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Abstract

Abstract� The subject of this paper is �nd�
ing small sample spaces for joint distributions of
n discrete random variables� Such distributions
are often only required to obey a certain lim�
ited set of constraints of the form Pr�E� � ��
We show that the problem of deciding whether
there exists any distribution satisfying a given
set of constraints is NP�hard� However� if the
constraints are consistent� then there exists a dis�
tribution satisfying them which is supported by
a 	small
 sample space �one whose cardinality is
equal to the number of constraints�� For the im�
portant case of independence constraints� where
the constraints have a certain form and are con�
sistent with a joint distribution of n independent
random variables� a small sample space can be
constructed in polynomial time� This last result
is also useful for de�randomizing algorithms� We
demonstrate this technique by an application to
the problem of �nding large independent sets in
sparse hypergraphs�
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�� Introduction

The probabilistic method of proving existence of
combinatorial objects has been very successful
�see� for example� ��
� ����� The underlying idea
is as follows� Consider a �nite set � whose ele�
ments are classi�ed as 	good
 and 	bad
� Sup�
pose we wish to prove existence of at least one
	good
 element within �� The proof proceeds
by constructing a probability distribution f over
� and showing that the probability of picking a
good element is positive� Probabilistic proofs of�
ten yield randomized algorithms for constructing
a good element� In particular� many randomized
algorithms are a special case of this technique�
where the 	good
 elements are those sequences
of random bits leading to a correct answer�

It is often desirable to replace the probabilis�
tic construction by a deterministic one� or to
de�randomize an algorithm� Obviously� this can
be done by completely enumerating the sample
space � until a good element is found� Unfortu�
nately� the sample space is typically exponential
in terms of the size of the problem� for example�
the obvious sample space of n independent coin
tosses contains �n points�

More precisely� let X�� � � � � Xn be discrete ran�
dom variables with a �nite range� For simplic�
ity� we assume that X�� � � � � Xn all have the same
range f�� � � � � r��g �although not necessarily the
same distribution�� Our constructions can easily
be extended to variables with di�erent ranges�
The probability space associated with these vari�
ables is � � f�� � � � � r � �gn� A distribution is a
map f � � � ��� �� such that

P
x�� f�x� � ��
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We de�ne the set S�f� � fx � � j f�x� � �g to
be the essential sample space of f �

Given a distribution f involved in a proba�
bilistic proof� only the points in S�f� need to be
considered in our search for a good point in ��
Moreover� if it easy to recognize whether a point
x in S�f� is good for a particular input� then
it su�ces to search any subset of S�f� which
is guaranteed to contain a good point for each
possible input� Adleman ��� shows that for any
distribution f supporting an algorithm in RP�
there exists a space S � S�f� of polynomial size
that contains a good point for every possible in�
put� The proof of this fact is not constructive�
and therefore cannot be used for de�randomizing
algorithms�

A common technique for constructing a
smaller space to search is to construct a di�erent
distribution with a 	small
 �polynomial� essen�
tial sample space that can be searched exhaus�
tively� as outlined above� The new distribution
must agree with the original one su�ciently so
that the correctness proof of the algorithm re�
mains valid� The correctness proof often relies on
certain assumptions about the distribution� that
is� the distribution is assumed to satisfy certain
constraints� A constraint is an equality of the
form

Pr�Q� �
X
x�Q

f�x� � � �

where Q � � is an event and � � � � �� If
the randomness requirements of an algorithm
are completely describeable as a set of con�
straints� and the new distribution satis�es all of
them� then the algorithm remains valid under
the new distribution� Moreover� no new analysis
is needed� In other cases� the new distribution
may only approximately satisfy the constraints�
and it is necessary to check that the analysis still
holds�

In almost all cases� the original distribution is
constructed based on independent random vari�
ables X�� � � � � Xn� Thus� all the constraints are
satis�ed by such a distribution� In many cases�
however� full independence is not necessary� In
particular� quite often the constraints are satis�
�ed by d�wise independent distributions for some

small d� Most of the previous work has focused
on constructing approximations to such distribu�
tions�

Jo�e ��� �rst demonstrated a construction of
a joint distribution of n d�wise independent ran�
dom variables with an essential sample space of
cardinality O�nd�� Luby ���� and Alon� Babai�
and Itai ��� generalize Jo�e�s construction to
non�uniform distributions� In many cases� these
constructions only approximately satisfy the re�
quired constraints� that is� the distributions
are d�wise independent� but the probabilities
Pr�Xi � b� may di�er from the corresponding
probabilities in the original distribution� This
construction results in a sample space of polyno�
mial size for any �xed d� It is shown in ��� that
the cardinality of a sample space of a joint dis�
tribution of n d�wise independent random bits�

is ��n�d����� Thus� these constructions are close
to optimal in this case� Moreover� sample spaces
of polynomial size exist for d�wise independent
distributions only if d is �xed�

Naor and Naor ���� showed how to circumvent
this lower bound by observing that ��independent
�or nearly independent� distributions often suf�
�ce� In other words� it su�ces that a constraint�
stating that a particular event must occur as
if the variables were independent� be satis�ed
to within �� We point out that this is also a
form of approximation� as de�ned above� Naor
and Naor demonstrate a construction of sam�
ple spaces for ��independent distributions over
random bits� whose size is polynomial in n and
in ���� These constructions are polynomial for
� � ��poly�n�� for such values of �� the ��
independence constraints are meaningful for sub�
sets of size up to� O�logn�� Therefore� we obtain
a polynomial�size sample space which is nearly
d�wise independent for d � O�logn� �as com�

�We use the term random bits to denote binary valued
uniformly distributed random variables�

�Consider a distribution over random bits� and some
subset of k of the variables� The �correct� probability of
any event prescribing values to all the variables in this
subset is 	�
k � For k � O�log n�� this value is O����
So for larger k� all such constraints are essentially sub�
sumed by constraints corresponding to smaller subsets of
the variables�
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pared to the lower bound of ��nlogn� for truly
d�wise independent sample spaces�� Simpli�ed
constructions with similar properties were pro�
vided by Alon et� al �
�� Azar� Motwani and Naor
��� later generalized these techniques to uniform
distributions over non�binary random variables�
Finally� Even et� al ��� presented constructions
for arbitrary nearly d�wise independent distribu�
tions over non�binary random variables�

A di�erent type of technique was introduced
by Berger and Rompel ��� and by Motwani� Naor
and Naor ����� This technique can be used to de�
randomize certain RNC algorithms where d� the
degree of independence required� is polylogarith�
mic in n� The technique works� however� only
for certain types of problems� and does not seem
to generalize to larger degrees of independence�

Schulman ���� took a di�erent approach to�
wards the construction of sample spaces which
require O�logn��wise independence� He observed
that in many cases� only certain d�neighborhoods
�sets of d variables� must be independent� Schul�
man constructs sample spaces satisfying this
property whose size is �d times the greatest
number of neighborhoods to which any vari�
able belongs� In particular� for polynomially
many neighborhoods each of size O�logn�� this
construction results in a polynomial�size sam�
ple space� His construction works only for ran�
dom bits� and for a maximum neighborhood size
O�logn��

In order to improve on these results� we view
the problem from a somewhat di�erent perspec�
tive� Instead of placing upper bounds on the de�
gree of independence required by the algorithm�
we examine the set of precise constraints that
are required in order for the algorithm to work�
We then construct a distribution satisfying these
constraints exactly� In many cases� this approach
yields a much smaller sample space� as we explain
below�

We begin by showing a connection between the
number of constraints and the size of the result�
ing sample space� We show in Section � that
for any set C of such constraints� if C is consis�
tent� i�e�� C is satis�ed by some distribution f �

then there exists a distribution f � also satisfying
C such that jS�f ��j � jCj� That is� there exists a
distribution for which the cardinality of the es�
sential sample space is not more than the number
of constraints� As before� if the constraints rep�
resent all the assumptions about f made by a
proof� the proof will also hold for f �� If S�f �� is
su�ciently small� we can exhaustively enumer�
ate it� resulting in a deterministic construction�
The proof of the existence theorem includes a
technique for constructing f �� however� the tech�
nique requires exponential time and is thus not
useful� We justify the exponential behavior of
this algorithm by showing that even for a set C
of very simple constraints� the problem of recog�
nizing whether there exists a distribution f sat�
isfying C is NP�complete�

Our goal is to de�ne a type of constraints
for which a small sample space can be con�
structed directly from the constraints in polyno�
mial time� As we observed� the distributions that
are most often used in probabilistic proofs are
ones where X�� � � � � Xn are independent random
variables� Such a distribution is determined en�
tirely by the probabilities fpib � Pr�Xi � b� � i �
�� � � � � n� b � �� � � � � r� �g� In the course of such
a probabilistic proof� the distribution is assumed
to satisfy various constraints� which often has a
form as follows� An independence constraint is
one which forces the probability of a certain as�
signment of values to some subset of the variables
to be as if the variables are independent� That is�
for a �xed set of pib�s� fi�� � � � � ikg � f�� � � � � ng�
and b�� � � � � bk � f�� � � � � r� �g� the constraint

Pr�fXi� � b� � � � � � Xik � bkg� �
kY

j��

pijbj

is the independence constraint corresponding to
the event Q � fXi� � b� � � � � � Xik � bkg� and is
denoted by I�Q�� Obviously� if X�� � � � � Xn are
independent random variables then their joint
distribution satis�es all the independence con�
straints� Note that d�wise independence can eas�
ily be represented in terms of constraints of this
type� the variables X�� � � � � Xn are d�wise inde�
pendent if and only if all the independence con�
straints I�fXi� � b�� � � � � Xid � bdg� are satis�ed�
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where i�� � � � � id � f�� � � � � ng are distinct indices
and b�� � � � � bd � f�� � � � � r � �g� In other words�
X�� � � � � Xn are d�wise independent if and only if
every event de�ned over a neighborhood of size d
has the same probability as if the variables were
independent�

Let C be a set of independence constraints de�
�ned using a �xed set of pib�s as above� In Section

 we present the main result of this paper� which
shows how to construct in polynomial time a dis�
tribution satisfying C with an essential sample
space of cardinality jCj� We note that the distri�
bution produced by our technique is typically not
uniform� Therefore� we cannot in general use our
construction to reduce the number of uniformly
distributed random bits required to generate the
desired distribution�

Our construction has a number of advantages�
First� the distributions generated always satisfy
the constraints precisely� This fact allows one
to use precisely the same correctness proof for
the new distribution as for the old one� without
the need for a new analysis� Moreover� the size
of the sample space in all the nearly indepen�
dent constructions �
� �� �� ��� depends polyno�
mially on ��� �where � is the approximation fac�
tor�� Our precise construction does not have this
term� Previously� precise distributions were un�
available for many interesting distributions� In
particular� our approach can construct sample
spaces of cardinality O��rn�d� for any set of n
r�valued� d�wise independent random variables�
For �xed d� this construction requires polynomial
time� It has been argued ��� that probability dis�
tributions over non�uniform non�binary random
variables are important� To our knowledge� this
is the �rst technique which allows the construc�
tion of exact distributions of d�wise independent
variables with arbitrary pib�s�

The main advantage of our construction is that
the size of the sample space depends only on
the number of constraints actually used� Except
for Schulman�s approach ����� all other sample
spaces are limited by requiring that all neigh�
borhoods of a particular size be independent �or
nearly independent�� As Schulman points out� in
many cases only certain neighborhoods are ever

relevant� thus enabling a further reduction in the
size of the sample space� However� Schulman�s
approach still requires the sample space to sat�
isfy all the independence constraints associated
with the relevant neighborhoods� This restricts
his construction to neighborhoods of maximal
size� O�logn�� With our construction we can
deal with neighborhoods of any size� as long as
the number of relevant constraints is limited�

For example� an algorithm may randomly
choose edges in a graph by associating a binary
random variable with each edge� An event whose
probability may be of interest is 	no edge ad�
jacent to a node v is chosen
� Using the other
approaches �even Schulman�s�� the neighborhood
size would be the maximum degree � of a node in
the graph� the relevant sample space would then
grow as ��� Using our approach� there is only
one event per node� resulting in a sample space
of size n �the number of nodes in the graph��

In this example� the constraints depend on the
edge structure of the input graph� In general� our
construction depends on the speci�c constraints
associated with a particular instance of the in�
put� Therefore� unlike most sample space con�
structions� our construction cannot be prepared
in advance� This property� combined with the
fact that our algorithm is sequential� means that
it cannot be used to convert RNC algorithms into
NC ones�

In Section � we show an example of how our
technique can be applied to de�randomization of
algorithms� We discuss the problem of �nding
a large independent set in a d�uniform hyper�
graph� The underlying randomized algorithm�
described in ���� was de�randomized in the same
paper for �xed values of d� It was later de�
randomized also for d � O�polylogn� in ��� and
����� We show how this algorithm can be de�
randomized for any d� We point out that a se�
quential deterministic polynomial time solution
for the independent set problem in hypergraphs
exists ���� However� the de�randomization of this
algorithm using our technique serves to demon�
strate its unique power�

�Moreover� as we have observed� Schulman�s construc�
tion works only for random bits�
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�� Existence of small essential sample
spaces

Let C � f�Pr�Qk� � �k�gk�������c be a set of con�
straints such that �Pr��� � �� � C�

De�nition ���� A set C of constraints is consis�
tent if there exists some distribution f satisfying
all the members of C�

De�nition ���� A distribution f that satis�es
C is said to be manageable if jS�f�j � c � jCj�

Theorem ���� If C is consistent� then C is sat�
is�ed by a manageable distribution�

Proof� Let C be as above� and recall that
c � jCj� We describe a distribution f satis�
fying C as a non�negative solution to a set of
linear equations� Let � � IRc denote the vector
��k�k�������c� Recall that � � f�� � � � � r � �gn�
let m � j�j � rn� and let x�� � � � �xm denote
the points of �� The variable v� will repre�
sent the probability f�x��� Let v be the vector
�v����������m� A constraint Pr�Qk� � �k can be
represented as the linear equation

mX
���

ak�v� � �k �

where

ak� �

�
� if x� � Qk

� otherwise �

Thus� the constraints in C can be represented
by a systemAv � � of linear equations �where
A is the matrix �ak��k�� Since C is assumed to
be consistent� there is a distribution f satis�
fying C� Therefore� for v� � f�x��� the vec�
tor v is a nonnegative solution to this system�
A classical theorem in linear programming as�
serts that under these conditions� there exists
a basic solution to this system� That is� there
exists a vector v� � � such that Av� � � and
the columns of A� A�j � such that v�j � �g are
linearly independent� Let f � be the distribu�
tion corresponding to this solution vector v��
Since the number of rows in the matrix is c�

the number of linearly independent columns is
also at most c� Therefore� the number of posi�
tive indices in v�� which is precisely jS�f ��j� is
at most c � jCj�

This theorem can be proven constructively
based on the following standard algorithm� which
begins with a distribution vector v� and removes
points from the sample space one at a time� re�
sulting in a manageable distribution vector v��
Througout the algorithm� let S�v� denote the set
of indices fj � vj � �g� Intuitively� these indices
represent points in the essential sample space of
the distribution represented by v�

Algorithm ����
While fA�j � j � S�v�g are linearly dependent�

�� Find a nonzero vector u � Rm such that

uj � � for every j �� S�v�� and

Au � ��

�� Find some t � IR such that

v � tu � �� and

vj � tuj � � for some j � S�v��

�� Replace v � v � tu�

Alternatively� the manageable distribution can
be computed directly from the constraints using
a linear programming algorithm which computes
basic solutions� Unfortunately� since Algorithm
��� handles the variables one at a time� it runs in
time which is polynomial in m � rn� Similarly� a
linear programming algorithm runs in time poly�
nomial in m� Thus� both these techniques are
exponential in n�

The exponential behavior of these algorithms
can be justi�ed by considering the problem of
deciding whether a given set of constraints C is
consistent� that is� does there exist a distribution
f satisfying the constraints in C� For arbitrary
constraints� the representation of the events can
be very long� causing the input size to be unrea�
sonably large� We therefore restrict attention to
simple constraints�
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De�nition ���� We say that a constraint
Pr�Q� � � is k�simple if there exist i�� � � � � ik �
f�� � � � � ng and b�� � � � � bk � f�� � � � � r � �g such
that Q � f�Xi� � b��� � � � � �Xik � bk�g� A con�
straint is simple if it is k�simple for some k�

Note that the natural representation of the event
as a simple constraint requires space which is at
most linear in n� whereas the number of points in
the event is often exponential in n �for example�
a ��simple constraint contains rn�� points�� We
assume throughout that simple constraints are
represented compactly �in linear space��

It turns out that the consistency problem is
NP�hard� even when restricted to ��simple con�
straints�

Proposition ���� The problem of recognizing
whether a set C of ��simple constraints is con�
sistent is NP�hard�

Proof� The proof is based on a simple reduc�
tion from the 
�colorability problem� See the
full paper for details�

In order to prove a matching upper bound� we
again need to make a simple assumption about
the representation of the input�

De�nition ��	� An event Q is said to be poly�
nomially checkable if membership of any point
x � � in Q can be checked in time polynomial
in n�

Proposition ��
� If all the constraints in C
pertain to polynomially checkable events� then
the consistency of C can be decided in non�
deterministic polynomial time �in terms of jCj
and n��

Proof� The algorithm guesses a subset T � �
of cardinality jCj� It then constructs in poly�
nomial time a system of equations correspond�
ing to the constraints in C restricted to the
variables in T �the other variables are set to
��� Given the initial guess� this system can
be constructed in polynomial time� since for

each constraint and each point in T it takes
polynomial time to check whether the point
appears in the constraint� The algorithm then
attempts to �nd a nonnegative solution to this
system� Such a solution exists if and only if
there exists a manageable distribution whose
essential sample space is �contained in� T � By
Theorem ��
� we know that a set of constraints
is consistent if and only if it is satis�ed by a
manageable distribution� that is� a distribu�
tion over some sample space T of cardinality
not greater than jCj� Therefore� C is consistent
if and only if one of these subsystems has a
nonnegative solution�

Since simple constraints are always polynomi�
ally checkable �using the appropriate representa�
tion�� we obtain the following theorem�

Theorem ���� For an arbitrary set C of simple
constraints� the problem of recognizing the con�
sistency of C is NP�complete�

�� Independence constraints

An important special case was already discussed
in the introduction� Suppose all the members
of C are independence constraints arising from a
known �xed set of values

fPr�Xi � b� � pib � i � �� � � � � n� b � �� � � � � r��g �

such that
Pr��

b�	 pib � � for all i� and pib � � for
all i� b� In this case we can construct a distri�
bution satisfying C over a sample space of cardi�
nality c � jCj� the construction is done in time
polynomial in c� r and n�

We �rst de�ne the concept of a projected event�
Consider an event

Q � f�Xi� � b��� � � � � �Xik � bk�g �

We assume without loss of generality that i� �
i� � � � � � ik� that is� the variables in the con�
straints are listed in order of increasing index �we
make this assumption for every event mentioned
in this section�� Let � �� � � � n� be an integer
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and denote by q � q��� the maximal index such
that iq � �� The ��projection of Q is de�ned as

���Q� � fXi� � b� � � � � � Xik � bqg �

Intuitively� the ��projection of a constraint is
its restriction to the variables X�� � � � � X�� For
example� if Q is fX� � �� X
 � �� X� � �g�
then ���Q� � fX� � �g and �
�Q� � fX� �
�� X
 � �g� Analogously� we call I����Q�� the
��projection of the constraint I�Q�� Finally� for
a set of constraints C� ���C� is the set of the ��
projections of the constraints in C�

We now de�ne recursively a sequence of dis�
tributions f�� � � � � fn� such that for each � �� �
�� � � � � n�� the following conditions hold�

�i� f� is a distribution on f�� � � � � r� �g��

�ii� f� satis�es ���C��

�iii� jS�f��j � c�

The distribution fn is clearly the desired one�

We begin by de�ning for all b � f�� � � � � r� �g

f���b�� � p�b �

This clearly satis�es all the requirements�

Now� assume that f��� �for � � �� satis�es the
above requirements� and de�ne an intermediate
distribution g� by�

g��x�� � � � � x���� b� � f����x�� � � � � x���� 	 p�b ���

for b � �� � � � � r� ��

Lemma ���� If f��� satis�es �����C�� then g�
satis�es ���C��

Proof� Suppose I�Q� is an arbitrary con�
straint in C� where Q � fXi� � b� � � � � � Xik �
bkg� For simplicity� denote Qj � �j�Q� �j �
�� � � � � n�� Let r be the maximal index such
that ir � �� �� By the assumption�

f����Q���� �
rY

j��

pijbj �

We distinguish two cases�
Case I� Q mentions the variable X�� In this
case� ir�� � �� and

Q� � fXi� � b�� � � � � Xir � br� Xir�� � br��g

� f�x�� � � � � x���� br��� � �x�� � � � � x���� � Q��g �

Therefore�

g��Q�� �
X


x������x�����Q���

g��x�� � � � � x���� br���

�
X


x������x�����Q���

f����x�� � � � � x���� 	 p�br��

� f����Q���� 	 p�br��

�
rY

j��

pijbj 	 p�br�� ��
r��Y
j��

pijbj �

Thus� g� satis�es the constraint I�Q���
Case II� Q does not mention the variable X��
In this case�

Q� � fXi� � b�� � � � � Xir � brg

� f�x�� � � � � x�� � �x�� � � � � x���� � Q����
x� � f�� � � � � r� �gg �

Therefore�

g��Q�� �
X

b�f	�����r��g

X

x������x�����Q���

g��x�� � � � � x���� b�

�
X

b�f	�����r��g

X

x������x�����Q���

f����x�� � � � � x����p�b

�
X

b�f	�����r��g
p�bf����Q����

� f����Q���� �
rY

j��

pijbj �

Again� g� satis�es the constraint I�Q���

If jS�f����j � c� then jS�g��j � rc� since each
point with positive probability in S�f���� yields
at most r points with positive probabilities in
S�g��� Thus� g� satis�es requirements �i� and �ii��
but may not satisfy requirement �iii�� But g� is
a nonnegative solution to the system of linear
equations de�ned by the ��projections of the con�
straints in C� Therefore� we may use Algorithm
��� to reduce the cardinality of the essential sam�
ple space to c� Let f� be the resulting distribu�
tion� It clearly satis�es all three requirements�
We thus obtain the following theorem�
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Theorem ���� Given a set of independence
constraints� we can construct a manageable dis�
tribution f satisfying C in time O�rnc���

Proof� The distribution fn constructed as
above is clearly a manageable distribution sat�
isfying C� The construction takes n � � iter�
ations� Each iteration requires at most O�rc�
operations to create g� from f���� and at most
O�rc�� arithmetic operations for running Al�
gorithm ��� to reduce g� to f�� Therefore� the
entire algorithm runs in O�rnc�� operations�
Note that the number of operations does not
depend on the magnitudes of the numbers in
the input�

Our algorithm can easily be extended to op�
erate on random variables with ranges of di�er�
ent sizes� Let ri be the number of values in the
range of Xi� The sample space of g� will consist
of vectors �x�� � � � � x���� b� where �x�� � � � � x���� �
S�f���� and b � f�� � � � � r�g� Then

jS�g��j � r�jCj �

The proof goes through as before� but the num�
ber of operations in iteration i is O�ric

��� The
total number of operations is O��

Pn
i�� ri�c

�� �
O�rnc��� where r � maxfr�� � � � � rng� The cardi�
nality of the resulting sample space is still jCj�

The assumption that the pib�s are known is im�
portant in view of the following theorem� which
states that if this is not the case� it is NP�hard
to verify whether all of a given set of constraints
are independence constraints� This result holds
even for binary valued random variables �r � ���

Theorem ���� It is NP�hard to recognize
whether for a given set of simple constraints C
there exists a set P � fpi	� pi� � ��� �� � i �
�� � � � � n� pi	� pi� � �g such that all the members
of C are independence constraints relative to P �

Proof� We prove the theorem by reduction
from SAT� A CNF formula � is satis�able i�
its negation 
� is not valid� Moreover� 
� is
a boolean formula in disjunctive normal form
�DNF�� whose length is linear in the length of

� �using de Morgan�s laws�� We can there�
fore use a reduction to the non�validity of a
DNF formula� Given a DNF formula � in the
variables u�� � � � � un� we build a set C as fol�
lows� Let 	 � y� � 	 	 	 � yk be a disjunct in
�� where yj � fuij �  uijg �j � �� � � � � k�� and
i� � 	 	 	 � ik� We associate with 	 a con�
straint

Pr�Q�� � � �

where

Q� � f�Xi� � b��� � � � � �Xik � bk�g

bj �

�
� if yj � uij
� if yj �  uij �

Consider an assignment 
 of truth values to
the variables u�� � � � � un� and a set P as in the
statement of the theorem� We say that 
 and P
correspond if for all i� pi	 � � i� 
�ui� � false�
It is easy to �nd for any truth assignment 
 a
corresponding set P � and vice versa� Clearly�
if 
 and 	 correspond� the constraint associ�
ated with Q� is an independence constraint
with respect to P if and only if 
�	� � false�
Similarly� all the constraints in C are indepen�
dence constraints with respect to P if and only
if 
��� � false� Therefore� � is not valid i� C

is a set of independence constraints for some
set P �

It is not clear that the problem of Theorem 
�

is in NP� The set P relative to which a given C is
a set of independence constraints might contain
irrational numbers even if all the input numbers
are rational�

Example ���� Consider the problem of con�
structing a distribution over the binary�valued
variables X�� X�� and X� satisfying

Pr�fX� � �� X� � �g� � �
�

Pr�fX� � �� X� � �g� � �
�

Pr�fX� � �� X� � �g� � �
� �

These are independence constraints only with re�
spect to p�� � p�� � p�� �

�p
�
�

Page �



Nevertheless� in most practical cases� the pib�s are
part of the speci�cation of the algorithm� Thus�
it is usually reasonalbe to assume that they are
known�

�� De
randomizing algorithms

In this section we demonstrate how the technique
of Section 
 can be used to de�randomize algo�
rithms� We present three progressively improv�
ing ways in which the technique can be applied�
For the sake of simplicity and for ease of compar�
ison� we will base our analysis on a single prob�
lem� This is the problem of �nding large indepen�
dent sets in sparse hypergraphs� The problem
description and the randomized algorithm for its
solution are taken from Alon� Babai� and Itai ����
We point out that a deterministic polynomial�
time algorithm for this problem is known ����

A d�uniform hypergraph is a pair H � �V� E�
where V � fv�� � � � � vng is a set of vertices and
E � fE�� � � � � Emg is a collection of subsets of V �
each of cardinality d� which are called edges� A
subset U � V is said to be independent if it con�
tains no edge� For simplicity� we restrict atten�
tion to d�uniform hypergraphs� a similar analysis
goes through in the general case�

Consider the following randomized algorithm
�k will be de�ned later��

Algorithm ����

�� Construct a random subset R of V �
For each vertex vi � V �

put vi in R with probability p � 
k�n�

�� Modify R into an independent set U �

For each edge Ej � E such that Ej � R�

remove from R one arbitrary vertex
vi � Ej �

Proposition ��� �Alon� Babai� Itai� �
If H � �V� E� is a d�uniform hypergraph
with n vertices and m edges� then for k �

�������nd�m���
d��� Algorithm ��� �nds an in�
dependent set of cardinality exceeding k with
probability greater than �

� �
�
k �

Proof� For each i� let Xi be the random vari�
able that equals � if vi � R and � otherwise�
For each edge Ej � E � let Yj the random vari�
able that equals � if Ej � R and � otherwise�
The cardinality of R is jRj �

Pn
i��Xi � X � so

E�X� � np � 
k�

� If the Xi�s are pairwise independent� then
the variance of X is

���X� �
nX
i��

���Xi� � np���p� � np � 
k �

���
Thus� using Chebychev�s inequality�

Pr�X � �k� �
���X�

k�
�




k
�

� If the Xi�s are d�wise independent then for
every j � �� � � � � m�

E�Yj� � Pr

�
� �
i�Ej

fXi � �g

�
A � pd �
�

Let Y �
Pm

j�� Yj denote the number of
edges contained in R� Computation shows
that Pr�Y � k� � �

� �

If R contained at least �k vertices after the
�rst stage in the algorithm� and at most k ver�
tices were removed in the second stage� then
the independent set constructed by the algo�
rithm has cardinality of at least k� This has
probability

� Pr �fY � kg 
 fX � �kg� �
�

�
�




k
�

De
randomization I

The de�randomization procedure of Alon� Babai�
and Itai ��� is based on constructing a joint dis�
tribution of d�wise independent variables which
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approximates the joint d�wise independent distri�
bution of variables Xi for which Pr�Xi� � 
k�n
�i � �� � � � � n�� It is then necessary to analyze this
approximate distribution� Our technique pro�
vides exactly the required distribution� so that
no further analysis is needed� As we explained
in the introduction� this can be done by consid�
ering the set CI of the constraints�


fI�fXi� � b�� � � � � Xid � bdg� �

i�� � � � � id � f�� � � � � ng� b�� � � � � bd � f�� �gg �

The number of these constraints is jCI j ��n
d

�
�d � O���n�d�� For �xed d� this number is

polynomial in n� resulting in a sample space of
polynomial size� Therefore� the algorithm runs
in polynomial time� including both the phase of
constructing the sample space and the phase of
running Algorithm ��� on each point of this space
until a su�ciently large independent set is found�

De
randomization II

A closer examination of the proof reveals that
not all the

�n
d

�
neighborhoods of cardinality d

have to be independent� In order for equation �
�
to hold� it su�ces that only the Xi�s associated
with vertices in the same edge be independent�
If Ej � fvi� � � � � � vidg� let Cj denote the set of �d

independence constraints

fI�fXi� � b�� � � � � Xid � bdg� � b�� � � � � bd � f�� �gg �

On the other hand� in order for equation ��� to
hold� the choices must still be pairwise indepen�
dent� Let C� denote the set of �

�n
�

�
constraints

fI�fXi� � b�� Xi� � b�g� �

i�� i� � f�� � � � � ng� b�� b� � f�� �gg �

Thus� the following set of constraints su�ces�

CII � C� �
�

Ej�E
Cj �

More precisely� if the set CII is satis�ed then the
proof of Proposition ��� goes through� and the re�
sulting sample space must contain a point which

�Recall that the indices i�� � � � � id are assumed to be
distinct and sorted in increasing order�

is good for this hypergraph� Since the number of
constraints is

jCII j � jC�j�
X
Ej�E

jCj j � �

�
n

�

	
�m�d �

this results in a polynomial�time algorithm for
d � O�logn�� which applies to a larger class of
graphs than the one presented in ���� At �rst
glance� it seems that as we have polynomially
many neighborhoods of logarithmic size� Schul�
man�s technique ���� can also be used to extend
the results in ���� However� his approach is lim�
ited to uniform distributions� so it does not ap�
ply to this algorithm� The results of Berger and
Rompel ��� and of Motwani� Naor� and Naor
����� however� provide a polynomial�time algo�
rithm for d � O�polylogn�� Their results use
a completely di�erent technique� and cannot be
extended to handle larger values of d�

De
randomization III

A yet closer examination of the proof of Propo�
sition ��� reveals that Equation �
� does not re�
quire complete independence of the neighbor�
hood associated with the edge Ej � It su�ces
to constrain the probability of the event 	all the
vertices in Ej are in R
 �the event corresponding
to the random variable Yj in the proof�� That
is� for Ej � fvi� � � � � � vidg� we need only the in�
dependence constraint over the event�

Qj � fXi� � �� � � � � Xid � �g �

This is a simple event which de�nes an indepen�
dence constraint of the type to which our tech�
nique applies� We conclude that the following set
of constraints su�ces for the analysis of Propo�
sition ��� goes through�

CIII � C� � fI�Qj� � Ej � Eg �

The number of constraints

jCIII j � �

�
n

�

	
�m
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is polynomial in the size of the problem �n�m�
regardless of d� Therefore� this results in a de�
terministic polynomial�time algorithm for �nd�
ing large independent sets for arbitrary uniform
hypergraphs�

�� Conclusions and open questions

We have presented a new approach to construct�
ing distributions with small sample spaces� Our
technique constructs a distribution tailored ex�
plicitly to the required constraints� The con�
struction is based on an explicit representation
of the constraints as a set of linear equations
over the distribution� It enables us to con�
struct sample spaces for arbitrary distributions
over discrete random variables� which are pre�
cise �not approximations� and sometimes consid�
erably smaller than sample spaces constructed
using previously known techniques�

A number of open questions arise immediately
from our results�

� Schulman�s approach constructs a sample
space whose size depends not on the total
number of neighborhoods involved in con�
straints� but on the maximum number of
such neighborhoods in which a particular
variable appears� Can the size of the sample
space in our approach be similarly reduced
to depend on the maximum number of con�
straints in which a variable participates�

� We mentioned in the introduction that the
nature of our approach generally prevents
a precomputation of the manageable distri�
bution� However� our approach shows the
existence of manageable distributions which
are useful in general contexts� For exfam�
ple� for every n� d� and p� we show the ex�
istence of a d�wise independent distribution
over n binary random variables such that
Pr�Xi � �� � p for all i� It would be useful
to come up with an explicit construction for
this case�

� Our technique constructs distributions that
precisely satisfy a given set of arbitrary inde�

pendence constraints� It is natural to ask if
our results can be improved by only requir�
ing the distribution to approximately sat�
isfy these constraints� In particular� maybe
we can construct approximate distributions
faster� or in parallel� or over smaller sample
spaces� We note that the construction of
��� �� ��� can be viewed as �nding a distri�
bution that precisely satis�es the d�wise in�
dependence constraints but approximately
satis�es the constraints of the form Pr�Xi �
b�� In contrast� the nearly�independent con�
structions �
� �� �� ��� can be viewed as ap�
proximately satisfying the di�erent d�wise
independence constraints� Thus� they can
all be viewed as providing an answer to
this question for certain types of constraint�
sets C and certain restrictions on which con�
straints can be approximated�

� Combined with our inability to precompute
the distribution� the sequential nature of
our construction prevents its use for de�
randomization of parallel algorithms� Par�
allelizing the construction could open up
many application areas for this approach�
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