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The idea of binary search is generalized as follows. Given f :  (0.1,. . . , N ) + 

(0  , . . . ,  K )  such that f(O)=O. f ( N ) = K ,  and / ( I ) < / ( , )  for ; < I ,  all the 
"jumps" of f ,  i.e., all is  such that / ( I )  > f ( i  - 1) together with the difference 
f ( i )  - f ( i  - 1) are recognized within K [log, ( N / K ) ~  + [ (  N - 1)2~-['0g2(N/K)I] 
f-evaluations. This is proved to be the exact bound in the non-trivial case wh& 
K < N. An optimal strategy is as follows: The first query will be at i = 2"', where 
rn = [log, (N /K) ] .  An adversary will then respond either f ( i )  = 0 or f ( i )  = 1 as 
explained in the paper. 19x5 Academic Pres,, Inc. 

I f f :  {O,l,. .., N )  + {0,1) is monotone and f(0) = 0, f ( N )  = 1, then f 
has one "jump" which can be recognized by a binary search within [ l o g 2 ~ ]  
f-evaluations. In this paper we generalize this situation to the case 
of a monotone nondecreasing step-function, i.e., f :  {0,1, . . . , N ) -, 
{0,1, ..., K ) ,  where f(O)= 0, f ( N ) =  K, and f ( i ) <  f ( j )  for i < j .  Obvi- 
ously, by performing K binary searches one may recognize f ( i )  for all i, so 
that  lo^,^] f-evaluations should suffice. Also, trivially, if K 2 N then 
N - 1 f-evaluations are sufficient and may also be necessary in the worst- 
case. 

We prove in this paper that the exact upper bound on the number of 
f-evaluations required for the recognition of all the jumps is K [log( N/K ) 
+ 1 ( N - 1)2 -['"g( * I K ) ]  1, where log X = Max(0, log, X) (and hence our bound 
is equal to N - 1 if K 2 N/2). An optimal strategy may be described as 
follows. The first query will be at i = 2m, where m =  log(^/^)]. Let the 
response be f ( i )  = K, (0 < K ,  < K). We now proceed, recursively, with 
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the two resulting problems, namely, finding all the jumps of f over the sets 
{O,l,. . ., I }  and { I  ,..., N}. 

One typical application of our problem is the following: Suppose that we 
need to recognize the exact boundaries of blocks of words whose first letters 
are identical. Such a problem arises when we wish to find a given vector in a 
preprocessed set of vectors (see [I-41). 

We now turn to a description of the problem in the form of a two-person 
zero-sum game. For the fundamental concepts of game theory see Owen [ 5 ] .  

A Game Representation 

The following game is obviously equivalent to our problem of identifying 
all the jumps of a monotone step-function. Given a sequence of N boxes 
and a set of K identical balls, an adversary distributes the balls among the 
boxes and we have to discover how many balls are contained in each box. In 
other words, an adversary chooses N integers n,, . . . , n, (n, >, 0, Cn, = K )  
and we may ask for any number N, (1 g N, g N - 1) what is the total 
number of balls contained within the first N, boxes. Our goal is to 
minimize the number of queries while finding all the numbers n,. 

We denote by (N, K )  the game which starts with N boxes and K balls. 
The different games are recursively related as follows. The first query splits 
the sequence (1,. . . , N) into two disjoint sequences of N, and N, boxes 
(N, + N, = N). The adversary responds by splitting the set of K balls into 
two sets of K, and K, elements (K, + K, = K). Thus, after the first query 
and the adversary's response our game actually reduces to the (independent) 
playing of two games: (N,, K,) and (N,, K,). Suppose that at the end of the 
play we have to pay to the adversary an amount equal to the number of 
queries. Let V(N, K )  denote the value of the resulting game. It follows 
that V(N,O) = 0 and for K 2 1, V(N, K ) =  1 + MinN,+N2=NMa~K,+K,=K 
{V(N,, K , )  + V(N,, K,)). It is also obvious that for K >, N, V(N, K )  = N 
- 1. The main result of this paper is 

THEOREM. For K >, 1, 

(1) V(N, K )  = K [ i o g ( ~ / ~ ) j  + [ ( N  - 1)2- [ l0g(~ /~ ' I ]  
(log X = Max(0, log, X)). 

The proof will be established as follows. Let us denote the right-hand side 
of (1) by F(N, K). In what follows, Lemma 1 is merely technical. Lemma 2 
demonstrates the optimal strategy of the adversary, that is, provides a 
response scheme that guarantees the value of the game. In other words, 
Lemma 2 proves that F(N, K )  is a lower bound on the value of the game. 
Lemma 3 describes a strategy of queries which terminates the search within 
F(N, K )  queries against any adversary. In other words, Lemma 3 shows 
that F( N, K ) is also an upper bound. 
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To simplify notation we henceforth denote 

(2 )  m = [log( N / K  ) I  and define 

LEMMA 1. Euety pair ( N ,  K )  (1  g K < N )  defines a unique triple of 
integers ( a ,  /3, r )  such that 0 < a < K ,  a + p = K ,  0 < r < 2" and N = 

a2"' + p2"+' + r. W e  can express F ( N ,  K )  in terms of a ,  P ,  and r by 
F ( N ,  K )  = ( m  + l ) ( a  + P )  + P - 6 ( r ) .  

Proof: It follows that there exists a unique pair of integers ( P ,  r )  such 
that 0 g J3 < K ,  0 g r < 2", and N = ( K  + P)2" + r. Let a = K - p. It 
follows that a > 0 and N = a2" + /32"+' + r. This implies 

F ( N ,  K )  = Km + [ ( N  - 1)2-"1 

= Km + [(a2" + P2"+' + r - 1)2-"1 

= Km + a + 2P - S ( r )  

We are now ready to describe a strategy for the adversary which guaran- 
tees at least F ( N ,  K )  queries. Notice that a strategy for the adversary is well 
defined if we specify for every N, (1  g N, < N - 1)  a number K ,  (0 < K ,  
< K )  which is the adversary's response to our first query (in the game 
( N ,  K ) )  as to the number of balls contained in the first N, boxes. 

The strategy and the proof of what it guarantees are contained in the 
following lemma. 

LEMMA 2. For euety N ,  K ,  and N,  such that 1 g N, g N - 1, there 
exists a number K ,  such that 0 g K ,  ,< K for which 

where N2 = N - N, and K ,  = K - K,. 

Proof: We distinguish different cases for the definition of an optimal 
response K,. 

Case 1. N,  < a2". Let N, = i2" + r,, where i < a and 0 < r, < 2". 

Subcase 1.1. r >, r, or P > 0. In this case, the adversary chooses 
K ,  = i. If i = 0 then F(N,,  K,) = 0. Otherwise (if i >, I ) ,  
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so that 

In both cases, F(N,,  K , )  >, i ( m  + 1)  - 6(r,) .  
By the assumptions of this subcase, 

and 

>, ( m  + l ) ( a  + /3 - i )  + P  - 1.  

Thus, 

F W , ,  K l )  + F(N2,  K,)  + 1 

>, i ( m  + 1 ) - 6 ( r , )  + ( m  + l ) ( a  + p  - i )  + / 3  

>, ( m  + l ) ( a  + P )  + P - 6 ( r )  

= F( N ,  K ) (by Lemma 1 ) .  

Subcase 1.2. P = 0 and r  < r, < r  + 2"-'. Again, the adversary 
chooses K ,  = i and F(N,,  K , )  2 i ( m  + 1 )  - 6(r1).  I f  i = K then 
F(N,, K,) = 0; otherwise (if i < a) ,  

( a  - i)2" + r  - r, 1 = llog I = m - l  
a - i  

so that 

I ( a  - i)2" + r  - rl - 1 
F(N, ,  K , )  = ( a  - i ) ( m  - 1 )  + 2"-l I 

In both cases, F(N,, K,) ( a  - i ) ( m  + 1)  - 1. Thus, 

F ( N l , K , )  + F(N29K2) + 1 

> i ( m  + 1 )  - 6(r , )  + ( a  - i ) ( m  + 1 )  

= ( m  + 1 ) a  - S ( r , )  >, ( m  + 1 ) a  - 6 ( r )  = F ( N ,  K ) .  
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Subcase 1.3 .  /3 = 0 and r, 2 r + 2"-'. Recall that r, < 2". In this 
case the adversary chooses K ,  = i + 1. (The definition of i implies i < a so 
that K = a + /3 2 i + 1 and K ,  = i + 1 is feasible.) Here 

so that 

i2" + r, - 1 
F ( N l ,  K , )  = ( i  + l ) ( m  - 1 )  + 

Note that if S ( r )  = 0 then r > 0 so that l ( r l  - 1 ) / 2 m p 1 ]  = 1 and hence in 
any case [ ( r  - 1 ) / 2 " ~ ' l  > 1 - S ( r ) .  Note that in the present subcase 
N1 = i2" + r, < a2" + r = N so that i < a. I f  i + 1 = K then F ( N , ,  K,) 
= 0 ;  otherwise ( i  + 1 < a ) ,  

so that 

I ( a  - i)2" + r - rl - 1 
F(N, ,  K,)  = ( a  - i - l ) m  + 

2" I 
thus, 

Case 2. Nl > a2". Let N, = a2" + i2"+' + r,, where 0 < i < j3 and 
0 < rl < 2"+'. 

Subcase 2.1. rl < r or /3 = i. Here, the adversary chooses K ,  = a + i. 
It follows that 
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so that i f  either a > 1 or r, < 2" then [ i o g ( ~ , / ~ , ) J  = m and 

I f  a = 1 and r, 2 2" then [ l o g ( ~ , / ~ , ) J  = m + 1 so that 

a2" + i2m+1 + rl - 1 
F ( N , ,  K , )  = ( a  + i ) ( m  + 1 )  + 

2 ( a  + i ) ( m  = 1 )  + i ,  

I f  i = p then F(N,, K , )  = 0 ;  otherwise ( i f  i < P ) ,  

so that 

I ( B  - i )2m+1 + r - rl - 1 
F ( N 2 ,  K,) = ( P  - i ) ( m  + 1 )  + 2"+ 1 

= (/3 - i ) ( m  + 1 )  = P - i - 6 ( r  - r , ) .  

In both cases F(N2,  K,) > ( P  - i ) ( m  + 2) - 6 ( r  - r,). Thus, 

F(N1,  K , )  + F(N2, K2)  + 1 

2 ( a  + i ) ( m  + 1 )  + i - S(r , )  + ( p  - i ) ( m  + 2)  

+ 8 ( r l )  - 8 ( r )  - 1 + 1 

= ( a  + P ) ( m  + 1 )  + P - 8 ( r )  

= F ( N ,  K ) .  

Subcase 2.2. r < r, < r + 2" and /3 > i. Again, the adversary 
chooses K ,  = a + i and F(N,, K,) 2 ( a  + i ) ( m  + 1)  + i - 8(r1).  Here, 

so that 
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Since r ,  > 0, 6 ( r 1 )  = 0 so that 

Subcase 2.3. r ,  > r + 2" and P > i. Here the adversary chooses 
K ,  = a + i  + 1. If K 2  = p - i - 1 = 0 then F(N, ,  K , )  = 0. Otherwise, 

so that 

I ( P  - i)2"+' + r - rl - 1  
F ( N 2 ,  K , )  = ( P  - i  - l ) ( m  + 1 )  + 2 m + 1  1 

Also, 

so that 
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and 

1 + F ( N , , K , )  + F ( N 2 , K 2 )  = 1 +(a + i +  l ) ( m  + 1 )  + i  

+ ( p -  i -  l ) ( m  + 1 ) + / 3 -  i -  1 

= ( a  + p ) ( m  + 1 )  + p 
> ( a  + P ) ( m  + 1)  + ,f3 - 6 ( r )  

= F ( N ,  K ) .  

This completes the proof that the adversary can force at least F(N ,  K )  
queries. We shall now prove that F ( N ,  K )  queries always suffice. Essen- 
tially, an optimal query at the state of N cells and K balls is N, = 2" ( m  
= llog(N/K)l). 

LEMMA 3. For every N and K > 2, for all possible responses K ,  (0 ,< K ,  
,< K ) ,  F(2", K,)  + F(N - 2", K - K,)  + 1 < F ( N ,  K ) .  

Proof: (a) We first prove the lemma for K ,  = 0. 

Case (a l ) .  N - 2" >, K2". In this case [log(N - 2 " ) / ~ ]  = m and 

F(2",0) + F ( N  - 2 " , K )  + 1 

= 0 + Km + [ ( N  - 2" - 1) /2"]  + 1 

= Km + [ ( N  - 1) /2"]  = F ( N ,  K ) .  

Case (a2). N - 2" < K2". Since N >, K2" it follows that N - 2"' >, 
( K  - 1)2" < ~ 2 " - ' .  Hence, in this case,  log(^ - 2 " ) / ~  ] = m - 1. 
Since we assume N - 2" < K2" then K > N/2" - 1 and thus K + 1 - 
( N  - 1)/2" > 0. Therefore, 

= l ( ~ m  + ( N  - 1) /2")  - ( K  + 1 - ( N  - 1)/2")1 

,< 1 ~ m  + ( N  - 1)/2"]  = F ( N ,  K ) .  

(b) Second, we prove the lemma for K ,  = 1. First, F(2", 1) = m.  Also, 
since m = [ ~ O ~ ( N / K ) ] ,  it follows that 2" < N / K  < 2"+', so that 
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Case ( b l ) .  N - 2" < ( K  - 1)2"+'. 
In this case [ log(N - 2 " ) / ( K  - I ) ]  = m so that 

= Km + [ ( N  - 1) /2"J  = F ( N ,  K ) .  

Case (b2).  N - 2" > ( K  - 1)2"+'. 
In this case l l o g ( ~  - 2 " ) / ( K  - I ) ]  = m + 1 and 

F ( 2 " , l ) + F ( N  - 2 " , K -  1 ) + 1  

= m + ( K  - l ) ( m  + 1 )  + [ ( N  - 2" - 1)/2"+']  + 1 

= Km + K + [ ( N  - 2" - 1)/2"+'1 

I ( N  + 2") + N - 2"' - 1 
6 Km + 2m+l 

= Km + [ ( 2 ~  - 1)/2"+']  

I 
= Km + [ ( 2 ~  - 2)/2"+'] 

= Km + [ ( N  - 1) /2"]  = F ( N ,  K ) ,  

where the inequality follows from our assumption that ~ 2 " ~ '  6 N + 2". 

( c )  W e  now complete the proof assuming that K ,  >, 2. Let K ,  = 2kl + 
r,, where 0 ,< r, < 2kl. W e  note that for K ,  >, 1, 

so that 

F(2", K , )  = ~ , ( m  - k ,  + S(r , )  - 1 )  + I 2" - 1 
2" - k l  + S ( r l )  - 1 I 

Let K ,  = K - K ,  and m ,  =  log(^ - 2 " ) / K 2  1. Then 

a = 1 + ~ ( 2 " ,  K 1 )  + F ( N  - 2", K 2 )  
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Since for K ,  > 2, K l ( k ,  + 1) 2 k 1 ( k 1  + 1) 2k1 i  ' ,  it follows that 

It  follows from the definition of m ,  that 2 " ~  < ( N  - 2") /K2  and thus 
K ,  G ( N  - 2")/2"2. Therefore 

Since 

N  - -  N - 1  
2  "' 1 .  and [ Q 0, 

it follows that a < Km + [ ( N  - 1 ) / 2 " ]  = F ( N ,  K ) .  This completes the 
proof that F ( N ,  K )  queries suffice, so that V ( N ,  K )  = F ( N ,  K ) .  
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