

4.1 Distances to boxes 

If q = ( q l , .  . . ,q,) is a query point and 

(a, b E Rn) is a rectangular box, then the Euclidean distance betwc 
computed as follows. The nearest point of the cube is obtained by mini] 
subject to 5 xi  5 b, (i = 1, . . . , n). The objective function is s 
describe the optimal solution as follows. (i) If qi 5 ai, then let d 
a, < q; 5 b,, then let 4 = 0. (iii) If q; 2 b,, then let d, = q, - bi. It is 
distance between q and B is given by b(q, B) = Itdll, where d = ((dl,. 

Suppose for a given q we are seeking the k points in the databasc 
q. Suppose we have already located the database points p l , .  . . , pk z 
k nearest neighbors, and we have 

Obviously, (Iq - p k  I I is an upper bound on the distance to the kth nea 
if some box B contains database points, and 6(q, B) > I (q - pal 1, the1 
search B since none of its points can be among the k nearest neighbl 
that such bounds become useful in case an exact output is desired. 1 

our linear orderings in a tree where nodes store information about E 
the ordering lends itself to creating good boxes. 
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4.2 Trees 

Let vl, .  . . , vN be all the database points. Here we consider one ordering induced by a 
code C, so let us assume without loss of generality that 

For each i (i = 1, . . . , N), let us use the representation 

Thus, the components v", . . . , vN1 determine the first level of the ordering. Recall that 
S ( l )  denotes the collection of the sub-cubes at the fist level of the hierarchy, so it has 2" 
members, each with a volume of 2-". Since N is expected to be much smaller than 2", 
most of the members of S(l)  will not contain any database point. Those members of S ( l )  
that do contain such points can be stored at the leaves of a balanced tree according to the 
order which is induced on them by the codes J(vi1) (the inverse of the Gray code). Due 
to the nature of this code, if two sub-cubes are close in the ordering, then there exists a 
relatively small box that contains their union. For example, any two consecutive members 
form a box of volume 2'"+', and any two members that are at, distance 2 in the ordering 
are contained in a box of volume 2-n+2. In general, if the two children of a node in the 
tree hold the boxes B(al, bl) and B(a2, b2), then the pareat holds the box B(a, b) where 
.; = &(a:, a:) and b; = ma+:, b:). Thus, relying on the currently known upper bounds 
on the distance to the kth nemest neighbor, the algorithm cas decide not to proceed into 
the subtree rooted at the node, if the box associated with it is sufficiently distant from the 
query point. 

4.3 The stopping criterion 

During the search for the exact k nearest neighbors, the algorithm maintains the following 
information. First, there is a globla upper bound on the distance between the query point 
and the kth nearest neighbor. Second, in each tree there is the current interval in the 
corresponding ordering all of whose points have been checked. Moreover, in each such tree 
some of the nodes are marked as ones whose subtrees should not be checked. The intervals 
are expanded repeatedly, and the upper bound is updated. At the same time, lower bounds 
are updated for a callection of nodes whose subtrees cover the unchecked data points. In 
each tree, the number of such subtrees at any time does not exceed O(1ogn) where n is 
the number of data points. The search may stop when in one tree all the lower bounds of 
subtrees that cover the unchecked points are greater than the global upper bound. 



5 Experimental Setup 

The experminents were conducted with five data sets, in the same wa 
each data set the following steps were performed: 

1. Preparation. 

2. Creating index structures. 

3. Performing queries and analyzing the results (For each index st 

5.1 Preparation 

During the preparation phase, the data set is converted into an eas: 
everything that does not depend on the indexing scheme is computed 
following steps: 

1. Transform the data set. The input is converted into unsigned 
Euclidian metric still applies for finding neighbors. 

2. Find minimal and maximal values in the dataset. 

3. Choose 100 random pohts in the data set as query points. 

4. For each query point: sort all the points in the data set accordi 
the query point. Make a table that consists of the id of each p 
to the query point. 

5. Make a principle component analysis of the data set. Identify a 
reduces dimensionality and keeps as much variance as possible. 

6. Make a transformed data set by projecting the points into the 
the first n dgenvectors of the principle component analysis. n is 
the cumulative variance of the data set projected into the subsp 

5.2 Creating Index Structures 

The results presented in this document are about two index structures 
each d d a  set. Each stmctme uses n ordering mappings (where n is t 
the reduced data set described in the preparation phase). In one stru 
among the mappings is a perntutation of the dimensions. We choor 
permutation and make n permutations from it using a round robin ap 
RR for short. The other structure uses a random permutation of dime 
shift of the data set for each different mapping. We call this structure 
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A permutation mb&s that the data sd is transformed before each ordering is created. 
The transformation is a permutation of the dimensions. A shiM me- that a vector is 
chosen (one per ordering) and the data set is moved by adding to each point the chosen 
random vector. Both transformations do not change the distances between points. 

Each of the two structures consist of n orderings of the data set. Each such order is a 
list of point id's. Since the query is a point from the data set, can find it in the list, 
and return m points to the left of it and on points to the right. This way, we do not need 
to save the key (the mapped point). 

5.3 Queries and Results 

For each of the two index structures we perform queries with the following parameters: 

k. The number of nearest neighbors requested for the query. The final result of a 
query is a set of points. This parameter is the number of points in that set. 

c. The number of candidates returned by the index structure. An index probe finds 
the query point in each of the n orderings. After that we return 2m points from each 
ordering by taking the m points to the left of the query point in the ordering, and 
the m points to its right. We have a multiset of size 2mn. However, we remove 
duplicates from this set. After duplicate elimination we want a specific number of 
points (that is the parameter we use). To do this, we start with rn = 1 and increment 
rn until we have enough points (we may need to discard some of them). These points 
are the candidates. From these candidates we choose h ones that are the closest 
to the query point in Euclidian space. This is done by using the nearest neighbors 
information calculated for the query in the preparation phase. 

The above process is repeated for afl the 100 random queries. The number of nearest 
neighbors we request varies from 5 to 50. The number of candidates we allow vary from 
400 to 1200. There are two main measurements of success that we tried: 

Precent found. This is the percentage of true nearest neighbors that were found by the 
index. 

Average distance. For each query we know the distance of the query point from all the 
points in the database (preparation phase). We find the median, and approximate a 
standard deviation from the median by the following method: if the data points are 
sorted according to distance, and the distances are d(1) 5 d(2) 5 - - <_ d ( N )  then 
we define 

stddsa = 2 (d(5N/6) - d(N/6)) 

Note that for a normal distribution this is a good estimator of the standard deviation. 
We chose this method because we want to eliminate the effect of outliers. Once these 



were found we measure the &&anm of B point by its distance 
multiples of stddev. We measure the amsage distance: for the k I 
found. We divide this by the amage distance for the. true k riel 

present these numbers in percentages. 

5.4 Presenttition of Resub 
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Color Data Set 

Each point in the color data set is obtained from a histogram of colors in one image. The 
histogram is transformed using a linear transformation s.t. the Euclidian distance can be 
used on the transformed points. The properties of the data set are as follows: 

0 The number of points (images) is 13536. 

0 The number of dimensions (arity) is 256. 

0 The values of data points in each dimension are integers ranging from 0 to 9759006 
(after using a shift transformation so the numbers are not negative). 

0 94% of the variance is explained by a subspace of 64 dimensions. The dataset is 
projected into that subspace for the reduced dimensionality experiments. 

Figure 1 shows the distribution of distances of database points from some fixed query 
point. Figure 2 shows the same case for the first 100 nearest neighbors. We see that the 
difference in distance among the 100 nearest neighbors is relatively small compared to their 
distance to the query point. This makes us believe that approximation schemes would 
be more accurate in terms of average distance than in terms of number of actual nearest 
neighbors found. 

Figure 3 shows what happened with the reduced dimensionality data for 100 random 
queries, where the indexing scheme is RR. We have c = 400 and k = 25 (i.e., we look 
for 25 nearest neighbors and we check 400 candidates from the index structure). Figure 4 
shows the same thing with the indexing scheme RS. Note that the queries are the same 
through all the figures in this section. It is very clear that shifting the data for each space 
ordering creates a much better approximation. We see that the average percent of points 
found jumps from about 50% for random permutations, to about 85% for random shifts. 
Also, the average distance ratio jumps from about 95% to about 99.5%. 

Figure 5 shows the same thing for RS when the number of candidates returned by the 
index is c = 800. We see some improvement over the c = 400 case. However, we anticipate 
that as we increase c the result converges to the true nearest neighbors. Since we were very 
close to the optimal result, a large increase in c results in a small improvement only. Figure 
6 shows the same thing when the number of candidates returned by the index is c = 400, 
and the number of nearest neighbors is Ic = 10. 

Figure 7 is about the RR index with c = 800 and 100 random queries. For each k there 
are five points for the five quartiles of the percent found measurement. Figure 8 shows the 
same for the RS index. Note how much improvement there is in the bottom curve (minimal 
performance) compared to the RR scheme. 

Figure 9 is about the RR index with c = 400 and 100 random queries. We see the the 
l'st and 3'rd quartiles of distance measure for the index and the same for teh true nearest 
neighbors. Figure 10 shows the same for the RS index. Note that even when we check only 



400 points from the index, the curves for the index and for the true I 

almost identical. 

Color dataset. Distances from query 1 

distance 

Figure 1: Distribution of distances of data points frc 
query point number 1 (Color data set). 

Color dataset. Distances of first 100 NN to query 1 
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nearest neighbor number 

Figure 2: Distances of first 100 nearest neighbors fr 
query point number 1 (Color data set). 
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Number of points search is 800. Nurntwtr of nn requested is 25 
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Figure 5: Distance aad found ratio for 100 rm&m queries. I 
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Figure 6: Distance and found ratio for 100 random queries. Ei scheme. 



Figure 7: Five puartides of percentage of points found over 100 queries. 
scheme. 
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Figure 8: Same as Figure 7 for RS scheme. 
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7 Random Data Set 

The data set is constructed from a random number generator. Each element in each tuple 
is a sum of 100 uniformly distributed n u m b  in [O, 1001. Each element is close to a normal 
distribution. 

The number of points is 20000. 

The number of dimensions (arity) is 64. 

0 The values of data points in e& dim- are integers ranging from 1977 to 8289. 

The dimensionality is not reduced try priacip1e components. 



Normal data set. Query 1. 

Figure 11: Distribution of distances of data points fro1 
query point number 1 (Normal data set). 

Normal data set. Query 1. 
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Figure 12: Distances of first 100 nearest neighbors fron 
query point number 1 (Normal data set). 
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Figure 16: Distasce and found ratio for 100 random queries. 1 
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Number of nearest neighbors requested 

Figure 17: Five quartiles of percentage of points found over 100 queries. 
LR scheme. 
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Figure 18: Same as Figure 17 for RS scheme. 
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Figure 19: I'd and 3'rd quartiks for true nearest neighbors 
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Figure 20; Same as Figure 19 for RS scheme. 
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8 Draw Data Set 

The Draw data set is was taken from QBIC. It was shifted and scaled so it will be unsigned 
integers. 

The number of points is 13536. 

The number of dimensions (arity) is 324. 

The values of data points in each dimmion am integers ranging from 0 to 85556. 

The dimensionality is reduced to 128 w&kt keeping 95% of the variance. 
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Figure 21: Distribution of distances of data points fro. 
query point number 1 (Draw data set). 
I Draw data set. Query 1 

.+I.... .".""."..' "."....-" ".".......... ....". 
...I.". 

".*--' 

I 

Figure 22: Distances of first 100 nearest neighbors fro1 
query point number 1 (Draw data set). 



Figure 24: Distance and found ratio for 100 random qaries. S s h e .  - f 



Number of points watch is 800. Number of nn requested is 25. 

I Ratio of distance of found points vs. distance of true nn (percent) I 
Figure 25: Distance and found ratio for 100 random queries. RS  scheme 
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Figure 26: Distance and found ratio for 100 random queries. R S  scheme. - 
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Figure 27: Five quartiles of percentage of points found over 100 queries. 
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Figure 28: Same as Figure 27 fm RS scheme. 
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Figure 29: l'st and 3'rd quatiles for, true nearest neighbon 
structures. RR scheme. c = 400,. 
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Figure 30: Same as Figure 29 for RS scheme. 
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9 Connect-4 Data Set 

The Connect4 data set is a table of all positions in the connect4 game. The board has 
42 places in it, each place can contain blank, black or white, wich are encoded by 1,0,2 
respectively. One extra attribute has three options regarding who is in a position to win 
(three options that include a draw). There is a constraint that the number of black places 
and the numebr of white places differ by at most 1. 

0 The number of points is 67557. 

0 The number of dimensions (arity) is 43. 

0 The values of data points in each dimension are integers ranging from 0 to 2. 

0 The dimensionality is not reduced. 



Connect4 Data Set. Query 1 
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Figure 31: Distribution of distances of data points frc 
query point number 1 (Connect-4 data set). 

I Connect4 Data Set. Query 1 
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Figure 32: Distances of first 100 nearest neighbors frc 
query point number 1 (Connect4 data set). 
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Figure 33: Distance and found ratio for 100 random queries. RR scheme. 
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Figure 34: Distance and found ratio for 100 random queries. RS scheme. . 
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Showing 5 quartiles for 100 queries, #points searched is 800 
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Figure 37: Five quartiles of percentage of points found over 100 queries. 
scheme. 
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Figure 38: Same as Figure 37 for RS scheme. 
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igure 40: Same as Figure 39 for RS scheme. 



10 Adult Data Set 

The Adult data set has data about people. Numeric attributes were kept unchanged. Low 
cardinality attributes were split into several attribtues such that the distance between two 
tuples on those attribtues is 100 if the values are diiferent, and 0 if they are the same. The 
original data set had 15 attribtues. 

The number of points is 30162. 

a The number of dimensions (arity) is 90. 

The values of data points in each dimension are integers ranging from -560 to 1596. 

The dimensionality is reduced to 74 while keeping 98% of the variance. 



Adult Data Set. Query 1. 

t 41: Distribution of distances of data points from 
point number 1 (Adult data set). 

Adult Data Set. Query 1. 

: 42: Distances of first 100 nearest neighbors from 
point number 1 (Adult data set). 
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Pigure 43: Distance and found ratio for 100 random queries. RR scheme. 
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Figure 44: Distance and found ratio for 100 random queries. RS scheme. 
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Figure 45: 1 
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Showing 5 quartilea for 100 queries, #points searched is 800 
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Showing 5 quartiles for 100 queries, #points searched is 800 

Figure 47: Five quartiles of percentage of points found over 100 queries. 
RR scheme. 
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Figure 48: Same as Figure 47 for RS scheme. 
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: following assumptions regarding disk performance: 
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sequentially at a speed of which is 10 times faster than random scan. 
ine the time unit as the time it takes to read a page in a sequential 
umber would be 1 nilisecond, but the andysis below is independent 

Id, for example, in a system consisting of a Pentium/Pro processor 
lot the bottleneck), a medium speed 4GB IBM disk drive. 

- points in the database by N, and denote the dimension by n (typ- 
1 to 250). each paint has 250 coordinates. If each coordinate takes 
Lge is 4 nN bytes. For example, if N = 1,000,000 and n = 250, the 
Let k denote the number of nearest neighbors sought. 

Uion) database points stored in dimension 250, each We consider the 
oblem. If the problem is solved in one sequential scan of the data, 
ne is less than 110 time, this takes 4nN/4000 = .001 n N  time units. 
; our method so that we generate K orderings and then report c . k 
he k nearest are to be picked, (for example, c = 50). If we use one 
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I memory). Then a query amounts to fetching about K(h + 1) data 
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; for our method to be faster than complete sequential scan is when 

3, h = 3, c = 50 and k = 10, the multi-ordering method is better for 
)r of improvement is proportional to N as long as h does not grow. 
= 1,000,000, we expect an improvement by a factor of 30. 

tabases the improvement is much larger since h grows very slowly. 
searches still in time much shorter than complete sequential scan. 
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