# An Optimal Algorithm for Finding All the Jumps of a Monotone Step-Function 

Refael Hassin and Nimrod Megiddo*<br>Statistics Department, Tel Aviv University, Tel Aviv, Israel 69978

Received July 26, 1983


#### Abstract

The idea of binary search is generalized as follows. Given $f:\{0,1, \ldots, N\} \rightarrow$ $\{0, \ldots, K\}$ such that $f(0)=0, f(N)=K$, and $f(i) \leqslant f(j)$ for $i<j$, all the "jumps" of $f$, i.e., all is such that $f(i)>f(i-1)$ together with the difference $f(i)-f(i-1)$ are recognized within $K\left[\log _{2}(N / K)\right\rfloor+\left\lfloor(N-1) 2^{-\left[\log _{2}(N / K)\right]}\right\rfloor$ $f$-evaluations. This is proved to be the exact bound in the non-trivial case when $K \leqslant N$. An optimal strategy is as follows: The first query will be at $i=2^{m}$, where $m=\left\lfloor\log _{2}(N / K)\right\rfloor$. An adversary will then respond either $f(i)=0$ or $f(i)=1$ as explained in the paper. 1985 Academic Press, Inc.


If $f:\{0,1, \ldots, N\} \rightarrow\{0,1\}$ is monotone and $f(0)=0, f(N)=1$, then $f$ has one "jump" which can be recognized by a binary search within $\left\lceil\log _{2} N\right\rceil$ $f$-evaluations. In this paper we generalize this situation to the case of a monotone nondecreasing step-function, i.e., $f:\{0,1, \ldots, N\} \rightarrow$ $\{0,1, \ldots, K\}$, where $f(0)=0, f(N)=K$, and $f(i) \leqslant f(j)$ for $i<j$. Obviously, by performing $K$ binary searches one may recognize $f(i)$ for all $i$, so that $K\left\lceil\log _{2} N\right\rceil f$-evaluations should suffice. Also, trivially, if $K \geqslant N$ then $N-1 f$-evaluations are sufficient and may also be necessary in the worstcase.

We prove in this paper that the exact upper bound on the number of $f$-evaluations required for the recognition of all the jumps is $K\lfloor\log (N / K)\rfloor$ $+\left\lfloor(N-1) 2^{-[\log (N / K)]}\right\rfloor$, where $\log X=\operatorname{Max}\left(0, \log _{2} X\right)$ (and henceour bound is equal to $N-1$ if $K \geqslant N / 2$ ). An optimal strategy may be described as follows. The first query will be at $i=2^{m}$, where $m=\lfloor\log (N / K)\rfloor$. Let the response be $f(i)=K_{1}\left(0 \leqslant K_{1} \leqslant K\right)$. We now proceed, recursively, with

[^0]the two resulting problems, namely, finding all the jumps of $f$ over the sets $\{0,1, \ldots, i\}$ and $\{i, \ldots, N\}$.

One typical application of our problem is the following: Suppose that we need to recognize the exact boundaries of blocks of words whose first letters are identical. Such a problem arises when we wish to find a given vector in a preprocessed set of vectors (see [1-4]).

We now turn to a description of the problem in the form of a two-person zero-sum game. For the fundamental concepts of game theory see Owen [5].

## A Game Representation

The following game is obviously equivalent to our problem of identifying all the jumps of a monotone step-function. Given a sequence of $N$ boxes and a set of $K$ identical balls, an adversary distributes the balls among the boxes and we have to discover how many balls are contained in each box. In other words, an adversary chooses $N$ integers $n_{1}, \ldots, n_{N}\left(n_{i} \geqslant 0, \sum n_{i}=K\right)$ and we may ask for any number $N_{1}\left(1 \leqslant N_{1} \leqslant N-1\right)$ what is the total number of balls contained within the first $N_{1}$ boxes. Our goal is to minimize the number of queries while finding all the numbers $n_{i}$.

We denote by ( $N, K$ ) the game which starts with $N$ boxes and $K$ balls. The different games are recursively related as follows. The first query splits the sequence $(1, \ldots, N)$ into two disjoint sequences of $N_{1}$ and $N_{2}$ boxes ( $N_{1}+N_{2}=N$ ). The adversary responds by splitting the set of $K$ balls into two sets of $K_{1}$ and $K_{2}$ elements ( $K_{1}+K_{2}=K$ ). Thus, after the first query and the adversary's response our game actually reduces to the (independent) playing of two games: ( $N_{1}, K_{1}$ ) and ( $N_{2}, K_{2}$ ). Suppose that at the end of the play we have to pay to the adversary an amount equal to the number of queries. Let $V(N, K)$ denote the value of the resulting game. It follows that $V(N, 0)=0$ and for $K \geqslant 1, V(N, K)=1+\operatorname{Min}_{N_{1}+N_{2}=N_{N}} \operatorname{Max}_{K_{1}+K_{2}=K}$ $\left\{V\left(N_{1}, K_{1}\right)+V\left(N_{2}, K_{2}\right)\right\}$. It is also obvious that for $K \geqslant N, V(N, K)=N$ -1 . The main result of this paper is

Theorem. For $K \geqslant 1$,
(1) $V(N, K)=K\lfloor\log (N / K)\rfloor+\left\lfloor(N-1) 2^{-[\log (N / K)]}\right\rfloor$
$\left(\log X=\operatorname{Max}\left(0, \log _{2} X\right)\right)$.
The proof will be established as follows. Let us denote the right-hand side of (1) by $F(N, K)$. In what follows, Lemma 1 is merely technical. Lemma 2 demonstrates the optimal strategy of the adversary, that is, provides a response scheme that guarantees the value of the game. In other words, Lemma 2 proves that $F(N, K)$ is a lower bound on the value of the game. Lemma 3 describes a strategy of queries which terminates the search within $F(N, K)$ queries against any adversary. In other words, Lemma 3 shows that $F(N, K)$ is also an upper bound.

To simplify notation we henceforth denote
(2) $m=\lfloor\log (N / K)\rfloor$ and define

$$
\delta(X)= \begin{cases}0 & \text { if } X>0 \\ 1 & \text { if } X=0\end{cases}
$$

Lemma 1. Every pair $(N, K)(1 \leqslant K \leqslant N)$ defines a unique triple of integers $(\alpha, \beta, r)$ such that $0<\alpha \leqslant K, \alpha+\beta=K, 0 \leqslant r<2^{m}$ and $N=$ $\alpha 2^{m}+\beta 2^{m+1}+r$. We can express $F(N, K)$ in terms of $\alpha, \beta$, and $r$ by $F(N, K)=(m+1)(\alpha+\beta)+\beta-\delta(r)$.

Proof. It follows that there exists a unique pair of integers $(\beta, r)$ such that $0 \leqslant \beta<K, 0 \leqslant r<2^{m}$, and $N=(K+\beta) 2^{m}+r$. Let $\alpha=K-\beta$. It follows that $\alpha>0$ and $N=\alpha 2^{m}+\beta 2^{m+1}+r$. This implies

$$
\begin{aligned}
F(N, K) & =K m+\left\lfloor(N-1) 2^{-m}\right\rfloor \\
& =K m+\left\lfloor\left(\alpha 2^{m}+\beta 2^{m+1}+r-1\right) 2^{-m}\right\rfloor \\
& =K m+\alpha+2 \beta-\delta(r) \\
& =(m+1)(\alpha+\beta)+\beta-\delta(r)
\end{aligned}
$$

We are now ready to describe a strategy for the adversary which guarantees at least $F(N, K)$ queries. Notice that a strategy for the adversary is well defined if we specify for every $N_{1}\left(1 \leqslant N_{1} \leqslant N-1\right)$ a number $K_{1}\left(0 \leqslant K_{1}\right.$ $\leqslant K$ ) which is the adversary's response to our first query (in the game ( $N, K$ )) as to the number of balls contained in the first $N_{1}$ boxes.

The strategy and the proof of what it guarantees are contained in the following lemma.

Lemma 2. For every $N, K$, and $N_{1}$ such that $1 \leqslant N_{1} \leqslant N-1$, there exists a number $K_{1}$ such that $0 \leqslant K_{1} \leqslant K$ for which

$$
F\left(N_{1}, K_{1}\right)+F\left(N_{2}, K_{2}\right)+1 \geqslant F(N, K)
$$

where $N_{2}=N-N_{1}$ and $K_{2}=K-K_{1}$.
Proof. We distinguish different cases for the definition of an optimal response $K_{1}$.

Case 1. $\quad N_{1}<\alpha 2^{m}$. Let $N_{1}=i 2^{m}+r_{1}$, where $i<\alpha$ and $0 \leqslant r_{1}<2^{m}$.
Subcase 1.1. $r \geqslant r_{1}$ or $\beta>0$. In this case, the adversary chooses $K_{1}=i$. If $i=0$ then $F\left(N_{1}, K_{1}\right)=0$. Otherwise (if $i \geqslant 1$ ),

$$
\left\lfloor\log \frac{N_{1}}{K_{1}}\right\rfloor=\left\lfloor\log \frac{i 2^{m}+r_{1}}{i}\right\rfloor=m
$$

so that

$$
F\left(N_{1}, K_{1}\right)=i m+\left\lfloor\frac{i 2^{m}+r_{1}-1}{2^{m}}\right\rfloor=i(m+1)-\delta\left(r_{1}\right) .
$$

In both cases, $F\left(N_{1}, K_{1}\right) \geqslant i(m+1)-\delta\left(r_{1}\right)$.
By the assumptions of this subcase,

$$
\left\lfloor\log \frac{N_{2}}{K_{2}}\right\rfloor=\left\lfloor\log \frac{(\alpha-i) 2^{m}+\beta 2^{m+1}+r-r_{1}}{\alpha+\beta-i}\right\rfloor=m
$$

and

$$
\begin{aligned}
F\left(N_{2}, K_{2}\right) & =(\alpha+\beta-i) m+\left\lfloor\frac{(\alpha-i) 2^{m}+\beta 2^{m+1}+r-r_{1}-1}{2^{m}}\right\rfloor \\
& =(m+1)(\alpha+\beta-i)+\beta+\left\lfloor\frac{r-r_{1}-1}{2^{m}}\right\rfloor \\
& \geqslant(m+1)(\alpha+\beta-i)+\beta-1 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& F\left(N_{1}, K_{1}\right)+F\left(N_{2}, K_{2}\right)+1 \\
& \quad \geqslant i(m+1)-\delta\left(r_{1}\right)+(m+1)(\alpha+\beta-i)+\beta \\
& \quad \geqslant(m+1)(\alpha+\beta)+\beta-\delta(r) \\
& \quad=F(N, K) \quad \text { (by Lemma } 1) .
\end{aligned}
$$

Subcase 1.2. $\beta=0$ and $r<r_{1}<r+2^{m-1}$. Again, the adversary chooses $K_{1}=i$ and $F\left(N_{1}, K_{1}\right) \geqslant i(m+1)-\delta\left(r_{1}\right)$. If $i=K$ then $F\left(N_{2}, K_{2}\right)=0$; otherwise (if $i<\alpha$ ),

$$
\left\lfloor\log \frac{N_{2}}{K_{2}}\right\rfloor=\left\lfloor\log \frac{(\alpha-i) 2^{m}+r-r_{1}}{\alpha-i}\right\rfloor=m-1
$$

so that

$$
\begin{aligned}
F\left(N_{2}, K_{2}\right) & =(\alpha-i)(m-1)+\left\lfloor\frac{(\alpha-i) 2^{m}+r-r_{1}-1}{2^{m-1}}\right\rfloor \\
& =(\alpha-i)(m-1)+2(\alpha-i)-1
\end{aligned}
$$

In both cases, $F\left(N_{2}, K_{2}\right) \geqslant(\alpha-i)(m+1)-1$. Thus,

$$
\begin{aligned}
& F\left(N_{1}, K_{1}\right)+F\left(N_{2}, K_{2}\right)+1 \\
& \quad \geqslant i(m+1)-\delta\left(r_{1}\right)+(\alpha-i)(m+1) \\
& \quad=(m+1) \alpha-\delta\left(r_{1}\right) \geqslant(m+1) \alpha-\delta(r)=F(N, K) .
\end{aligned}
$$

Subcase 1.3. $\beta=0$ and $r_{1} \geqslant r+2^{m-1}$. Recall that $r_{1}<2^{m}$. In this case the adversary chooses $K_{1}=i+1$. (The definition of $i$ implies $i<\alpha$ so that $K=\alpha+\beta \geqslant i+1$ and $K_{1}=i+1$ is feasible.) Here

$$
\left\lfloor\log \frac{N_{1}}{K_{1}}\right\rfloor=\left\lfloor\log \frac{i 2^{m}+r_{1}}{i+1}\right\rfloor=m-1
$$

so that

$$
\begin{aligned}
F\left(N_{1}, K_{1}\right) & =(i+1)(m-1)+\left\lfloor\frac{i 2^{m}+r_{1}-1}{2^{m-1}}\right\rfloor \\
& =(i+1)(m-1)+2 i+\left\lfloor\frac{r_{1}-1}{2^{m-1}}\right\rfloor
\end{aligned}
$$

Note that if $\delta(r)=0$ then $r>0$ so that $\left[\left(r_{1}-1\right) / 2^{m-1}\right]=1$ and hence in any case $\left\lfloor(r-1) / 2^{m-1} \mid \geqslant 1-\delta(r)\right.$. Note that in the present subcase $N_{1}=i 2^{m}+r_{1}<\alpha 2^{m}+r=N$ so that $i<\alpha$. If $i+1=K$ then $F\left(N_{2}, K_{2}\right)$ $=0$; otherwise $(i+1<\alpha)$,

$$
\left\lfloor\log \frac{N_{2}}{K_{2}}\right\rfloor=\left\lfloor\log \frac{(\alpha-i) 2^{m}+r-r_{1}}{\alpha-i-1}\right\rfloor=m
$$

so that

$$
\begin{aligned}
F\left(N_{2}, K_{2}\right) & =(\alpha-i-1) m+\left\lfloor\frac{(\alpha-i) 2^{m}+r-r_{1}-1}{2^{m}}\right\rfloor \\
& =(\alpha-i-1) m+\alpha-i-1
\end{aligned}
$$

thus,

$$
\begin{aligned}
& F\left(N_{1}, K_{1}\right)+F\left(N_{2}, K_{2}\right)+1 \\
& \quad \geqslant(i+1)(m-1)+2 i+1-\delta(r)+(\alpha-i-1)(m+1)+1 \\
& \quad=\alpha(m+1)-\delta(r) \\
& \quad=F(N, K)
\end{aligned}
$$

Case 2. $N_{1} \geqslant \alpha 2^{m}$. Let $N_{1}=\alpha 2^{m}+i 2^{m+1}+r_{1}$, where $0 \leqslant i \leqslant \beta$ and $0 \leqslant r_{1}<2^{m+1}$.

Subcase 2.1. $\quad r_{1} \leqslant r$ or $\beta=i$. Here, the adversary chooses $K_{1}=\alpha+i$. It follows that

$$
\left\lfloor\log \frac{N_{1}}{K_{1}}\right\rfloor=\left\lfloor\log \frac{\alpha 2^{m}+i 2^{m+1}+r_{1}}{\alpha+i}\right\rfloor=\left\lfloor\log \left(2^{m}+\frac{i 2^{m}+r_{1}}{\alpha+i}\right)\right\rfloor
$$

so that if either $\alpha>1$ or $r_{1}<2^{m}$ then $\left\lfloor\log \left(N_{1} / K_{1}\right)\right\rfloor=m$ and

$$
\begin{aligned}
F\left(N_{1}, K_{1}\right) & =(\alpha+i) m+\left\lfloor\frac{\alpha 2^{m}+i 2^{m+1}+r_{1}-1}{2^{m}}\right\rfloor \\
& =(\alpha+i)(m+1)+i+\left\lfloor\frac{r_{1}-1}{2^{m}}\right\rfloor
\end{aligned}
$$

If $\alpha=1$ and $r_{1} \geqslant 2^{m}$ then $\left\lfloor\log \left(N_{1} / K_{1}\right)\right\rfloor=m+1$ so that

$$
\begin{aligned}
F\left(N_{1}, K_{1}\right) & =(\alpha+i)(m+1)+\left\lfloor\frac{\alpha 2^{m}+i 2^{m+1}+r_{1}-1}{2^{m+1}}\right\rfloor \\
& \geqslant(\alpha+i)(m=1)+i,
\end{aligned}
$$

If $i=\beta$ then $F\left(N_{2}, K_{2}\right)=0$; otherwise (if $i<\beta$ ),

$$
\left\lfloor\log \frac{N_{2}}{K_{2}}\right\rfloor=\left\lfloor\log \frac{(\beta-i) 2^{m+1}+r-r_{1}}{\beta-i}\right\rfloor=m+1
$$

so that

$$
\begin{aligned}
F\left(N_{2}, K_{2}\right) & =(\beta-i)(m+1)+\left\lfloor\frac{(\beta-i) 2^{m+1}+r-r_{1}-1}{2^{m+1}}\right\rfloor \\
& =(\beta-i)(m+1)=\beta-i-\delta\left(r-r_{1}\right) .
\end{aligned}
$$

In both cases $F\left(N_{2}, K_{2}\right) \geqslant(\beta-i)(m+2)-\delta\left(r-r_{1}\right)$. Thus,

$$
\begin{aligned}
F\left(N_{1},\right. & \left.K_{1}\right)+F\left(N_{2}, K_{2}\right)+1 \\
\geqslant & (\alpha+i)(m+1)+i-\delta\left(r_{1}\right)+(\beta-i)(m+2) \\
& +\delta\left(r_{1}\right)-\delta(r)-1+1 \\
= & (\alpha+\beta)(m+1)+\beta-\delta(r) \\
= & F(N, K) .
\end{aligned}
$$

Subcase 2.2. $r<r_{1} \leqslant r+2^{m}$ and $\beta>i$. Again, the adversary chooses $K_{1}=\alpha+i$ and $F\left(N_{1}, K_{1}\right) \geqslant(\alpha+i)(m+1)+i-\delta\left(r_{1}\right)$. Here,

$$
\left\lfloor\log \frac{N_{2}}{K_{2}}\right\rfloor=\left\lfloor\log \frac{(\beta-i) 2^{m+1}+r-r_{1}}{\beta-i}\right\rfloor=m
$$

so that

$$
\begin{aligned}
F\left(N_{2}, K_{2}\right) & =(\beta-i) m+\left\lfloor\frac{(\beta-i) 2^{m+1}+r-r_{1}-1}{2^{m}}\right\rfloor \\
& =(\beta-i) m+2(\beta-i)+\left\lfloor\frac{r-r_{1}-1}{2^{m}}\right\rfloor
\end{aligned}
$$

Since $r_{1}>0, \delta\left(r_{1}\right)=0$ so that

$$
\begin{aligned}
& F\left(N_{1}, K_{1}\right)+F\left(N_{2}, K_{2}\right)+1 \\
& \quad \geqslant(\alpha+i)(m+1)+i+(\beta-i) m+2(\beta-i)+\left\lfloor\frac{r-r_{1}-1}{2^{m}}\right\rfloor+1 \\
& \quad=(\alpha+\beta)(m+1)+\beta+\left\lfloor\frac{r-r_{1}-1}{2^{m}}\right\rfloor+1 \\
& \quad \geqslant(\alpha+\beta)(m+1)+\beta-\delta(r) \\
& \quad=F(N, K)
\end{aligned}
$$

Subcase 2.3. $r_{1}>r+2^{m}$ and $\beta>i$. Here the adversary chooses $K_{1}=\alpha+i+1$. If $K_{2}=\beta-i-1=0$ then $F\left(N_{2}, K_{2}\right)=0$. Otherwise,

$$
\left\lfloor\log \frac{N_{2}}{K_{2}}\right\rfloor=\left\lfloor\log \frac{(\beta-i) 2^{m+1}+r-r_{1}}{\beta-i-1}\right\rfloor=m+1
$$

so that

$$
\begin{aligned}
F\left(N_{2}, K_{2}\right) & =(\beta-i-1)(m+1)+\left\lfloor\frac{(\beta-i) 2^{m+1}+r-r_{1}-1}{2^{m+1}}\right\rfloor \\
& =(\beta-i-1)(m+1)+(\beta-i-1)
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left\lfloor\log \frac{N_{1}}{K_{1}}\right\rfloor & =\left\lfloor\log \frac{\alpha 2^{m}+i 2^{m+1}+r_{1}}{\alpha+i+1}\right\rfloor \\
& =\left\lfloor\log \frac{(\alpha+i+1) 2^{m}+i 2^{m}+r_{1}-2^{m}}{\alpha+i+1}\right\rfloor=m,
\end{aligned}
$$

so that

$$
\begin{aligned}
F\left(N_{1}, K_{1}\right) & =(\alpha+i+1) m+\left\lfloor\frac{\alpha 2^{m}+i 2^{m+1}+r_{1}-1}{2^{m}}\right\rfloor \\
& =(\alpha+i+1) m+(\alpha+2 i+1) \\
& =(\alpha+i+1)(m+1)+i
\end{aligned}
$$

and

$$
\begin{aligned}
1+F\left(N_{1}, K_{1}\right)+F\left(N_{2}, K_{2}\right)= & 1+(\alpha+i+1)(m+1)+i \\
& +(\beta-i-1)(m+1)+\beta-i-1 \\
= & (\alpha+\beta)(m+1)+\beta \\
\geqslant & (\alpha+\beta)(m+1)+\beta-\delta(r) \\
= & F(N, K) .
\end{aligned}
$$

This completes the proof that the adversary can force at least $F(N, K)$ queries. We shall now prove that $F(N, K)$ queries always suffice. Essentially, an optimal query at the state of $N$ cells and $K$ balls is $N_{1}=2^{m}(m$ $=\lfloor\log (N / K)\rfloor)$.

Lemma 3. For every $N$ and $K \geqslant 2$, for all possible responses $K_{1}\left(0 \leqslant K_{1}\right.$ $\leqslant K), F\left(2^{m}, K_{1}\right)+F\left(N-2^{m}, K-K_{1}\right)+1 \leqslant F(N, K)$.

Proof. (a) We first prove the lemma for $K_{1}=0$.
Case (a1). $\quad N-2^{m} \geqslant K 2^{m}$. In this case $\left\lfloor\log \left(N-2^{m}\right) / K\right\rfloor=m$ and

$$
\begin{aligned}
& F\left(2^{m}, 0\right)+F\left(N-2^{m}, K\right)+1 \\
& \quad=0+K m+\left\lfloor\left(N-2^{m}-1\right) / 2^{m}\right\rfloor+1 \\
& \quad=K m+\left\lfloor(N-1) / 2^{m}\right\rfloor=F(N, K)
\end{aligned}
$$

Case (a2). $\quad N-2^{m}<K 2^{m}$. Since $N \geqslant K 2^{m}$ it follows that $N-2^{m} \geqslant$ $(K-1) 2^{m}<K 2^{m-1}$. Hence, in this case, $\left\lfloor\log \left(N-2^{m}\right) / K\right\rfloor=m-1$. Since we assume $N-2^{m}<K 2^{m}$ then $K>N / 2^{m}-1$ and thus $K+1-$ ( $N-1$ ) $/ 2^{m}>0$. Therefore,

$$
\begin{aligned}
& F\left(2^{m}, 0\right)+F\left(N-2^{m}, K\right)+1 \\
& \quad=K(m-1)+\left\lfloor\frac{N-2^{m}-1}{2^{m-1}}\right\rfloor+1 \\
& \quad=\left\lfloor\left(K m+(N-1) / 2^{m}\right)-\left(K+1-(N-1) / 2^{m}\right)\right\rfloor \\
& \quad \leqslant\left\lfloor K m+(N-1) / 2^{m}\right\rfloor=F(N, K) .
\end{aligned}
$$

(b) Second, we prove the lemma for $K_{1}=1$. First, $F\left(2^{m}, 1\right)=m$. Also, since $m=\lfloor\log (N / K)\rfloor$, it follows that $2^{m} \leqslant N / K<2^{m+1}$, so that

$$
(K-1) 2^{m} \leqslant N-2^{m}<(K-1) 2^{m+1}+2^{m}
$$

Case (b1). $\quad N-2^{m}<(K-1) 2^{m+1}$.
In this case $\left\lfloor\log \left(N-2^{m}\right) /(K-1)\right\rfloor=m$ so that

$$
\begin{aligned}
& F\left(2^{m}, 1\right)+F\left(N-2^{m}, K-1\right)+1 \\
& \quad=m+(K-1) m+\left\lfloor\frac{N-2^{m}-1}{2^{m}}\right\rfloor+1 \\
& \quad=K m+\left\lfloor(N-1) / 2^{m}\right\rfloor=F(N, K) .
\end{aligned}
$$

Case (b2). $\quad N-2^{m} \geqslant(K-1) 2^{m+1}$.
In this case $\left\lfloor\log \left(N-2^{m}\right) /(K-1)\right\rfloor=m+1$ and

$$
\begin{aligned}
F\left(2^{m}\right. & , 1)+F\left(N-2^{m}, K-1\right)+1 \\
& =m+(K-1)(m+1)+\left\lfloor\left(N-2^{m}-1\right) / 2^{m+1}\right\rfloor+1 \\
& =K m+K+\left\lfloor\left(N-2^{m}-1\right) / 2^{m+1}\right\rfloor \\
& =K m+\left\lfloor\frac{2^{m+1} K+N-2^{m}-1}{2^{m+1}}\right\rfloor \\
& \leqslant K m+\left\lfloor\frac{\left(N+2^{m}\right)+N-2^{m}-1}{2^{m+1}}\right\rfloor \\
& =K m+\left\lfloor(2 N-1) / 2^{m+1}\right\rfloor \\
& =K m+\left\lfloor(2 N-2) / 2^{m+1}\right\rfloor \\
& =K m+\left\lfloor(N-1) / 2^{m}\right\rfloor=F(N, K)
\end{aligned}
$$

where the inequality follows from our assumption that $K 2^{m+1} \leqslant N+2^{m}$.
(c) We now complete the proof assuming that $K_{1} \geqslant 2$. Let $K_{1}=2^{k_{1}}+$ $r_{1}$, where $0 \leqslant r_{1}<2^{k_{1}}$. We note that for $K_{1} \geqslant 1$,

$$
\left\lfloor\log \frac{2^{m}}{K_{1}}\right\rfloor=m-k_{1}+\delta\left(r_{1}\right)-1,
$$

so that

$$
\begin{aligned}
F\left(2^{m}, K_{1}\right) & =K_{1}\left(m-k_{1}+\delta\left(r_{1}\right)-1\right)+\left\lfloor\frac{2^{m}-1}{2^{m}-k_{1}+\delta\left(r_{1}\right)-1}\right\rfloor \\
& =K_{1}\left(m-k_{1}-1\right)+2^{k_{1}+1}-1
\end{aligned}
$$

Let $K_{2}=K-K_{1}$ and $m_{2}=\left\lfloor\log \left(N-2^{m}\right) / K_{2}\right\rfloor$. Then

$$
\begin{aligned}
a & \equiv 1+F\left(2^{m}, K_{1}\right)+F\left(N-2^{m}, K_{2}\right) \\
& =K_{1}\left(m-k_{1}-1\right)+2^{k_{1}+1}+K_{2} m_{2}+\left\lfloor\frac{N-2^{m}-1}{2^{m_{2}}}\right\rfloor .
\end{aligned}
$$

Since for $K_{1} \geqslant 2, K_{1}\left(k_{1}+1\right) \geqslant 2^{k_{1}}\left(k_{1}+1\right) \geqslant 2^{k_{1}+1}$, it follows that

$$
\begin{aligned}
a & \leqslant K_{1} m+K_{2} m_{2}+\left\lfloor\frac{N-2^{m}-1}{2^{m_{2}}}\right\rfloor \\
& =K m+K_{2}\left(m_{2}-m\right)+\left\lfloor\frac{N-2^{m}-1}{2^{m_{2}}}\right\rfloor \\
& \leqslant K m+K_{2}\left(2^{m_{2}-m}-1\right)+\left\lfloor\frac{N-2^{m}-1}{2^{m_{2}}}\right\rfloor .
\end{aligned}
$$

It follows from the definition of $m_{2}$ that $2^{m_{2}} \leqslant\left(N-2^{m}\right) / K_{2}$ and thus $K_{2} \leqslant\left(N-2^{m}\right) / 2^{m_{2}}$. Therefore

$$
\begin{aligned}
a & \leqslant K m+\frac{N-2^{m}}{2^{m_{2}}} \cdot\left(2^{m_{2}-m}-1\right)+\left\lfloor\frac{N-2^{m}-1}{2^{m_{2}}}\right\rfloor \\
& =K m+\frac{N}{2^{m}}-\frac{N-2^{m}}{2^{m_{2}}}-1+\left\lfloor\frac{N-2^{m}-1}{2^{m_{2}}}\right\rfloor
\end{aligned}
$$

Since

$$
\frac{N}{2^{m}}-1 \leqslant\left\lfloor\frac{N-1}{2^{m}}\right\rfloor \quad \text { and } \quad\left\lfloor\frac{N-2^{m}-1}{2^{m_{2}}}\right\rfloor-\frac{N-2^{m}}{2^{m_{2}}} \leqslant 0
$$

it follows that $a \leqslant K m+\left\lfloor(N-1) / 2^{m}\right\rfloor=F(N, K)$. This completes the proof that $F(N, K)$ queries suffice, so that $V(N, K)=F(N, K)$.

## References

1. J. L. Bentley and J. B. Saxe, Algorithms on vector sets, SIGACT News 11 (1979), 36-39.
2. R. Hassin and N. Megiddo, "Searching a Presorted Set of Vectors," Department of Statistics, Tel Aviv University, June 1980.
3. D. S. Hirschberg, On the complexity of searching a set of vectors, SIAM J. Comput. 9 (1980), 126-129.
4. S. Rao Kosaraju, On a multidimensional search problem, SIGACT News 11 (1979).
5. G. OWEN, "Game Theory," Saunders, Philadelphia, 1968.

[^0]:    * Current address: IBM Research Laboratory, San Jose, Calif. 95193. The work of this author was supported in part by the National Science Foundation Grants ECS-8121741 and ECS-8218181.

