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Abstract

Abstract. The subject of this paper is find-
ing small sample spaces for joint distributions of
n discrete random variables. Such distributions
are often only required to obey a certain lim-
ited set of constraints of the form Pr(E) = .
We show that the problem of deciding whether
there exists any distribution satisfying a given
set of constraints is NP-hard. However, if the
constraints are consistent, then there exists a dis-
tribution satisfying them which is supported by
a “small” sample space (one whose cardinality is
equal to the number of constraints). For the im-
portant case of independence constraints, where
the constraints have a certain form and are con-
sistent with a joint distribution of n independent
random variables, a small sample space can be
constructed in polynomial time. This last result
is also useful for de-randomizing algorithms. We
demonstrate this technique by an application to
the problem of finding large independent sets in
sparse hypergraphs.
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1. Introduction

The probabilistic method of proving existence of
combinatorial objects has been very successful
(see, for example, [13, 15]). The underlying idea
is as follows. Consider a finite set ) whose ele-
ments are classified as “good” and “bad”. Sup-
pose we wish to prove existence of at least one
“good” element within €. The proof proceeds
by constructing a probability distribution f over
@ and showing that the probability of picking a
good element is positive. Probabilistic proofs of-
ten yield randomized algorithms for constructing
a good element. In particular, many randomized
algorithms are a special case of this technique,
where the “good” elements are those sequences
of random bits leading to a correct answer.

It is often desirable to replace the probabilis-
tic construction by a deterministic one, or to
de-randomize an algorithm. Obviously, this can
be done by completely enumerating the sample
space {) until a good element is found. Unfortu-
nately, the sample space is typically exponential
in terms of the size of the problem; for example,
the obvious sample space of n independent coin
tosses contains 2" points.

More precisely, let Xq,...,X,, be discrete ran-
dom variables with a finite range. For simplic-
ity, we assume that Xy,..., X, all have the same
range {0,...,7—1} (although not necessarily the
same distribution). Our constructions can easily
be extended to variables with different ranges.
The probability space associated with these vari-
ables is @ = {0,...,7 — 1}". A distribution is a
map f : Q — [0,1] such that " ,.q f(z) = 1.
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We define the set S(f)={xz € Q| f(x) > 0} to

be the essential sample space of f.

Given a distribution f involved in a proba-
bilistic proof, only the points in S(f) need to be
considered in our search for a good point in 2.
Moreover, if it easy to recognize whether a point
x in 9(f) is good for a particular input, then
it suffices to search any subset of S(f) which
is guaranteed to contain a good point for each
possible input. Adleman [2] shows that for any
distribution f supporting an algorithm in RP,
there exists a space S C S(f) of polynomial size
that contains a good point for every possible in-
put. The proof of this fact is not constructive,
and therefore cannot be used for de-randomizing
algorithms.

A common technique for constructing a
smaller space to search is to construct a different
distribution with a “small” (polynomial) essen-
tial sample space that can be searched exhaus-
tively, as outlined above. The new distribution
must agree with the original one sufficiently so
that the correctness proof of the algorithm re-
mains valid. The correctness proof often relies on
certain assumptions about the distribution; that
is, the distribution is assumed to satisfy certain
constraints. A constraint is an equality of the

form
Pr(@Q)= ) flz)=m,
TeQ

where ) C Q is an event and 0 < 7 < 1. If
the randomness requirements of an algorithm
are completely describeable as a set of con-
straints, and the new distribution satisfies all of
them, then the algorithm remains valid under
the new distribution. Moreover, no new analysis
is needed. In other cases, the new distribution
may only approximately satisfy the constraints,
and it is necessary to check that the analysis still

holds.

In almost all cases, the original distribution is
constructed based on independent random vari-
ables X1,...,X,. Thus, all the constraints are
satisfied by such a distribution. In many cases,
however, full independence is not necessary. In
particular, quite often the constraints are satis-
fied by d-wise independent distributions for some

small d. Most of the previous work has focused
on constructing approximations to such distribu-
tions.

Joffe [9] first demonstrated a construction of
a joint distribution of n d-wise independent ran-
dom variables with an essential sample space of
cardinality O(n?). Luby [10] and Alon, Babai,
and Itai [1] generalize Joffe’s construction to
non-uniform distributions. In many cases, these
constructions only approximately satisfy the re-
quired constraints; that is, the distributions
are d-wise independent, but the probabilities
Pr(X; = b) may differ from the corresponding
probabilities in the original distribution. This
construction results in a sample space of polyno-
mial size for any fixed d. It is shown in [7] that
the cardinality of a sample space of a joint dis-
tribution of n d-wise independent random bits?
is Q(nl¥/2). Thus, these constructions are close
to optimal in this case. Moreover, sample spaces
of polynomial size exist for d-wise independent
distributions only if d is fixed.

Naor and Naor [12] showed how to circumvent
this lower bound by observing that e-independent
(or nearly independent) distributions often suf-
fice. In other words, it suffices that a constraint,
stating that a particular event must occur as
if the variables were independent, be satisfied
to within e. We point out that this is also a
form of approximation, as defined above. Naor
and Naor demonstrate a construction of sam-
ple spaces for e-independent distributions over
random bits, whose size is polynomial in » and
in 1/e. These constructions are polynomial for
e = 1/poly(n); for such values of €, the e
independence constraints are meaningful for sub-
sets of size up to? O(logn). Therefore, we obtain
a polynomial-size sample space which is nearly
d-wise independent for d = O(logn) (as com-

1We use the term random bits to denote binary valued
uniformly distributed random variables.

2Consider a distribution over random bits, and some
subset of k of the variables. The “correct” probability of
any event prescribing values to all the variables in this
subset is 1/2". For k = O(logn), this value is O(e).
So for larger k, all such constraints are essentially sub-
sumed by constraints corresponding to smaller subsets of
the variables.
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pared to the lower bound of Q(n!°8™) for truly
d-wise independent sample spaces). Simplified
constructions with similar properties were pro-
vided by Alon et. al[3]. Azar, Motwani and Naor
[5] later generalized these techniques to uniform
distributions over non-binary random variables.
Finally, Even et. al [8] presented constructions
for arbitrary nearly d-wise independent distribu-
tions over non-binary random variables.

A different type of technique was introduced
by Berger and Rompel [6] and by Motwani, Naor
and Naor [11]. This technique can be used to de-
randomize certain RNC algorithms where d, the
degree of independence required, is polylogarith-
mic in n». The technique works, however, only
for certain types of problems, and does not seem
to generalize to larger degrees of independence.

Schulman [14] took a different approach to-
wards the construction of sample spaces which
require O(log n)-wise independence. He observed
that in many cases, only certain d-neighborhoods
(sets of d variables) must be independent. Schul-
man constructs sample spaces satisfying this
property whose size is 2% times the greatest
number of neighborhoods to which any vari-
able belongs. In particular, for polynomially
many neighborhoods each of size O(logn), this
construction results in a polynomial-size sam-
ple space. His construction works only for ran-
dom bits, and for a maximum neighborhood size

O(logn).

In order to improve on these results, we view
the problem from a somewhat different perspec-
tive. Instead of placing upper bounds on the de-
gree of independence required by the algorithm,
we examine the set of precise constraints that
are required in order for the algorithm to work.
We then construct a distribution satisfying these
constraints exactly. In many cases, this approach
yields a much smaller sample space, as we explain
below.

We begin by showing a connection between the
number of constraints and the size of the result-
ing sample space. We show in Section 2 that
for any set C of such constraints, if C is consis-
tent, i.e., C is satisfied by some distribution f,

then there exists a distribution f’ also satisfying
C such that |S(f")] <|C|. That is, there exists a
distribution for which the cardinality of the es-
sential sample space is not more than the number
of constraints. As before, if the constraints rep-
resent all the assumptions about f made by a
proof, the proof will also hold for f'. If S(f') is
sufficiently small, we can exhaustively enumer-
ate it, resulting in a deterministic construction.
The proof of the existence theorem includes a
technique for constructing f’; however, the tech-
nique requires exponential time and is thus not
useful. We justify the exponential behavior of
this algorithm by showing that even for a set C
of very simple constraints, the problem of recog-
nizing whether there exists a distribution f sat-
isfying C is NP-complete.

Our goal is to define a type of constraints
for which a small sample space can be con-
structed directly from the constraints in polyno-
mial time. As we observed, the distributions that
are most often used in probabilistic proofs are
ones where Xy,..., X, are independent random
variables. Such a distribution is determined en-
tirely by the probabilities {p; = Pr(X; =b):¢ =
1,...,m; b=10,....,7 — 1}. In the course of such
a probabilistic proof, the distribution is assumed
to satisfy various constraints, which often has a
form as follows. An independence constraint is
one which forces the probability of a certain as-
signment of values to some subset of the variables
to be as if the variables are independent. That is,
for a fixed set of pp’s, {i1,...,0x} C{1,...,n},

and by,...,b, €{0,....,r — 1}, the constraint
k

Pr({X; = b1 ,..., Xi, =bs}) = [[ pips,
J=1

is the independence constraint corresponding to
the event () = {X;, = b1 ,..., X;, = bi}, and is
denoted by I(Q). Obviously, if Xy,...,X,, are
independent random variables then their joint
distribution satisfies all the independence con-
straints. Note that d-wise independence can eas-
ily be represented in terms of constraints of this
type: the variables Xq,..., X, are d-wise inde-
pendent if and only if all the independence con-
straints [({X;, = b1,..., X;, = bg}) are satisfied,
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where iy,...,ig € {1,...,n} are distinct indices
and by,...,bq € {0,...,7 — 1}. In other words,
X4,...,X, are d-wise independent if and only if
every event defined over a neighborhood of size d
has the same probability as if the variables were
independent.

Let C be a set of independence constraints de-
fined using a fixed set of p;’s as above. In Section
3 we present the main result of this paper, which
shows how to construct in polynomial time a dis-
tribution satisfying C with an essential sample
space of cardinality |C|. We note that the distri-
bution produced by our technique is typically not
uniform. Therefore, we cannot in general use our
construction to reduce the number of uniformly
distributed random bits required to generate the
desired distribution.

Our construction has a number of advantages.
First, the distributions generated always satisfy
the constraints precisely. This fact allows one
to use precisely the same correctness proof for
the new distribution as for the old one, without
the need for a new analysis. Moreover, the size
of the sample space in all the nearly indepen-
dent constructions [3, 5, 8, 12] depends polyno-
mially on 1/¢ (where € is the approximation fac-
tor). Our precise construction does not have this
term. Previously, precise distributions were un-
available for many interesting distributions. In
particular, our approach can construct sample
spaces of cardinality O((rn)?) for any set of n
r-valued, d-wise independent random variables.
For fixed d, this construction requires polynomial
time. It has been argued [8] that probability dis-
tributions over non-uniform non-binary random
variables are important. To our knowledge, this
is the first technique which allows the construc-
tion of exact distributions of d-wise independent
variables with arbitrary p;’s.

The main advantage of our construction is that
the size of the sample space depends only on
the number of constraints actually used. Except
for Schulman’s approach [14], all other sample
spaces are limited by requiring that all neigh-
borhoods of a particular size be independent (or
nearly independent). As Schulman points out, in
many cases only certain neighborhoods are ever

relevant, thus enabling a further reduction in the
size of the sample space. However, Schulman’s
approach still requires the sample space to sat-
isfy all the independence constraints associated
with the relevant neighborhoods. This restricts
his construction to neighborhoods of maximal
size? O(logn). With our construction we can
deal with neighborhoods of any size, as long as
the number of relevant constraints is limited.

For example, an algorithm may randomly
choose edges in a graph by associating a binary
random variable with each edge. An event whose
probability may be of interest is “no edge ad-
jacent to a node v is chosen”. Using the other
approaches (even Schulman’s), the neighborhood
size would be the maximum degree A of a node in
the graph; the relevant sample space would then
grow as 2°. Using our approach, there is only
one event per node, resulting in a sample space
of size n (the number of nodes in the graph).

In this example, the constraints depend on the
edge structure of the input graph. In general, our
construction depends on the specific constraints
associated with a particular instance of the in-
put. Therefore, unlike most sample space con-
structions, our construction cannot be prepared
in advance. This property, combined with the
fact that our algorithm is sequential, means that
it cannot be used to convert RNC algorithms into
NC ones.

In Section 4 we show an example of how our
technique can be applied to de-randomization of
algorithms. We discuss the problem of finding
a large independent set in a d-uniform hyper-
graph. The underlying randomized algorithm,
described in [1], was de-randomized in the same
paper for fixed values of d. It was later de-
randomized also for d = O(polylogn) in [6] and
[11]. We show how this algorithm can be de-
randomized for any d. We point out that a se-
quential deterministic polynomial time solution
for the independent set problem in hypergraphs
exists [4]. However, the de-randomization of this
algorithm using our technique serves to demon-
strate its unique power.

*Moreover, as we have observed, Schulman’s construc-
tion works only for random bits.
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2. Existence of small essential sample
spaces

Let C = {[P1(Q%) = Tk]}k=1,...c be a set of con-
straints such that [Pr(2) = 1] € C.

Definition 2.1. A set C of constraints is consis-
tent if there exists some distribution f satisfying
all the members of C.

Definition 2.2. A distribution f that satisfies
C is said to be manageable if |S(f)| < c=|C|.

Theorem 2.3. IfC is consistent, then C is sat-

isfied by a manageable distribution.

Proof: Let C be as above, and recall that
¢ = |C|. We describe a distribution f satis-
fying C as a non-negative solution to a set of
linear equations. Let w € IR denote the vector
(Tk)k=1,...c. Recall that @ = {0,...,7r — 1}";
let m = |Q| = ", and let @y,..., 2, denote
the points of Q. The variable v, will repre-
sent the probability f(a/). Let v be the vector
(v¢)e=1,...,m- A constraint Pr(Qy) = 71 can be
represented as the linear equation

m
Zakﬁvﬁ =Tk ,
=1

where

0 otherwise .

1 ifxy €
(W:{ ¢ € Qk

Thus, the constraints in C can be represented
by a system Av = = of linear equations (where
A is the matrix (ag¢)ge. Since C is assumed to
be consistent, there is a distribution f satis-
fying C. Therefore, for v, = f(x;), the vec-
tor v is a nonnegative solution to this system.
A classical theorem in linear programming as-
serts that under these conditions, there exists
a basic solution to this system. That is, there
exists a vector v’ > 0 such that Av' = @ and
the columns of A, A,;, such that v} > 0} are
linearly independent. Let f’ be the distribu-
tion corresponding to this solution vector v’.
Since the number of rows in the matrix is ¢,

the number of linearly independent columns is
also at most ¢. Therefore, the number of posi-
tive indices in »’, which is precisely |S(f)], is
at most ¢ = |C|.

This theorem can be proven constructively
based on the following standard algorithm, which
begins with a distribution vector v, and removes
points from the sample space one at a time, re-
sulting in a manageable distribution vector v’.
Througout the algorithm, let S(v) denote the set
of indices {j : v; > 0}. Intuitively, these indices
represent points in the essential sample space of
the distribution represented by wv.

Algorithm 2.4.
While {A,; :j € S(v)} are linearly dependent:

1. Find a nonzero vector u € R™ such that

u; = 0 for every j € S(v), and
Au = 0.

2. Find some ¢ € IR such that

v+ tu > 0, and
vj + tu; = 0 for some j € 5(v).

3. Replace v «— v + tu.

Alternatively, the manageable distribution can
be computed directly from the constraints using
a linear programming algorithm which computes
basic solutions. Unfortunately, since Algorithm
2.4 handles the variables one at a time, it runs in
time which is polynomial in m = r”. Similarly, a
linear programming algorithm runs in time poly-
nomial in m. Thus, both these techniques are
exponential in n.

The exponential behavior of these algorithms
can be justified by considering the problem of
deciding whether a given set of constraints C is
consistent; that is, does there exist a distribution
[ satisfying the constraints in C? For arbitrary
constraints, the representation of the events can
be very long, causing the input size to be unrea-
sonably large. We therefore restrict attention to
stmple constraints.
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Definition 2.5. We say that a constraint
Pr(Q) = 7 is k-simple if there exist i1,...,1; €
{1,...,n} and by,...,bp € {0,...,r — 1} such
that @ = {[X;, = b1],...,[X;, = bg]}. A con-

straint is simple if it is k-simple for some k.

Note that the natural representation of the event
as a simple constraint requires space which is at
most linear in n, whereas the number of points in
the event is often exponential in n (for example,
a 1-simple constraint contains r"~! points). We
assume throughout that simple constraints are
represented compactly (in linear space).

It turns out that the consistency problem is
NP-hard, even when restricted to 2-simple con-
straints:

Proposition 2.6. The problem of recognizing
whether a set C of 2-simple constraints is con-
sistent 1s NP-hard.

Proof: The proof is based on a simple reduc-
tion from the 3-colorability problem. See the
full paper for details. |y

In order to prove a matching upper bound, we
again need to make a simple assumption about
the representation of the input.

Definition 2.7. An event () is said to be poly-
nomially checkable if membership of any point
x € Qin @ can be checked in time polynomial
in n.

Proposition 2.8. If all the constraints in C
pertain to polynomially checkable events, then
the consistency of C can be decided in non-
deterministic polynomial time (in terms of |C|

and n).

Proof: The algorithm guesses a subset T C {2
of cardinality |C|. It then constructs in poly-
nomial time a system of equations correspond-
ing to the constraints in C restricted to the
variables in 7' (the other variables are set to
0). Given the initial guess, this system can
be constructed in polynomial time, since for

each constraint and each point in T it takes
polynomial time to check whether the point
appears in the constraint. The algorithm then
attempts to find a nonnegative solution to this
system. Such a solution exists if and only if
there exists a manageable distribution whose
essential sample space is (contained in) 7. By
Theorem 2.3, we know that a set of constraints
is consistent if and only if it is satisfied by a
manageable distribution; that is, a distribu-
tion over some sample space T of cardinality
not greater than |C|. Therefore, C is consistent
if and only if one of these subsystems has a
nonnegative solution. y

Since simple constraints are always polynomi-
ally checkable (using the appropriate representa-
tion), we obtain the following theorem.

Theorem 2.9. For an arbitrary set C of simple
constraints, the problem of recognizing the con-
sistency of C is NP-complete.

3. Independence constraints

An important special case was already discussed
in the introduction. Suppose all the members
of C are independence constraints arising from a
known fixed set of values

{Pr(X;=b)=pp:i=1,...

such that Zg;é psp = 1 for all 7, and p;, > 0 for
all 7,b. In this case we can construct a distri-
bution satisfying C over a sample space of cardi-
nality ¢ = |C|; the construction is done in time
polynomial in ¢, and n.

We first define the concept of a projected event.
Consider an event

Q= {[Xh = bl]v"'v[Xik = bk]} .

We assume without loss of generality that ¢; <
19 < ... < ig; that is, the variables in the con-
straints are listed in order of increasing index (we
make this assumption for every event mentioned
in this section). Let ¢ (1 < ¢ < n) be an integer
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and denote by ¢ = ¢({) the maximal index such
that i, < {. The {-projection of () is defined as

X, =bg} .

Intuitively, the f-projection of a constraint is
its restriction to the variables Xy,...,X,. For
example, if @ is {X; = 0,Xy = 1,X7; = 1},
then Hg(Q) = {Xl = 0} and H4(Q) = {Xl =
0, X4 = 1}. Analogously, we call I(I[,(Q)) the
(-projection of the constraint /(Q). Finally, for
a set of constraints C, I1I,(C) is the set of the (-
projections of the constraints in C.

H/(Q)={X;, =b1,...,

We now define recursively a sequence of dis-
tributions fi,..., f,, such that for each ¢ (¢ =
1,...,n), the following conditions hold:

(i) fr is a distribution on {0,...,r — 1}*,

(i) fr satisfies I1,(C),

(ifi) |S(fe)l < c.

The distribution f, is clearly the desired one.
We begin by defining for all b € {0,...,r — 1}

Ji(()) = ps -

This clearly satisfies all the requirements.

Now, assume that fy_y (for £ > 1) satisfies the
above requirements, and define an intermediate
distribution g, by:

go(z1,. . x0-1,0) = fooq(z1, .. o20m1) - pon (1)

forb=0,...,7—1.

Lemma 3.1. If fi_1 satisfies 11,_1(C), then g;
satisfies 11,(C).

Proof:  Suppose [(()) is an arbitrary con-

straint in C, where Q@ = {X;; = b1 ,..., X;, =
by}. For simplicity, denote @; = 11;(Q) (j =
1,...,n). Let r be the maximal index such

that 7, < — 1. By the assumption,

Jo-1(Qe-1) HPZJ

We distinguish two cases:
Case I: () mentions the variable X,. In this
case, t,41 = {, and

= {Xh =by,.. o X, = bTinr-H = bT-l-l}
= {(xlv .. '7x€—17b7°—|—1) : (xlv .. .,$g_1) € Qfl} .
Therefore:
90(Qr) = > 9e(T1, oy o1, 0p41)
(21,0 0@r—1)ERQe—1
= > Je—r(@e, oo @0m1) - Pobyyy
(21,0 0@r—1)ERQe—1
= fro1(Qe—1) - pov,yy
r r4+1
= Hpijb] CPehyy == Hpijb]
=1 7=1

Thus, g¢ satisfies the constraint I(Q/).
Case II: () does not mention the variable X,.
In this case,

Qe={Xi, =b1,...,X;, =b,}
={(x1,..yx0): (1, x0-1) € Qu1,
€ {0,...,r—1}}.
Therefore:
9e(Qe) = Z Z ge(T1, ..., w021, 0)
b0y nr—11} (21,070 1)EQe1
= > > Jo—1(z1, o 1) pos

be{o,...,’/’—l} (1’1,...71’[_1)EQZ_1

> ponfia(Qia)

be{0,...,r—1}

fo-1(Qo-1) HPZJ

Again, g; satisfies the constraint 1(Q/). 1y

If |S(fe-1)| < ¢, then |S(g¢)| < re, since each
point with positive probability in S(fi—1) yields
at most r points with positive probabilities in
S(ge). Thus, g¢ satisfies requirements (i) and (ii),
but may not satisfy requirement (iii). But g, is
a nonnegative solution to the system of linear
equations defined by the {-projections of the con-
straints in C. Therefore, we may use Algorithm
2.4 to reduce the cardinality of the essential sam-
ple space to ¢. Let f; be the resulting distribu-
tion. It clearly satisfies all three requirements.
We thus obtain the following theorem:
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Theorem 3.2. Given a set of independence
constraints, we can construct a manageable dis-
tribution f satisfying C in time O(rnc?).

Proof: The distribution f, constructed as
above is clearly a manageable distribution sat-
isfying C. The construction takes n — 1 iter-
ations. Each iteration requires at most O(rc)
operations to create g, from f;,_q, and at most
O(rc?) arithmetic operations for running Al-
gorithm 2.4 to reduce gy to f;. Therefore, the
entire algorithm runs in O(rnc?) operations.
Note that the number of operations does not
depend on the magnitudes of the numbers in
the input. g

Our algorithm can easily be extended to op-
erate on random variables with ranges of differ-
ent sizes. Let r; be the number of values in the
range of X;. The sample space of g, will consist
of vectors (21, ...,2/-1,b) where (z1,...,2/-1) €

S(fe—1) and b€ {0,...,7¢}. Then
15(ge)] < relC]

The proof goes through as before, but the num-
ber of operations in iteration 7 is O(r;c?). The
total number of operations is O((Y_/; ri)c?) =
O(rne?), where r = max{ry,...,7,}. The cardi-
nality of the resulting sample space is still |C]|.

The assumption that the p;’s are known is im-
portant in view of the following theorem, which
states that if this is not the case, it is NP-hard
to verify whether all of a given set of constraints
are independence constraints. This result holds
even for binary valued random variables (r = 2).

Theorem 3.3. It is NP-hard to recognize
whether for a given set of simple constraints C
there exists a set P = {pjo,pi1 € [0,1] : i =
1,...,n;pio+ pir = 1} such that all the members
of C are independence constraints relative to P.

Proof: We prove the theorem by reduction
from SAT. A CNF formula ¢ is satisfiable iff
its negation —¢ is not valid. Moreover, ¢ is
a boolean formula in disjunctive normal form
(DNF), whose length is linear in the length of

¢ (using de Morgan’s laws). We can there-
fore use a reduction to the non-validity of a
DNF formula. Given a DNF formula ¢ in the
variables wq,...,u,, we build a set C as fol-
lows. Let v = 51 A --+ A yr be a disjunct in
@, where y; € {u;;,u;,;} (j = 1,...,k), and

11 < --- < 1. We associate with ¥ a con-
straint

Pr(Qy) =0,
where

Qll/ = {[Xh = bl]v SEEE) [Xlk = bk]}

b — Loify; =

J 0 ify; = Ugj .
Consider an assignment 6 of truth values to
the variables wuq,...,u,, and a set P as in the
statement of the theorem. We say that # and P
correspond if for all 1, p;o = 0 iff 8(u;) = false.
It is easy to find for any truth assignment 6 a

corresponding set P, and vice versa. Clearly,
if @ and % correspond, the constraint associ-

ated with ¢, is an independence constraint
with respect to P if and only if 8(¢) = false.
Similarly, all the constraints in C are indepen-
dence constraints with respect to P if and only
if (¢) = false. Therefore, ¢ is not valid iff C
is a set of independence constraints for some
set P. g

It is not clear that the problem of Theorem 3.3
is in NP. The set P relative to which a given C is
a set of independence constraints might contain
irrational numbers even if all the input numbers
are rational.

Example 3.4. Consider the problem of con-
structing a distribution over the binary-valued
variables X1, X5, and X3 satisfying

Pr({X;=1,X;=1}) =
PI’({Xl = 1,X3 = 1})
Pr({X;=1,X3=1}) =

These are independence constraints only with re-

spect to p11 = po1 = P31 = %
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Nevertheless, in most practical cases, the p;’s are
part of the specification of the algorithm. Thus,
it is usually reasonalbe to assume that they are
known.

4. De-randomizing algorithms

In this section we demonstrate how the technique
of Section 3 can be used to de-randomize algo-
rithms. We present three progressively improv-
ing ways in which the technique can be applied.
For the sake of simplicity and for ease of compar-
ison, we will base our analysis on a single prob-
lem. This is the problem of finding large indepen-
dent sets in sparse hypergraphs. The problem
description and the randomized algorithm for its
solution are taken from Alon, Babai, and Itai [1].
We point out that a deterministic polynomial-
time algorithm for this problem is known [4].

A d-uniform hypergraph is a pair H = (V, &)
where V' = {v1,...,v,} is a set of vertices and
E=A{Fy,...,E,} is a collection of subsets of V,
each of cardinality d, which are called edges. A
subset U C V is said to be independent if it con-
tains no edge. For simplicity, we restrict atten-
tion to d-uniform hypergraphs; a similar analysis
goes through in the general case.

Consider the following randomized algorithm

(k will be defined later).

Algorithm 4.1.
1. Construct a random subset R of V.
For each vertex v; € V:
put v; in R with probability p = 3k/n.

2. Modify R into an independent set U.
For each edge F; € € such that F; C R:

remove from R one arbitrary vertex
v, € E]'.

Proposition 4.2 (Alon, Babai, Itai) :
If H = (V,&) is a d-uniform hypergraph

with n wvertices and m edges, then for k =

(1/18)(n?/m)" 4= Algorithm 4.1 finds an in-
dependent set of cardinality exceeding k with

o 1 3
probability greater than 5 — 3.

Proof:  For each 7, let X; be the random vari-

able that equals 1 if »; € R and 0 otherwise.
For each edge E; € &, let Y; the random vari-
able that equals 1 if £; C R and 0 otherwise.
The cardinality of Ris |[R| =3, X; = X, so
E(X)=np=3k.

e If the X;’s are pairwise independent, then
the variance of X is

n

o}(X) = ZUQ(XZ') =np(l—p) <np=3k.
i @)

Thus, using Chebychev’s inequality,

Pr(X <2k) <

e If the X;’s are d-wise independent then for
every j=1,...,m,

E(Y;) = Pr ( A{x:= 1}) =p" (3)

i€E;

Let Y = 377, Y; denote the number of
edges contained in R. Computation shows
that Pr(Y > k) < &.

If R contained at least 2k vertices after the
first stage in the algorithm, and at most k& ver-
tices were removed in the second stage, then
the independent set constructed by the algo-
rithm has cardinality of at least k. This has
probability

> Pr({Y < k}n{X >2k}) >

N | —
>~ w

De-randomization I
The de-randomization procedure of Alon, Babai,

and Itai [1] is based on constructing a joint dis-
tribution of d-wise independent variables which
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approximates the joint d-wise independent distri-
bution of variables X; for which Pr(X;) = 3k/n
(i =1,...,n). It is then necessary to analyze this
approximate distribution. OQur technique pro-
vides exactly the required distribution, so that
no further analysis is needed. As we explained
in the introduction, this can be done by consid-
ering the set C! of the constraints:*

{(I({Xs, = b1, .., Xi, = ba})

Uyeenylg € {1,...,71}, bl,---,bde {0,1}} .

The number of these constraints is |[C!| =
()24 = O((2n)?). For fixed d, this number is
polynomial in n, resulting in a sample space of
polynomial size. Therefore, the algorithm runs
in polynomial time, including both the phase of
constructing the sample space and the phase of
running Algorithm 4.1 on each point of this space
until a sufficiently large independent set is found.

De-randomization II

A closer examination of the proof reveals that
not all the () neighborhoods of cardinality d
have to be independent. In order for equation (3)
to hold, it suffices that only the X;’s associated
with vertices in the same edge be independent.

If £; = {v;,...,v;,}, let C; denote the set of 22
independence constraints
{I({Xil = bl,...,XZ'd = bd}) :bl,...,bd € {0,1}}.

On the other hand, in order for equation (2) to
hold, the choices must still be pairwise indepen-
dent. Let C* denote the set of 4(}) constraints

{I({Xh = bleZé = bQ}) :
11,1 € {1,...,71}, b17b2 € {0,1}} .

Thus, the following set of constraints suffices:

c=c*u | ¢
E;eg

More precisely, if the set C!! is satisfied then the
proof of Proposition 4.2 goes through, and the re-
sulting sample space must contain a point which

*Recall that the indices t1,...,tq are assumed to be
distinct and sorted in increasing order.

is good for this hypergraph. Since the number of
constraints is

n
e = e+ Y 1ol = 4(2) +m2?,

Eje€

this results in a polynomial-time algorithm for
d = O(logn), which applies to a larger class of
graphs than the one presented in [1]. At first
glance, it seems that as we have polynomially
many neighborhoods of logarithmic size, Schul-
man’s technique [14] can also be used to extend
the results in [1]. However, his approach is lim-
ited to uniform distributions, so it does not ap-
ply to this algorithm. The results of Berger and
Rompel [6] and of Motwani, Naor, and Naor
[11], however, provide a polynomial-time algo-
rithm for d = O(polylogn). Their results use
a completely different technique, and cannot be
extended to handle larger values of d.

De-randomization III

A yet closer examination of the proof of Propo-
sition 4.2 reveals that Equation (3) does not re-
quire complete independence of the neighbor-
hood associated with the edge F£;. It suffices
to constrain the probability of the event “all the
vertices in £; are in R” (the event corresponding
to the random variable Y; in the proof). That
is, for £; = {v;,...,v;,}, we need only the in-
dependence constraint over the event:
Q]‘ = {Xil = 1,...,X¢d = 1} .

This is a simple event which defines an indepen-
dence constraint of the type to which our tech-
nique applies. We conclude that the following set
of constraints suffices for the analysis of Propo-
sition 4.2 goes through:

cH =c*u{I(Q;): E; €&} .

The number of constraints

1| = 4(;‘) +m
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is polynomial in the size of the problem (n 4 m)
regardless of d. Therefore, this results in a de-
terministic polynomial-time algorithm for find-
ing large independent sets for arbitrary uniform
hypergraphs.

5. Conclusions and open questions

We have presented a new approach to construct-
ing distributions with small sample spaces. Our
technique constructs a distribution tailored ex-
plicitly to the required constraints. The con-
struction is based on an explicit representation
of the constraints as a set of linear equations
over the distribution. It enables us to con-
struct sample spaces for arbitrary distributions
over discrete random variables, which are pre-
cise (not approximations) and sometimes consid-
erably smaller than sample spaces constructed
using previously known techniques.

A number of open questions arise immediately
from our results.

e Schulman’s approach constructs a sample
space whose size depends not on the total
number of neighborhoods involved in con-
straints, but on the maximum number of
such neighborhoods in which a particular
variable appears. Can the size of the sample
space in our approach be similarly reduced
to depend on the maximum number of con-
straints in which a variable participates.

¢ We mentioned in the introduction that the
nature of our approach generally prevents
a precomputation of the manageable distri-
bution. However, our approach shows the
existence of manageable distributions which
are useful in general contexts. For exfam-
ple, for every n, d, and p, we show the ex-
istence of a d-wise independent distribution
over n binary random variables such that
Pr(X; = 1) = p for all ¢. It would be useful
to come up with an explicit construction for
this case.

e Our technique constructs distributions that
precisely satisfy a given set of arbitrary inde-

REFERENCES

pendence constraints. It is natural to ask if
our results can be improved by only requir-
ing the distribution to approximately sat-
isfy these constraints. In particular, maybe
we can construct approximate distributions
faster, or in parallel, or over smaller sample
spaces. We note that the construction of
[1, 9, 10] can be viewed as finding a distri-
bution that precisely satisfies the d-wise in-
dependence constraints but approximately
satisfies the constraints of the form Pr(X; =
b). In contrast, the nearly-independent con-
structions [3, 5, 8, 12] can be viewed as ap-
proximately satisfying the different d-wise
independence constraints. Thus, they can
all be viewed as providing an answer to
this question for certain types of constraint-
sets C and certain restrictions on which con-
straints can be approximated.

e Combined with our inability to precompute
the distribution, the sequential nature of
our construction prevents its use for de-
randomization of parallel algorithms. Par-
allelizing the construction could open up
many application areas for this approach.
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