RJ 10093 (91909) November 20, 1997
Math & Comp. Sci.

EFFICIENT NEAREST NEIGHBOR INDEXING BASED ON A COLLECTION OF
SPACE FILLING CURVES

Nimrod Megiddo
Uri Shaft

IBM Research Division
Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

ABSTRACT:

A database is populated with a set of points represented by n-tuples of real numbers. A query
consists of a point q (not necessarily in the database) and an integer k, asking for the k "nearest”
database points to the query point. The exact output for the query consists of the k nearest
points, but if the database is large and a quick response is required, a good approximate output is
sought. All currently known methods require at query time calculation of distances from the
query point to many database points. The computational effort is dominated by the number of
such distance calculations since points have to be fetched from random locations in the database
and the high dimension implies that current database indexes cannot significantly restrict the
number of points that have to be fetched. In many cases, a complete linear scan of the database
beats the currently known methods. The number of such distance calculations performed by
current methods grows with the number of points in the database.

The method described in this report has shown (in experiments on databases with tens of
thousands of points with hundreds of dimensions, and asking for about 100 nearest neighbors) to
provide very good approximate output sets while limiting the number of distance calculations to a
few hundreds. Theoretical analysis predicts that the number of required distance calculations
depends on the dimension and not on the number of points in the database. Therefore, when
more points are added to a database the dominant factor in the query effort does not change.

Efficient Nearest Neighbor Indexing Based
on a Collection of Space Filling Curves

Nimrod Megiddo and Uri Shaft
IBM Almaden Research Center

October 20, 1997

1 Introduction

1.1 The nearest neighbors problem

Imagine a database DB consisting of points from & = D X X D,,, where D; C R. Each
D; usually consists of either integers or floats. Our results can be extended to this general
case, but here we restrict attention to the case of S = D" where D is the set of rational

numbers in [0, 1) whose denominators are powers of 2.

A k-nearest neighbors query consists of a point q € D" and 2 positive integer k. An
(exact) output set O consists of k points from the database such that

Vp'€ 0 and Vp"'€ DB\O |lp'—4q||<|lp"—4dll.

The actual problem in some database management system (DBMS) applications is how
to process such queries so that a good approximate output (the sense of the approximation
will be discussed later) is returned within the desired response time. The goodness of an
approximate output depends of course on the application, and the response time depends
on the processing needs, such as disk I/O and CPU time. For example, in image DBMSs,
features of images are sometimes mapped into D™ and the similarity of images is determined
by the distance between the features in D™. Since this similarity metric is an approximation
of the desired similarity, adding another small approximation error does not hurt the results

much.

1.2 Motivation

Various approaches have been tried for near neighbor searching. It appears that most of the
approaches are defeated by the dimensionality. The intuition offered by two- and three-
dimensional observations can be quite misleading. We review some of these approaches

briefly.

Bounding boxes or spheres

Many hierarchical structures have been proposed for indexing multiflimensional data in
database management systems. These structures collect data points jnto disk pages and
compute bounds on the points in the disk page. Usually, the bound is the minimal bounding
box that is parallel to the axes, but also spheres and convex polybedra have been tried.
The collection of disk pages that contain the points is stored at the pottom level of the
hierarchical structure. The level above it is created by taking the collecfion of bounds (e.g.,
the bounding boxes) and treating them as data points. These are cojlected into groups,
each fitting on a disk page, and for each group a new bound is comput4d. This new bound
is of the same type as the bounds of the lower level (i.e., if we used bokes, than the upper
levels use boxes as well). We continue to create levels until the top lqvel fits on one disk

page.
The most known structures are the R-tree family (see R. Guttman), the hB-tree (D. Lomet),

the TV-tree (C. Faloutsos) and many others, all use bounding boxes. The sphere-tree (see

?) uses spheres. The cell-tree (Gunther) uses convex polyhedra. The dnly structures that

are used in practice are those of the R-tree family.

A query to these structures amounts to specifying a region.Pointsﬂ in that region are
sought by going down the structure. If the region overlaps the bounds|of a page then the
subtree under that page may contain points that are in the region. A nearest neighbors
query is processed as a query about a small spherical region. If the resylt does not contain
enough points, then the region is enlarged (e.g., by doubling the radiug or the sphere).

This method works well as long as the index structure behaves wel}. This means that
the complexity of searching for points in a region should be proporti¢nal to the volume
of that region (assuming it is convex and “nice”). This assumption m$y be justified only
in very low dimension (i.e., up to 4). Experiments show that careful gonstruction of the
structure may push this up a bit (to dimension 6 or 7). In higher dimegsion, however, the
method behaves far worse than a sequential scan of the entire data set

Projections

One-dimensional projections induce orderings on the set of database pgints, and the pro-
jection of a query point can be quickly located within these orderingf. Projections are
continuous, so close points have close projections. On the other hand, ¢istant points may
also have close projections. The higher the dimension, the more severg this problem be-
comes. When candidates or nearest neighbors are picked from among the points whose
projections are close to the projection of the query, the number of cgndidates gets too
large. Good candidates for nearest neighbors should be those that haje many close pro-
jections. However, the problem of determining such candidates is very closely related to
the nearest neighbors problem itself. An interesting theoretical result fis reported in [4].
The difference between orderings based on one-dimensional projections fnd ones based on
space filling curves is that in the latter, proximity in the ordering impligs proximity in the

space, so if there are sufficiently many orderings, it suffices to consider candidates who are
close in at least one of the orderings.

Clustering

Placing the database points in clusters reflecting proximity is believed to help in the search
for near neighbors. Each cluster is represented either by a database point in it or by the
centroid of the cluster. The cluster whose representative point is closest to the query point
is searched first. Other clusters are searched in order of proximity of their representatives
to the query point or based on bounds that are derived in various ways. The search is
expected to end without checking all the database points. As with other approaches, in
high dimension this approach may break down since it may not be possible to identify
sufficiently many clusters as distant.

2 The one-dimensional encoding

Our near neighbors algorithm is based on locating neighbors of the query point with respect
to several linear orderings over the database points. In this section we introduce a family of
suitable orderings of the data space D" that can be used for ordering the database points.
We start by defining a canonical ordering based on a one-dimensional code C : D* — D
and then explain how to generate from it the other orderings. In order to describe the
calculation of C(v) for v € D", we use a convenient representation of v as follows. Suppose
V = (Un,... ,v1) Wherev; = 3 v; 27 (v € {0,1},7=1,... ,n,i=1,... ,m). Thenwe
can represent v = Y o, 27'v*, where v* = (vi1,vi2,... ,%n) (i = 1,... ,m). The encoding
can be defined, recursively in terms of m, using the following objects which will be defined
later:

1. A code J: {0,1}* — {0,...,2" —1} (which is essentially the inverse of a Gray code),

2. Affine transformations Ay of R”, for / =0,... ,2" — 1.

2.1 Gray code and its inverse

For every X = (Zn,...,%1) (z: € {0,1}, ¢ = 1,... ,n), the code J(x) is represented as

J(x)=) u2!

=1

where y; € {0,1}, so 0 < J(x) < 2". It is calculated by the following algorithm:

Algorithm J; input: (Za,...,21); output: (Ym,...,%1)

1. ypo:= 2z,

2. fori=n—1downtol do
Yi =2 Q Tipa

Intuitively, the code J defines a linear ordering on the vertices of he unit cube in R”
so that consecutive vertices in the linear ordering are also adjacent in ghe cube. Note that
J(0,...,0)=0s0(0,...,0) is the first in this ordering. Similarly, J(1}§0,...,0) =2"—1,
so (1,0,...,0) is the last. These two vertices are also adjacent.

The following fact follows from the definition of J:
Fact 2.1

J(l,a:n_l,... ,$1)=2n-—1 ——J(O,a:,._l,... ,231) .

We also use the Gray code itself (i.e., the inverse of J) G(I) whith maps an integer
I'=3% %271 to a vector X = (Zp,...,21) (& € {0,1},4 = 1,...) according to the
following algorithm:

Algorithm G; input: (yn,...,y1); output: (z,...,Z1)

1. z, :=yn
2. fori=n—1downto 1 do
Ti 1= Y © Tiyl

The following fact from the definition of G:
Fact 2.2 For I > 2},

Gn=2"'+G2"-1-1).

Using these recursive formulas given in Facts 2.1 and 2.2, we can
Fact 2.3 The mappings J and G are the inverse functions of each otHer.

When we wish to determine the order relation between any two poigts p = (pn,--- ,P1)
and q = (gn,-.- ,q1) in [0,1)", the first phase is based on the code J. In order to have
a unique binary representation for any number, we always choose bet#een the first of the
two equivalent tail expansions: 1000... and 0111... Let p} = |2p;] apd ¢} = [2¢;] (z.e.,
these are obtained by discarding all the bits except for the first one). Tp compare p and q,
we first compare J(pl,...,p]) and J(g,. .. ,qt). If the latter are distipct, the comparison
has been decided. Otherwise!, we proceed to perform a comparison Hased on the second

1t is interesting to observe that if the points are picked independently from a orm distribution then
with probability 1 — 27" the comparison will be resolved in the first phase, so t. eexpected numbe; of
phases to resolve the comparison is 1 +1/(2" — 1). ‘

bits, and so on. Here, however, we do not use the function J directly. Since the ordering
is expected to reflect distance, we have to transform the points as explained below.

The code J induces an ordering on the 2" sub-cubes of the unit cube, obtained by
cutting the latter with the hyperplanes {z; = 0.5} (: = 1,... ,n). More precisely, for every
a=(an,...,a) € {0,1}", let

S(@)={x=(en,...,2) 0Lz <} ifai=0,§ <m<lifa;=1}.

The sub-cubes S(a) are dlSjOlnt and ordered by the function J (i.e., S(a) comes before
S(a') if and only if J(a) < J(a')). ' p and q belong to dxstmct S (a) 8, they inherit their
ordering relation from the ordering on these sub-cubes. Otherwise, they are in the same
S(a) and the sub-cubes of S(a) itself have to be considered. It is crucial though that the
orderings on the sub-cubes of the S(a)’s will be such that for every a (except the last
sub-cube) the last sub-cube of S(a) would be adjacent to the first sub-cube of S(a’), where
S(a’) is the sub-cube that succeeds S(a) in the ordering over the sub cubes of the unit
cube. If this condition is not satisfied, then there would be $wo distant points in the cube
that are arbitrarily close in the linear order, and in order for our indexing scheme to be
efficient this should never happen. Thus, the ordering on the sub cubes of each S(a) will
be determined by first applying a suitable affine transformation, and then applying the
function J.

To summarize the discussion so far, the comparisons are based on a one-dimensional
code C : [0,1)* — [0,1) that has a fractal nature which can be described as follows. For
V = (Vp,... ,u) € [0,1)", denote

vl = ([2v1],--.,[2va))-

For I =0,...,2" —1 we define below an affine transformation Ay of R™ that maps boolean
vectors to boolean vectors. An accurate statement requires that we define C with respect
to all kinds of cubes Z; x - -- x T,,, where each Z; is eitker [0,1) or (0, 1], and with respect
to all the permutations of the coordinates.: For simplicity of notation, however, we prefer
to state it as follows.

C(V) =2"" [J(Vl) +;C’(AJ(VL)(2V - V"l))] .

2.2 The affine transformations

We now define for each I € {0,...,2" — 1} an affine transformation A; of R™ that maps
the set {0,1}" onto itself. It is essential for our application that the transformations could
be computed in time proportional to the dimension of the space. The transformation A;
is composed of a “reflection” component represented by a vector s = s(I) € {0,1}", and
a “swap” component represented by a permutation matrix P = P(I) of order n x n that
swaps coordinate n with some coordinate ¢ = i(I) (i.e., if ¢ # n then the only difference
between P and the n X n identity matrix is that Py, = P,; =1 and Pj; = P, = 0). The
composition is:

Ar(v) = P(I)- (s(I) ®V)) -

2'.2.1 The reflection

The reflection component, s(I), of Ay is calculated by the following a.lé:rithm, where e; =

0,...,0,1):

Algorithm s; input: I; output: s =s(])
if I =0 then s:=0
else if I =1 (mod 2) then s:=G(I —1)
else if I =2 (mod 4) then s :=G(I —1)—e;
else if /=0 (mod 4) then s:=G(I —-1) +e;

Fact 2.4 For odd k, s(k+ 1) = G(k — 1) while for even k, s(k+1) = Q(k) Thus, for odd

k, s(k + 1) = s(k).

Proof: 1t follows from the definition of the Gray code that if k ¥

G(k) = G(k — 1) + ey, in which case
s(k+1) = G(k) —er = Gk~ 1),
and if k = 3 (mod 4) then G(k) = G(k — 1) — e;, in which case agaig
s(k+1)=G(k)+e,=G(k-1).
For even k, by definition s(k +1) =G(k). &

2.2.2 The swap

The swep component P = P(I) is determined by the index ¢ = #(J]
that is swapped under P with coordinate n. We define #(0) = 1(2"

1 (mod 4), then‘i

of the coordlnate

I=3"% 2,27 such that 0 < I < 2" 1, i(I) is the largest index 7 > § such that T = 0

forall2< k< 7.
This index is calculated by the following algorithm:

Algorithm i; input: I; output: @ =1(l)
if I=0o0or I=2"—-1 then 1:=1
else

Li=2
2. I:=|(I+1)/2]
3. while I =0 (mod 2) do
 (a)i:=1i41
(b) I:=11/2]
Fact 2.5 For even k > 0, i(k) = i(k - 1).

Proof: In Step 2 of the algorithm we convert I to [(k + 1)/2] (for input k), and to
[k/2] (for input k — 1). If k > 0 is even then |(k + 1)/2] = |k/2], so the result of the
algorithm is the same for kand k—1. -

Fact 2.6 For 0 <k < 2" —1, G(k+ 1) and G(k — 1) differ in coordinates 1 and i(k).

The transformations in the case n = 2 are summarized in the following table:

TTEI-1)] A& [s()[«()] Arznzi)
00 00 1 ($1,$2)

01| 00 00 | 2 (22,21)

10 01 —01] 00 2 (z2,7)

11| 11 11 | 1 |(1=21,1—2,)

The transformations in the case n = 3 are summarized in the following table:

I |GI-1)] A |s(I)|i(]) Af(z3, z2,21)
000 000} 1 (z1, za, z3)
001 000 000 | 2 (z2, 23, 1)
010 001 —001| 000 | 2 (z2,23,21)
011 011 011 3 (:23, 1- Ty, 1- :Dl)
100 010 4001 { 011 | 3 | (z3,1— 9,1 — ;)
101 110 110 | 2 | (1 — 29,1 —z3,2y)
110 111 =001 {110} 2 |[(1—=z2,1—z3,2)
111 101 101 | 1 | (1 —=z,25,1 —23)

The transformations in the case n = 4 are summarized in the following table:

I G(I - 1) A S(I) 1(]) mi4,m3,$3, (l:_‘)
0000 0000 | 1 (z1, z3, T2, T4)
0001 0000 0000 2 (3:2, T3, T4, 1:1)
0010 | 0001 |—0001{0000| 2 (22, 3, T4, T1)
0011 0011 0011 3 (233, T4, 1-— Zs, 1= :21)
0100 | 0010 {+0001 0011 3 (z3, 24,1 — 22,1 — 1)
0101 | 0110 0110 | 2 (1 = 23,1 — 23, 24,71)
0110 0111 —0001 [0110 | 2 (1 —z2,1 — z3,24,21)
0111 | o101 0101 | 4 (4,1 — z3,22,1 — 7).
1000 | 0100 |+40001{0101| 4 (24,1 — 23,Z2,1 — z3)
1001 1100 1100 2 (122, 1-— I3, 1-— 2341:1)
1010 { 1101 |-—0001 | 1100 2 (29,1 — 23,1 — z4,21)
1011 1111 1111} 3 | (1 —z9,1 — 23,1 — 24,1 — 24)
1100 1110 | 40001 {1111 | 3 | (1 — 2,1 — 23,1 — z4,1 — 21)
1101 | 1010 1010 | 2 (1 = z3,23,1 — z4,1)
1110 | 1011 |—0001 |1010] 2 (1 - z3,23,1 — 24,21)
1111 1001 1001 1 (1 — X1, I3, 1- :1:4)

2.3 The algorithm for computing the mapping C

We are now ready to describe the algorithm that calculates the code (Y v) of a given point
V = (Un,... ,v1), where each v; is an m-bit number, v; = Y r, vi;2T (w; € {0,1}, J =
l,...,n,i=1,...,m). The algorithm produces the representation §(v) = > =, [;2™™"
(0<L <2 (i=1,...,m). It also produces the representation v o >, 27*v*, where
v' = (vj1,%ig, -+« ,Vin) (1 = 1,... ,m). All the operations on vectors ard component-wise.

Algorithm C; input: v = (vp,...,v1); output: C=C(v) = E,'-';#I,- 2-in

1. 1:=1; s:=0; P=1
2. while v#0 do
2.1 Convert v into a bit vector and a remainder :
(2) v*:=|2v]
) vi=2v—-+v
2.2 Compute I; : _
L:=JP- (s®Vv"))
2.3 Compute the new transformation :
(@) s:=sQ(P-s(L;))
) P=P- P(I,)
2.4 Increment : :
1i=1+1

2.4 Properties of the mapping C

We first prove that the mapping C is adequate for unambiguous coding of n-dimensional
data.

Theorem 2.7 The mapping C is one-to-one.

Proof: Suppose p and q are distinct points in [0,1)". There exist unique representations

P=Y,p'2" and q = .2, q* 27, where {p’,q'} C {0,1}" (: § 1,2,...), and for
every natural N and every j (1 < j < n), there exist k,£ > N suchjthat p = ¢; = 0.
Let ¢ (1 > 1) be the smallest index such that p* # q'. It follows th§t in the hierarchy
of the sub-cubes of the unit cube (obtained by repeatedly halving a}l the dimensions),
there exists a sub-cube Sp of the unit cube whose edges are of length 27*1, such that
{pP,q} C So, whereas there exist two disjoint sub-cubes Sy, Sz of So, frhose edges are of
length 2~%, such that p € S; and q € S2. The points of S; and S; ard mapped under J,
into two disjoint intervals of [0,1) (each of length 27*"), hence J(p) A J(q). s

Before stating the main claims, we introduce notation as follows. Fg¢ m = 1, 2,...,

1. For ky,... ,ky such that 0 < k; < 2™ —1 (j =1,... ,n), define the cube

S(ky,... kn;m) ={x €ER™ | k;27™ < z; < (k; +1)2°™, j=1,... ,n}.

2. Denote by §(m) the collection of all the cubes S(k,... , k,;m).

3. For every S € S§(m), denote by S(m + 1;5) those members of S(m + 1) that are
contained in S. Also, if S € S(m) is not the sub-cube that is mapped under C into
[1 —27™",1), then denote by S’ the member of S(m) that succeeds S in the ordering
induced by C, i.e., if S is mapped into [k2~™",(k+1)2~™"), then S’ is mapped into
[(k+1)27™, (k +2)27™").

Note that for each m, the members of S(m) are mapped under C into 2™ disjoint (half
open) subintervals of [0,1), each of length 27™".

Lemma 2.8 For m = 1,2,..., and for every S € S(m) ezcept for the last one (relative
to the ordering induced by C), the last member of S(m + 1;5) end the first member of
S(m +1;5') are adjacent sub-cubes (i.e., they have a common facet).

Proof: The proof goes by induction on m. Let us first consider the case m = 1. Suppose
S € §(1) is mapped into the interval

T(1,k)=[k27", (k+1)27")
where 0 < k < 2" — 2. Thus, the last member of §(2; S) is mapped into the interval
Tp=T2,2"k+1)-1)=[k+1)27"-272 (k+1)27"),
while the first member of S(2;S’) is mapped into
TrR=T2,2%k+1))={(k+1)27", (k+1)27" +27%").
If a point vg = 3vh + vk + er (where v € {0,1}", < = 1,2, and egr € [0,%)") has
C(vr) € Tk, then it means that the first two values that Algorlthm C calcula.tes for it
are I = k+ 1 and I, = 0. Thus, necessarily,
Jivi)=k+1
which is the same as
vp=Gk+1).
Now, the first values of the other objects computed by Algorithm C are

sp =53 ® (Pp-s(k+1)) =s(k+1)
and Pr=P} -Pk+1)=Pk+1).

Thus, the other necessary condition for vg = %v}g + %v}; + € to.be rnapped into Ty is:

0=15=J(PL-(shovk)=J(P(k+1) (s(k+1)d
which, since G(0) = 0, is the same as s(k + 1) ® v = 0, or simply
vi=s(k+1).

vlzi)) ’

Similarly, if a point vz = %vi+ %v2+sz, has C(vy) € Ty, then it me%,us that the first two

values that Algorithm C calculates for it are IL=kand [, =2" -1,
J(VR) =k

which is the same as
vk =G(k) .

Since the first values of the other objects computed by Algorithm {
P}, = P(k), the other necessary condition for vy = vi+ivit+etd
is: :

™ 1=I=JPL- (sl ®v2)) = J(P(k)- (s(k) ® vF)) :

Since G(2" — 1) = e,,, this is equivalent to
vi = 8(k) ® (P(k) - en) = s(k) ® ey

(where e; denotes a unit vector with 1 in coordinate j). Obviously,)
G(k) and vk = G(k + 1) implies that points mapped into T

respectively, to adjacent members of §(1), but in order to prove
adjacent members of §(2) we have to rely on v and v%. In fact, it
the latter always differ in one coordinate. By Fact 2.4,

1. if k is odd then
v =s(k + 1) = s(k)
and |
vi = s(k) ® eix) ,
so v and v differ in precisely one coordinate, namely, i(k);
2. if k i1s even, then
v =s(k+1) = G(k)
and
vi = s(k) ® eix)

SO

10

Thus, necessarily,

are s} = s(k) and
be mapped into T,

the fact that vi =
Tr must belong,
at they belong to
flices to prove that

"~ (a) if k = 0, then v} = O and v} = e,, s0 v} and v} differ in precisely one
coordinate;
(b) if k =0 (mod 4) and k > 0, then s(k) = G(k — 1) + ey, s0
vi=(G(k~1) +e1)® eipy= Gk~ 2) @ er)

whereas v} = G(k). But G(k) and G(k — 2) differ only in coordinates 1 and
i(k — 1) (Fact 2.6). Also i(k) = i(k — 1) (Fact 2.5). Thus, v} and v differ in
only one coordinate, namely, coordinate 1;

(c) if k=2 (mod 4) and k > 0, then s(k) = G(k —1) — ey, 50
vi=(Gk—1)—e)®@er =Gk —2)® e

hence, as in the previous case, v} and v} differ in only one coordinate, i(k).

Finally, consider the inductive step. Given S € &(m), where m > 1, denote by R
ihe member of §(1) that contains S. By the fractal formula, the induction hypothesis
applies to the hierarchical structure of sub-cubes of R, and that implies our claim.

Theorem 2.9 For every two points p,q in [0,1)”,
P — qlle < 2|C(p) - C(q)" .

Proof: Given p,q € [0,1)", denote by m the number such that
2™ < [C(p) - C(q)| < 2-".

Without loss of generality, suppose C(q) < C(p). Since the 2™" < C(p) — C(q), and
since each member of S(m) is mapped by C into a half open interval of length 27™", it
follows that the points p and q cannot belong to the same member of S(m). On the
other hand, since C(p) — C(q) < 2-(™ 1" there exists a k, 1 < k < 2(™~U» — 1, such
that
(k=1)2" < O(q) < O(p) < (k+1)27 D).
If either C(p) < k2-(™~1" or C(q) > k2~(™-)", then both p and q belong to the same
member of S(m) and hence
P = alle <27 = 27" < [C(p) - C(@)P"
Otherwise,
C(q) <k27 1" < C(p) .
In this case p and q belong to distinct members of S(m) which are mapped under C into
consecutive intervals [(k — 1)2~™", k2™™") and [k2™™", (k + 1)27™"). By Lemma 2.8,
these members of S(m) must be adjacent. Thus,

P — qlleo < 2-27™ < 2{C(P) ~ C(q)1'" .

11

3 Implementation of multi-orderings in E relational
database

3.1 A search based on a single one-dimensional el*coding

Suppose C : [0,1)" — [0, 1) is a mapping with the following characterjstics: (1) C 1s one-
to-one, (ii) the inverse mapping C~* : Z — [0,1)* (where Z C [0, 1) isjthe image of C) is
continuous. Since C is one-to-one into an interval, it defines an order du [0,1)":

Vx,y €[0,1)" x=cy & C(x)<C(y)
Let

P={pl)-“ ,pN}C[O,l)”.

The linear ordering can be implemented as a simple relation R with oply two attributes:
point-id and value. Each p; has one entry in R where pomt-zd equals and value equals

C(ps).

A query consists of two components: a point q € [0,1)" and a numbg¢r k¥ € N. An exact
answer to the query consists a set O C P of size k so that

Vx€ O Vye (P\O) |x—-ql<|ly—dl

We employ the relation R for getting a set of candidates from P. Forjevery ¢ > 0 define
R(8;q) C P as ‘ ; :

R(s;q)={p € P ||C(p)—C(q] < ¢}

Since C~! is continuous, the points in R(§) are likely to be close in tHe space [0,1)*. A
good implementation for one such index in a conventional DBMS is to b}ild a B-tree index
in attribute value.

3.2 Employing a multitude of one-dimensional enc¢dings

The definition of C lends itself to a multitude of other possible ordefings. First, note-
that the dimensions 1,... ,n can be arbitrarily permuted and each pergutation defines a
different ordering. Sub-cubes that are distant relative to one permutation may be close
relative to another ome. However, the sub-cubes hierarchy itself is thq same for all the
permutations. In order to obtain further‘orderings that do not share tHe same hierarchy,
we define a new ordering based on C by using a translation vector & d [0, 3]". Define a
mapping Ce : [0,1)* — [0,1) by

Ce(x)=C (§(x +¢)) -

12

For each €, define a candidate set by
R(é,eiq) = {p € P | |Ce(p) — Celal < 6}
We employ a fixed number of orderings, using a positive parameter ¢ as follows:

1. Pick £ vectors €;,... ,&,.
2. For each ordering define a relation R; similar to R, based on Cg, instead of C.

3. For a query (q, k) return a candidate set

!
R(8;q) = U R(é,€:;q)

=1

4. For each point in R($; q), calculate its distance from q and finally return the k closest
points.

3.3 Implementation of the query in a conventional DBMS

Suppose we work with data set P and have defined orderings based on £ one-dimensional
codes Cy,...,C,. We create a single relation? R with attributes indez-id, point-id, value.
For each p; € P and for each 1 < j < I we include an entry (3,4,Ce,;(p:)) in R (i.e.,
indez-id equals j, point-id equals 3, and value equals Ce,(pi). We create a B-tree index
on the combination of attributes < indez-td,value >. This means that two entries in the
tree are compared by their indez-id and only if their indez-id’s are equal, the comparison
is resolved based on value.

A query is implemented as follows. Suppose q is a query point. We create a relation @
with attributes indez-id, value. For each 7, 7 = 1,... ,£, we put one tuple in the relation
@, where indez-id equals j and value equals Ce (q). We choose a small d and perform a

query in SQL as follows:

SELECT DISTINCT point-id

FROM R,Q

WHERE R.index-id = (.index-id
AND R.value <= {.value + d
AND R.value >= (Q.value - d

This SQL query returns R(d;q). If we are satisfied with this result, we can find the &
nearest neighbors from this candidate set. Otherwise, we can get a larger candidate set by
increasing d. The new candidate set will be a superset of R(d; q).

2We are indebted to Bruce Lindsay for this idea.

13

4 Obtaining an exact result

sets of candidates
nearest neighbors.

As indicated above, the set of candidates (obtained as the union of ¢
provided by the various orderings) is not guaranteed to contain all the
Our experiments show that in many cases a very good approximation ¥ achieved, either in
terms of the overlap with the set of the true k nearest neighbors, or injterms of the actual
distances between the query point and the reported neighbors, compafed to the distances
between the query point and the true k nearest neighbors. In this sqction we propose a
method of finding the true k nearest neighbors. This extended featurejwould be used only
if it is essential to get the exact result. If an exact output is desireq, the search has to
be extended and a stopping rule has to be developed so that when thg algorithm stops it
is guaranteed to have found the exact result. The method works as follows. Candidates
are obtained by enlarging the scanned intervals within each of the ordgrings. At the same
time, lower bounds are calculated for various cubes, giving the minimuym distance between
any point in the cube and the query point. The algorithm stops the ch as soon as the
available bounds imply that no unchecked database point is closer to ghe query than any
of the current k nearest neighbors. The sub-cubes are stored in the sgme trees that store
the linear orders.

4.1 Distances to boxes

Hq=1(q,--.,qs) is a query point and

4

B=B(a,b)={x€R"|a;<z;<b;,1=1,...,n

4

n q and B can be

izing) i, (G—:)’
arable, so we can

(a,b € R") is a rectangular box, then the Euclidean distance betw
computed as follows. The nearest point of the cube is obtained by mini
subject to a; < z; < b; (1 = 1,...,n). The objective function is s
describe the optimal solution as follows. (i) If ¢ < a;, then let
a; < g <b;, then let d; = 0. (iii) If g; > b;, then let d; = ¢; — b;. It is
distance between q and B is given by §(q, B) = ||d||, where d = {d1,.{. ,dn)-

Suppose for a given q we are seeking the k points in the databasejthat are nearest to
q. Suppose we have already located the database points p?,...,p* af candidates for the
k nearest neighbors, and we have

lla—pYi<-- <lla—pIl.

Obviously, ||q — pk|| is an upper bound on the distance to the kth nearpst neighbor. Thus,
if some box B contains database points, and 8(q, B) > ||q — p«||, thenjthere is no need to
search B since none of its points can be among the k nearest neighboks. We show below
that such bounds become useful in case an exact output is desired. We maintain each of
our linear orderings in a tree where nodes store information about bgunding boxes, and
the ordering lends itself to creating good boxes.

14

4.2 Trees

Let v!,...,v¥ be all the database points. Here we consider one ordering induced by a
code C, so let us assume without loss of generality that

C(vl) <. < CO(WN).

For each i (1 =1,...,N), let us use the representation
vi= E 27y
i=1
Thus, the components v*!,... ,v¥! determine the first level of the ordering. Recall that

S(1) denotes the collection of the sub-cubes at the first level of the hierarchy, so it has 2"
members, each with a volume of 2~". Since N is expected to be much smaller than 2%,
most of the members of S(1) will not contain any database point. Those members of S(1)
that do contain such points can be stored at the leaves of a balanced tree according to the
order which is induced on them by the codes J(vil) (the inverse of the Gray code). Due
to the nature of this code, if two sub-cubes are close in the ordering, then there exists a
relatively small box that contains their union. For example, any two consecutive members
form a box of volume 2 "*!, and any two members that are at distance 2 in the ordering
are contained in a box of volume 272, In general, if the two children of a node in the
tree hold the boxes B(a',b!) and B(a?, b?), then the parent holds the box B(a,b) where
a; = min(a}, a?) and b; = max(8},?). Thus, relying on the currently known upper bounds
on the distance to the kth nearest neighbor, the algorithm can decide not to proceed into
the subtree rooted at the node, if the box associated with it is sufficiently distant from the
query point.

4.3 The stopping criterion

During the search for the exact &k nearest neighbors, the algorithm maintains the following
information. First, there is a globla upper bound on the distance between the query point
and the kth nearest neighbor. Second, in each tree there is the current interval in the
corresponding ordering all of whose points have been checked. Moreover, in each such tree
some of the nodes are marked as ones whose subtrees should not be checked. The intervals
are expanded repeatedly, and the upper bound is updated. At the same time, lower bounds
are updated for a collection of nodes whose subtrees cover the unchecked data points. In
each tree, the number of such subtrees at any time does not exceed O(logn) where n is
the number of data points. The search may stop when in one tree all the lower bounds of
subtrees that cover the unchecked points are greater than the global upper bound.

15

5 Experimental Setup

The experminents were conducted with five data sets, in the same way}for all the sets. For
each data set the following steps were performed:

1. Preparation.
2. Creating index structures.

3. Performing queries and analyzing the results (For each index str*cture).

5.1 Preparation

During the preparation phase, the data set is converted into an easyto use format, and
everything that does not depend on the indexing scheme is computed This consists of the
following steps:

1. Transform the data set. The input is converted into unsigned fntegers so that the
Euclidian metric still applies for finding neighbors.
2. Find minimal and maximal values in the dataset.

3. Choose 100 random points in the data set as query points.

4. For each query point: sort all the points in the data set accordm:ato the distance to
the query point. Make a table that consists of the id of each pojnt and its distance
to the query point.

5. Make a principle component analysis of the data set. Identify a §ransformation that
reduces dimensionality and keeps as much variance as possible.

the first n eigenvectors of the principle component analysis. » is ¢hosen according to

6. Make a transformed data set by projecting the points into the Ii)spa.ce defined by
h
the cumulative variance of the data set projected into the subsp

5.2 Creatixig Index Structures

The results presented in this document are about two index structures tQat were created for
each data set. Each structure uses n ordering mappings (where n is the dimensionality of
the reduced data set described in the preparation phase). In one strugure, the difference
among the mappings is a permutation of the dimensions. We choosd an initial random
permutation and make n permutations from it using a round robin ap oach. We call this
RR for short. The other structure uses a random permutation of dimenjions and a random
shift of the data set for each different mapping. We call this structure RS for short.

16

A pern;utatioi; méans that the data set is transformed before each ordering is created.
The transformation is a permutation of the dimensions. A shift means that a vector is
chosen (one per ordering) and the data set is moved by adding to each point the chosen
random vector. Both transformations do not change the distances between points.

Each of the two structures consist of n orderings of the data set. Each such order is a
list of point id’s. Since the query is a point from the data set, we can find it in the list,
and return m points to the left of it and m points to the right. This way, we do not need
to save the key (the mapped point).

5.3 Queries and Results

For each of the two index structures we perform queries with the following parameters:

k. The number of nearest neighbors requested for the query. The final result of a
query is a set of points. This parameter is the number of points in that set.

c. The number of candidates returned by the index structure. An index probe finds
the query point in each of the n orderings. After that we return 2m points from each
ordering by taking the m points to the left of the query point in the ordering, and
the m points to its right. We have a multiset of size 2mn. However, we remove
duplicates from this set. After duplicate elimination we want a specific number of
points (that is the parameter we use). To do this, we start with 7 = 1 and increment
m until we have enough points (we may need to discard some of them). These points
are the candidates. From these candidates we choose the ones that are the closest
to the query point in Euclidian space. This is done by using the nearest neighbors
information calculated for the query in the preparation phase.

The above process is repeated for all the 100 random queries. The number of nearest
neighbors we request varies from 5 to 50. The number of candidates we allow vary from
400 to 1200. There are two main measurements of success that we tried:

Precent found. This is the percentage of true nearest neighbors that were found by the
index.

Average distance. For each query we know the distance of the query point from all the
points in the database (preparation phase). We find the median, and approximate a
standard deviation from the median by the following method: if the data points are
sorted according to distance, and the distances are d(1) < d(2) < --- < d(N) then

we define
stddev = % (d(5N/6) — d(N/6))

Note that for a normal distribution this is a good estimator of the standard deviation.
We chose this method because we want to eliminate the effect of outliers. Once these

17

multiples of stddev. We measure the average distance for the k nqarest neighbors we
found. We divide this by the average distance for the true k ne
present these numbers in percentages. ,

were found we measure the distance of a point by its distance ffom the median in
neighbors. We

5.4 Presentation of Results
For each data set we present the following:

e A histogram of distances of all the data points from the first quixy, and a graph of
those distances for the first 100 nearest neighbors. This gives us s§me idea about the
kind of data set we have.

® Graphs that show the percent of nearest nighbors found vs. the distance ratio ex-
plained above. We present several graphs for different number of nearest neighbors
k, for different number of candidates c, and for the two different §dex structures.

o Graphs showing for each structure and a specific ¢ the five qu
of points found over 100 queries. The X axis is k. For each k We have five points
representing the quartiles for the results. The top curve represquts the maximum
(4’th quartile), the middle curve represents the median (2'nd quart e) and the bottom
represents the minimum.

® Graphs showing for each structure and a specific ¢ the 1’st and 3’rd quartiles of

- distance measurement, compared to the 1’st and 3'rd quartiles i¢ken from the true
nearest nieighbors. The X axis varies over k. For each k we pefform 100 queries,
and the quartiles are taken from these 100 results. The top curve pelongs to the 3'rd
quartile of the true nearest neighbors. The one below it belongs tp the 3'rd quartile
for the index structure. The two bottom curves are similar for thq 1’st quartile.

18 -

6 Color Data Set

Each point in the color data set is obtained from a histogram of colors in one image. The
histogram is transformed using a linear transformation s.t. the Euclidian distance can be
used on the transformed points. The properties of the data set are as follows:

¢ The number of points (images) is 13536.
¢ The number of dimensions (arity) is 256.

e The values of data points in each dimension are integers ranging from 0 to 9759006
(after using a shift transformation so the numbers are not negative).

e 94% of the variance is explained by a subspace of 64 dimensions. The dataset is
projected into that subspace for the reduced dimensionality experiments.

Figure 1 shows the distribution of distances of database points from some fixed query
point. Figure 2 shows the same case for the first 100 nearest neighbors. We see that the
difference in distance among the 100 nearest neighbors is relatively small compared to their
distance to the query point. This makes us believe that approximation schemes would
be more accurate in terms of average distance than in terms of number of actual nearest
neighbors found.

Figure 3 shows what happened with the reduced dimensionality data for 100 random
queries, where the indexing scheme is RR. We have ¢ = 400 and &£ = 25 (i.e., we look
for 25 nearest neighbors and we check 400 candidates from the index structure). Figure 4
shows the same thing with the indexing scheme RS. Note that the queries are the same
through all the figures in this section. It is very clear that shifting the data for each space
ordering creates a much better approximation. We see that the average percent of points
found jumps from about 50% for random permutations, to about 85% for random shifts.
Also, the average distance ratio jumps from about 95% to about 99.5%.

Figure 5 shows the same thing for RS when the number of candidates returned by the
index is ¢ = 800. We see some improvement over the ¢ = 400 case. However, we anticipate
that as we increase c the result converges to the true nearest neighbors. Since we were very
close to the optimal result, a large increase in c results in a small improvement only. Figure
6 shows the same thing when the number of candidates returned by the index is ¢ = 400,

and the number of nearest neighbors is k = 10.

Figure 7 is about the RR index with ¢ = 800 and 100 random queries. For each k there
are five points for the five quartiles of the percent found measurement. Figure 8 shows the
same for the RS index. Note how much improvement there is in the bottom curve (minimal
performance) compared to the R scheme.

Figure 9 is about the RR index with ¢ = 400 and 100 random queries. We see the the
1’st and 3'rd quartiles of distance measure for the index and the same for teh true nearest
neighbors. Figure 10 shows the same for the RS index. Note that even when we check only

19

400 points from the index, the curves for the index and for the true n

almost identical.

S —

arest neighbors are

Color dataset. Distances from query 1
£
8/
g
§J
8l
ol ‘ —
0 210% 4108 610 8'10%6 1007
distance

Figure 1: Distribution of distances of data points froﬁn

query point number 1 (Color data set).

Color dataset. Distances of first 100 NN to query 1
[<] .
8| e
t\! ...«"'M
o ...u"'
9P I
9 4 o'
E“ R
8
8 -
3
e
=8
&
b4
=3
o
0 20 40 60 80 100
nearest neighbor number

Figure 2: Distances of first 100 nearest neighbors fr.
query point number 1 (Color data set).

20

Number of points search is 400 . Number of nn requested is 25 .

Fl 1 1 A 1

5

]

oo oo
oo

o8 mooo

85' ° -

BOJ ; —F

T T ¥

20 40 60 80 100
Percentage of points found by index

Ratio of distance of found points vs. distance of true nn (percent)
8

Figure 3: Distance and found ratio for 100 random queries. RR scheme.

Number of points search is 400 . Number of nn requested is 25 .

60 70 80 90 100
Percentage of points found by index

=

c

D

£

2 100 - |
= I

£ P
o » ° .

=] ° ° 8]

= E . o

.‘6 99' o o] ° L
3 ° .

% o

gi 98‘ ° ° ° ° 9
[4]

-

£

o

Q

2

€ 974

(=]

=/

5 . .

g

5 964 i
©

S e

K] T Y T T T
E=]

34}

[+ o

Figure 4: Distance and found ratio for 100 random queries. RS scheme. -

21

Number of points search is 800 . Number of nn requested is 25 .

A L 1 1 1 1 i

percent)
3
o

({5
e 8
S O
1]
L]
-]
1 -3
L} L}

<©

®

(4]
1
T

9754 i

97.0 L

T — Y U Y T T

70 75 80 85 90 95 00
Percentage of points found by index

Ratio of distance of found points vs. distance of true nn (
3
(=]

Figure 5: Distance and found ratio for 100 random queries. Rp scheme.

Number of points search is 400 . Number of nn requested is 10 .

L. L i 1 1 i 1

3
<

8
<

9204 °

98.5 1 R

98.0 - L

97.5 - "

97.0 L

T T T T T T

70 75 80 85 90 95 00
Percentage of points found by index

Ratio of distance of found points vs. distance of true nn (percent)

Figure 6: Distance and found ratio for 100 random queries. R§ scheme.

22

Showing 5 quartiles for 100 quertes, #points searched is 800

i — 1 i A

g
)

8

5

Percent of true nearest neighbors found
(2]
o

n
o
L
Y

T T T T T

10 20 30 40 50
Number of nearest neighbors requested

Figure 7: Five quartiles of percentage of points found over 100 queries.
RR scheme. '

Showing 5 quartiles for 100 queries, #points searched is 800

1 1 . I 1 1

M b

g

~

o
L

-

Percent of true nearest neighbors found
8

8

T T T

10 20 30 40 50
Nuimber of nearest neighbors requested

Figure 8: Same as Figure 7 for RS scheme.

23

Showing real vs. index for 100 queries, #points searched is 400

i K Il A

§3.4 . -
&
©3.2 5
g
£3.0 - |
E
1<
028 s
£
o -
o226 s
®
£2.4 1 \\ i
pem]
c -
é -~
ga.z : -
< -

2-0 T T T T \

10 20 30 40 ko

Number of nearest neighbors requested

Figure 9: 1’st and 3'rd quartiles for true nearest neighbors gnd index
structures. BR scheme. ¢ = 400,

Showing real vs. index for. 100 queries, #points searched is 400

I i i — (1 F

@
H
L

w
N
1

T

\:

ber of stdgev's fro‘rg median distance
0 o

n
[=2]
1

T

Averalge numi
'S

n
n

Y Y T

10 20 30 40
Number of neasest neighbors reguested

n
(=}

Figure 10: Same as Figure 9 for RS scheme.

24

7 Random Data Set

The data set is constructed from a random number generator. Each element in each tuple
is a sum of 100 uniformly distributed numbers in [0,100]. Each element is close to a normal
distribution. ,

e The number of points is 20000.
e The number of dimensions (arity) is 64.
¢ The values of data points in each dimension are integers ranging from 1977 to 8289.

e The dimensionality is not reduced by principle components.

25

Normal data set. Query 1.
g.
g.
g,
distance

Figure 11: Distribution of distances of data points from
query point number 1 (Normal data set).

Normal data set. Query 1.

O
8 PO m«-om.«.“»-n
3 ‘ ...,-M«
o
g
0w 1 “....-
= o
28
e
Co
(=%
2?
=3
@
~
0 20 - . } _

distance

Figure 12: Distances of first 100 nearest neighbors fromj
query point number 1 (Normal data set).

26

Number of points search is 400 . Number of nn requested is 25 .

£
[}
E 1 1 1 L H i
g o
£ -
§85' ° ® . B
‘6 ° ° -]
g . . : : .
© 801 . i
g . i .
2 S :
g . . ; \
[] o L]

g | .
o] ° 8 o o
:75' ° ! »
° ° (-3 o L]

o ° a
3 ‘ 8 8
[=
S U °
@
© o
S ° °
.9 T T T T T) Y
© 0 5 10 15 20 25
o

Percentage of points found by index

Figure 13: Distance and found ratio for 100 random queries. RR scheme.

Number of points search is 400 . Number of nn requested Is 25 .

‘g 1 1 L 1 1 1

5 :

288 S [
c . .

o ° °

E 86 1 ° :) -
3 8 ° -:]

8 —_—

C84~ o o o =
Z . " :

s : : :

g 824 B . : . i
‘0)_'] ° e °]

= . . : 8

8801 - : 8 o o
-o o

[© ° °

2 ° .

2784 ¢ g ° i
k] ° o

©

576- -
a

©

©744 - i
o T T T T T T

E 10 15 20 25 30 35

~ Percentage of points found by index

Figure 14: Distance and found ratio for 100 random queries. RS scheme. "

27

Number of points search is 800 . Number of nn requested is 25 .

g

g L 1 1

2 . e .

£ 92- . . -
o ° ° °
. g ° o g

© . ° 0 °

8 w 7 ¢ a) ° ° [
[=4 8 °

8 o g 8

0 ° . °

© ° e

g‘ 88 7 e e ° 5 ' L -
2 ‘ o °

’E) ° L : °

2 g : ‘ ' -
[=4 8 []

F . .

© o °

84 o R

k] . .

T

S 82-) i
'g ¥ T L

g 20 30 ‘ 40

Percentage of points found by index
Figure 15: Distance and found ratio for 100 random queries. scheme.

Number of points search is 400 . Number of nn requested is 10 .

H
2 : .
g ° 3
2 : g :
5 g9 : : : !
3 . ° .
== o .
2 0 : :
© °
-]
£854 ¢ 3 : : ° -
S 8 .
Q [} .
=) o
5 H 8
2 . .
5 . : ° .
8 80- . L
o
g g
0
‘©
5
.9 T T T T T T T
g 0 10 20 30 40 50 le0

Percentage of points found by index

Figure 16: Distance and found ratio for 100 random queries. IﬁS’ scheme. -

28

Showing 5 quartiles for 100 queries, #points searched is 800

Percent of true nearest neighbors found

10 20 30 40 50
Number of nearest neighbors requested

Figure 17: Five quartiles of percentage of points found over 100 queries.
RR scheme. |

Showing 5 quartiles for 100 queries, #points searched is 800

i —_ L 1

Percent of true nearest neighbors found
W
o

10 20 30 40 50
Number of nearest neighbors requested

Figure 18: Same as Figure 17 for RS scheme.

29

Showing real vs. index for 100 queries, #points searched is 400

2]
W
o

1

w
H
1

T

o Aver%e nurR’ber of !%tddev g’ from medlan dis
H N (-] o
f

w0
(M)
1
]
T

o
¥

10 20 30 40
Number of nearest neighbors requested

Figure 19: 1'st and 3’rd quartiles for true nearest neighbors gnd index
tructures. cheme. ¢ = 400.

Showing real vs. index for 100 queries, #points searched is 400

1 i i i

W
o
1

w
H
L

Average number of stddev's from median distance
N n w w
(¢} [} (=] N
// /
T T T

NG
N
L

3

10 20 30 40 §o
Number of nearest neighbors requested

Figure 20: Same as Figure 19 for RS scheme.

30

L B Tt P
- ¥ B o

| 8 Draw Data Set

The Draw data set is was taken from QBIC. It was shifted and scaled so it will be unsigned
integers. o

@ The number of points is 13536.
® The number of dimensions (arity) is 324.
e The values of data points in each dimension are integers ranging from 0 to 85556.

e The dimensionality is reduced to 128 whﬁekeepmg 95% of the variance.

31

Draw data set. Query 1

distance

Figure 21: Distribution of distances of data points fro

query point number 1 (Draw data set).

Draw data set. Query 1

:

170000
3
{
1
3
3
3

nni[1:100)
160000
H
:

150000

140000

130000

.
evocsuoas®

40 60
distance

80 100

Figure 22: Distances of first 100 nearest neighbors from

query point number 1 (Draw data set).

32

Number of points search is 400 . Nuiviber of -nn requested is 25 .

100 : Y
a # ° s © 8 °
28 " ¢
e S ° g g [} : .

x e o ° s °
fof L1 i |
3 TR
T i o 8]
580'{ o 8 g -
8 [°
£ °
2701 _
©]
8) °
s 8
[=4
8e0{ - -
@
a

50 - L

0 20 40 60 80 100
Ratio of distance of found points vs. distance of true nn (peroent)Jq

Figure 23: Distance and found ratio for 100 random queries. AR scheme.

Nuniber of peints search is 400 . Number of nn requested is 25 .

100* R o o g [
o (-] . 8 of o

< L8 g .

[} ° ° o 3 L

'8954 H S.

> ° ° ° 8 o

£2 S e

] ° °

= e ° B o °

£ 90 e “

g ° o o a °

[=3 ° e

[o N ® 0

L] ° I

5851 y

@ L]

E o

(0] a

o ° o

] ° .

a‘80ﬂ ° ° e -
0 20 40 60 80

Ratio of distance of found points vs. distance of true nn (percent

Figure 24: Distance and found ratio for 100 random queries. ’ZS scheme. -

33

Number of points search is 8060 . Number of nn requested is 25 .

1 I 1 1

100 e o g e o F
..0353:."
x o ° o o ° °
[« s o o
T B © © o
[o ¢« °
‘=95 o e S] L
- ° o n:°
'g] ﬂnen
3 ° °
e o
£ s o
g 901 . . I
5 i
m o
8| . -
c o °
e |
o. °
20 40 60 80 100

Ratio of distance of found points vs. distance of true nn (percent)

Figure 25: Distance and found ratio for 100 random queries. RS scheme.

Number of points search is 400 . Number of nn requested is 10 .

1) i i A 1

100 .. .}
. : !
TR T B

x [0
m (-]
° © ° ° o °
E o °
->~95" . ° 5 ° ° [~
D o o
° ° o 8 °
c ° °
8] o ° o
! s .7
£ g
8-90' o o ° r‘
B . °
o (-]
o
g ° o
§ 8
5859 « -
n. o

0 20 40 60 80 100

Ratio of distance of found points vs. distance of true nn (percent)

Figure 26: Distance and found ratio for 100 random queries. RS scheme. -

34

Showing 5 quartiles for 100 queries, #points searched is 800

1 I i 1 1

g

8

L3 D
(=] o
: 1
¥ T

Percent of true nearest neighbors found

S

T T —T T T

10 20 30 40 50
Number of nearest neighibors requested

Figure 27: Five quartiles of percentage of points found over 100 queries.
BR scheme. . -

Showing 5 quartiles for 100 queries, #points searched is 800

1) 1 L Il

:

Percent of true nearest neighbors found
3

8

T T T U

10 20 30 40 50
Nurmnber of nearest neighbors requested

Figure 28: Same as Figure 27 for RS scheme.

35

Showing real vs. index for 100.queries, #points searched is 400

226 - -
2
8
7
©
So4- ~
82
E
5
w22 i
3 -
3 -
]
22.0 X
-3
o
E
3
=4
(0]
1.8 -
S
< P
10 20 30 40 50
Number of nearest neighbors requested
Figure 29: 1’st and 3’rd quartiles for.true nearest neighborsjand index
structures. RE scheme. ¢ = 400.
Showing real vs. index for. 100.queries, #points searched is 400
82.6 1 o
c
ool
w
©
c
«
§241 — T
-3
£
g
° |
2 2.2
©
=
L7} ——
©
820- -
E
3
=
(0]
81 8
1.8 A 3
&S -
10 20 30 40 50

Number of nearest neighbors requested

Figure 30: Same as Figure 29 for RS scheme.

36

9 Connect-4 Data Set

The Connect-4 data set is a table of all positions in the connect-4 game. The board has
42 places in it, each place can contain blank, black or white, wich are encoded by 1,0, 2
respectively. One extra attribute has three options regarding who is in a position to win
(three options that include a draw). There is a constraint that the number of black places
and the numebr of white places differ by at most 1.

e The number of points is 67557.
e The number of dimensions (arity) is 43.
e The values of data points in each dimension are integers ranging from 0 to 2.

e The dimensionality is not reduced.

37

Connect-4 Data Set. Query 1

| l | »
2 3 4 5
distance

Figure 31: Distribution of distances of data points frqu
query point number 1 (Connect-4 data set).

Connect-4 Data Set. Query 1

10000

0

2,0

1.8

21

nn1{1:100}

1.4

1.2

Figure 32: Distances of first 100 nearest neighbors frong
query point number 1 (Connect-4 data set).

38

Number of points search is 400 . Number of nn requested is 25 .

3

goo- ° ° ° ° ° ° °

c

c 8 ° ° 0

o

= o ® g 8 ° o 8 o °

k-] . .

§95' ° ° ° ° ° B
% e 8 ° ° : ' ° L]

° ° . s 8

g‘ ° ° ° g

@ . . ° o

%%- o L] ° ° 3
a o °

g o 8 °

2 o . ° E -]

'.o_ ° ° ° °

2] L]

8 65 - : -
S o

2

©

s o

o T T T T T T

E 10 20 30 40 50 60 70

Percentage of points found by index

Figure 33: Distance and found ratio for 100 random queries. RR scheme.

Number of points search is 400 . Number of nn requested is 25 .

g

%m- ° ° ° ° ° ° ° o |
E L] o L) L] ° °

[}

= o °

= ° ° e [} ° ° °

S o o

895"‘ a "y ° ° ° -
K2 °

© ° ° o °

g . .l .

(7] o

ESO“ o B ° ° © r
[=] ° °

o— o a

° o 8 ° o

c °

>

e o °

©

085‘ o ° I
o o

c s ©

'g ° o ° ° °

2 °

B o

S ° °

o —T T T T T T T
&"6 20 30 40 50 60 70 80

Percentage of points found by index

Figure 34: Distance and found ratio for 100 random queries. RS scheme. -

39

Mun)berofpointssearchissoo.Nuniberofnnrequestediszs.

g
Q i L
e : *
gw- d o ° o e o ° ° e e ° °
E ° ° ° ° 8 8
(]
= ° ° ° H H
5 ° o @ * o .
g_g) ° ' ° °) -
5% o
- : °
g. o o o ° ° °
2 ° °
£ o H
8) o
90 . i
.g o ° ° ° °
=3 °
e o
k-] . .
Ses: . :
B °
.g U 1 T T
© 20 40 60 80
1

Percentage of points found by index

Figure 35: Ditance and found ratio for 100 random queries. RR scheme.

mber of points search is 400 . Number of nn requested is 10 .

i 3 i 3. X

8

§

S

o]
(¢}
1

T

80 -

40 60 80 100
Percentage of points found by index

Ratio of distance of found points vs. distance of true nn (percent)

N
o

Figure 36: Digtance and found ratio for 100 random queries. RS scheme. -

40

Showing 5 quartiles for 100 querles, #points searched is 800

I

:

3

N

Percent of true nearest neighbors found
& 3
(=]

T T

10 20)
Number of nearest neighbors requested

8—‘
2]
o

Figure 37: Five quartiles of percentage of points found over 100 queries.

RR scheme.

Showing 5 quartiles for 100 queries, #points searched is 800

H
o
1

Percent of true nearest neighbors found
o] (o~
(=] o

20 "

T T

20 30
Number of nearest neighbors requested

=
'Y
B4
o
o

1

Figure 38: Same as Figure 37 for RS scheme.

41

émving real vs. index for 100 queries, #points searched is 400

o
=]
1

Averagf number of szgdev's from mgldlan distance
1] o 3

=

Number of nearest neighbors requested

t and 3’rd quartiles for true nea.restk neighbors and index
scheme. ¢ = 400.

Showing real vs. index for 100 queries, #points searched is 400

.

T T T T T

10 20 30 40 50
Number of nearest neighbors requested

stddev’s from median distance
(4] (4]
(=] (¢,

Average number ot

Figure 40: Same as Figure 39 for RS scheme.

42

10 Adult Data Set

The Adult data set has data about people. Numeric attributes were kept unchanged. Low
cardinality attributes were split into several attribtues such that the distance between two
tuples on those attribtues is 100 if the values are different, and 0 if they are the same. The

original data set had 15 attribtues.

® The number of points is 30162.
e The number of dimensions (arity) is 90.

e The values of data points in each dimension are integers ranging from —560 to 1596.

® The dimensionality is reduced to 74 while keeping 98% of the variance.

43

3000

Adult Data Set. Query 1.

g.
§ T 0
distance
Figupe 41: Distribution of distances of data points from
query point number 1 (Adult data set).
Adult Data Set. Query 1.
§ 1 —— ..“”..........--“'
g' e .M.n'
oo""'““...“...“
§' ‘.‘...a-""“w
4
8.
2
|
0 2 © 60 80 100
distance

=
@

que

e 42: Distances of first 100 nearest neighbors from
point number 1 (Adult data set).

44

Number of points search is 400 . Number of nn requested is 25 .

1 I} 1 1 1

100 o 'ﬂgtlﬂ"'
° un:°g=: °

3 T L

2 . o,

— o ° 8 9 o

290 . v ° I

'g °

p=] o o

K= ° °

2 L]

£ o °

8. °e e O

5801 , ° I

: L]

8

o

70 r
20 40 60 80 100

Ratio of distance of found points vs. distance of true nn (percent)

Figure 43: Distance and found ratio for 100 random queries. RR scheme.

Number of points search is 400 . Numiber of nn requested is 25 .

1 . Il L 2

00 1 .

—d

©
[+
1
o
0o 000 0 ©
@w® 00
ocooe
T

o0
°
o

3

Percentage of points found by index
©
H

o

T T T T T

20 40 60 80 100
Ratio of distance of found points vs. distance of true nn (percent)

Figure 44: Distance and found ratio for 100 random queries. RS scheme. -

45

Number of points search is 800 . Number of nn requested is 25 .

1 1

8 8§ 8 8 8

Percentage of points found by index

&
1

o

T

T T T T

0 60 80 100
Rhtio of distance of found points vs. distance of true nn (percent)

Figure 45: Distance and found ratjo for 100 random queries. RS scheme.

mber of points search is 400 . Number of nn requested is 10 .

8 ¢ 8 8 8

Percentage of points found by index

g

oo

40

T

60

T

80

100

R&tio of distance of found points vs. distance of true nn (percent)

Figure 46: Diptance and found ratio for 100 random queries. RS scheme. -

46

Showing 5 quartiles for 100 queries, #points searched is 800

1 i 1 L 1

ey
1
L

H 23 [«]

o o o
e " 2
T T T

Percent of true nearest neighbors found
N
o

of /T — |

T T T - T T

-10 20 30 40 50
Number of nearest neighbors requested

Figure 47: Five quartiles of percentage of points found over 100 queries.
RER scheme

Showing 5 quartiles for 100 queries, #points searched is 800

1 L 1 L

8

Percent of true nearest neighbors found

T T T

10 20 30 40 50
Number of nearest neighbors requested

Figure 48: Same as Figure 47 for RS scheme.

47

ghowing real vs. index for 100 queries, #points searched is 400

N n 1 e

20 30 40 50

Number of nearest neighbors’ requested

N

»
o
[}

»
o
L

N

number of stddev's from median distance

w
)
1

Average

t and 3'rd quartiles for true nearest neighbors and index

e. ¢ = 400.
owing real vs. index for 100 queries, #points searched is 400

L 1 4 1 1

& F
20 30 40 50

Number of nearest neighbors requested

F-9
(o]
It

T

LS
H» [)]
1 1

&
n
1

N

mber of ﬁtddev's from median distance
¢ o

e nu

d W
o
1

Avera
w
o)]

A

w
FN

10

Figure 50: Same as Figure 49 for RS scheme.

48

11 Estimat¢d perforn

We have implemente}l an experimental version of the method described in this paper in

of a linear scan is thak it reads a disk effectively 10 times faster than random scan.

We work under tHe following assumptions regarding disk performance:

sequentially at a speed of which is 10 times faster than random scan.
e the time unit as the time it takes to read a page in a sequential

These assumptions h¢ld, for example, in a system consisting of a Pentium/Pro processor
(so that CPU time isfnot the bottleneck), a medium speed 4GB IBM disk drive.

Denote the numbdr points in the database by N, and denote the dimension by n (typ-
ically, n could be equpl to 250). each point has 250 coordinates. If each coordinate takes
4 bytes, the total storhge is 4 nN bytes. For example, if N = 1,000,000 and n = 250, the
storage is about 1GB] Let k denote the number of nearest neighbors sought.

llion) database points stored in dimension 250, each We consider the
k nearest neighbors problem. If the problem is solved in one sequential scan of the data,
assuming that CPU time is less than I/O time, this takes 4n.N/4000 = .001 n N time units.
Suppose we implemert our method so that we generate K orderings and then report c - k
candidates for which fhe k nearest are to be picked, (for example, ¢ = 50). If we use one
relational table store pll the orderings, we need N K rows, with an average storage of 32
bytes per row, so the Jhole table takes 32 N K bytes. Suppose we employ a B-tree of height
at most k = [log;,5(MK)] (for example, if N is a million and K = 50, we get about & = 3,
assuming the root is ih memory). Then a query amounts to fetching about K(k + 1) data
pages plus fetching tHe full coordinates of ¢ - k points from possibly ¢ - k different pages.
Since fetching a pageltakes about 10 time units, the total I/O time is 10(K(h + 1) + ck)

time units.

For N (say ,one

The crossover poifft for our method to be faster than complete sequential scan is when

N:E(K(h+1)+c-k) .

n

So, if n = 250, K = 140, h = 3, ¢ = 50 and k = 10, the multi-ordering method is better for
N > 36,000. The facfor of improvement is proportional to N as long as h does not grow.
So, for example, for N = 1,000, 000, we expect an improvement by a factor of 30.

For much larger dptabases the improvement is much larger since h grows very slowly.
It may allow for exact] searches still in time much shorter than complete sequential scan.

49

References

(1] A. R. Butz, “Space filling curves and mathematical programming,” Information and
Control 12 (1968) 314-330.

[2] A. R. Butz, “Convergence with Hilbert’s Space filling curve,” J. Computer and System
Sciences 3 (1969) 128-146.

(3] A. R. Butz, “Alternative algorithm for Hilbert’s space-filling curve,” IEEE' Trans. on
Computers C-20 (1971) 424-426.

(4] D. P. Huttenlocher and J. M. Kleinberg, “Comparing point sets under projection,” in:
Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (1994),

pp- 1-7.

[5) P.Prusinkiewicz, A. Lindenmayer and F. D. Fracchia, “Synthesis of Space-filling Curves
on the Square Grid,” in: PFractals in the Fundamental and Applied Sciences, edited by
H.-O. Peitgen et al., Elsevier Science Publishers, 1991, pp. 341-366.

[6] H. Sagan, Space-filling curves, Springer-Verlag, New York, 1994.

[7] R. J. Stevens, A. F. Lehar, and F. H. Perston, “Manipulation and presentation of
multidimensional image data using the Peano scan,” IEEE Trans. on Pattern Analysts
and Machine Intelligence, PAMI-5(5) (1983) pp. 520-526.

50

