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AN O(N . log N) ALGORITHM FOR A CLASS OF MATCHING 
PROBLEMS* 

NIMROD MEGIDDOt AND ARIE TAMIRJ. 

Abstract. The following class of matching problems is considered. The vertices of a complete und~res- 
ted graph are indexed 1, . . . , n, where n = 2m. Every vertex i is assigned two numbers a,, b,. The length of 
every edge ( i ,  j), where i < j, is d(i ,  j)= a, + b,. This class of weighted graphs is applicable to scheduhng and 
optimal assignment problems. A maximum weighted (perfect) matching is found in O(n . log n)  operations. 
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1. Introduction. The maximum matching problem has many applications in 
operations research. The first polynomial-time bounded algorithm for the maximum 
weighted matching problem is Edmonds' [2]. The most efficient algorithm for the 
maximum (cardinality) matching, known to the authors, is Even and Kariv's [3]. 
Gabow [4] has the most efficient algorithm for the weighted matching. In this paper 
we focus on a subclass of maximum weighted matching problems (see •˜ 2 for a precise 
definition). Our study is motivated by the following two problems which are easily 
shown to belong to our class. 

In the first problem, a group of individuals, ordered by seniority, is to be 
partitioned into teams, having the same mission. Each team consists of two posi- 
tions-a senior position and a junior one. The senior position must be manned by the 
more senior individual between the members of the teant. Assuming that we know the 
effectiveness of each individual in both the senior and the junior positions, we wish to 
maximize the total effectiveness of the teams. 

The second problem is to schedule 2m jobs to m identical processors, two jobs to 
each processor, preserving the arrival ordering. The objective is to minimize the total 
flow time, or equivalently, the average waiting time of a job. 

Using a dynamic programming approach, these two models can be solved in 
0 (m2)  time. In this paper we present an algorithm which solves the above problems in 
O(m . log m) operations. 

2. Preliminaries. Our goal is to develop an efficient algorithm for the following 
problem. 

Problem 1. Given numbers ai, bi, i = 1, . . , n (n = 2m), find a perfect matching 
(il, jl), - . . , (im, jm), where ik < jk, k = 1, - . . , m, which maximizes x,",, (aik + b,,). 

We may assume without loss of generality that a maximum matching 
(il, jl), . . , (i,, j,) satisfies ik  < ik+l, j k  < jk+l, k = I ,  . . . , m - 1. In view of this we 
shall restrict our attention to matchings (il, jl), - . . , (i,, j,) which satisfy ik < jk, k = 
1, . - . , m, and ik < ik+l, j k  < k = 1, . . . , m - 1. These can be handled by 
introducing the following notation. 

Let x, = (xl, . - - , x,) be a vector whose components are either 1 or  -1. Denote 
H.(x)=C;=, xk, i = 1, . . , n. Let X be the set of all vectors x (x = (xl, . . . , x,), 
xi E (1, -1)) such that Hi(x)2  0, i = 1, . . . , n - 1 and H,(x)  = 0. Consider the follow- 
ing problem. 
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Problem 2 .  Maximize c ( x ) -  I:=, (a ,  - b,) . x, over X. 
We claim that Problems 1 and 2 are equivalent. Specifically, if ( i l ,  I , ) ,  . . . , (i,, 1,) 

solves Problem 1 then the vector x, where xk = 1 if k = iq and x k  = - 1 if k = jq, solves 
Problem 2. Conversely, if x solves Problem 2 then a solution to Problem 1 is defined 
recursively as follows. Let i l  = 1. Suppose that i l ,  . . . , iq and j l ,  . . . , jr (0 5 r 5 q)  have . . 
been defined, and { i l ,  . . , I,, 11,  - . . , jr} = { I ,  . . . , q + r).  Then, if xq+,+l = 1 let iq+l = 

q + r  + 1 and if xq+r+l = -1 let j rc l  = q + r  + 1. Thus, we shall henceforth be dealing 
with Problem 2. We note that Problem 2 can be transformed to a linear program with 
a iotally unimodular matrix whose basic solutions yield solutions to our problem. 
Thus, the theory of linear programming suffices for solving Problem 2. However, we 
shall present an algorithm which is more suitable. Our algorithm is based on the 
following theorem. 

THEOREM. A vector x  solves Problem 2 if and only if the following condition holds. 
For every pair i, j, 1  S  i  < j 5 n, (i) if xi = -1, xi = 1 then ai - bi 5 a, - b, and (ii) i f  xi = 1, 
xi=-1 a n d H k ( x ) 2 2 ,  f o r i S k < j ,  thenai -b iZa , -b , .  

Necessity is obvious, since if the condition does not hold, then by defining 
,, , x , , a n d y k = ~ k f o r k # i , j w e h a v e y ~ X a n d c ( y ) > c ( x ) . W e s h a l l n o w  Yi=-x.  Y . = -  

prove the sufficiency of the condition. For x, y  E X  define a metric D ( x ,  y)= 
#{ i :  xi # yi). Suppose that x E X  does not solve Problem 2 and let y E X  be a solution 
to Problem 2,  which is nearest (with respect to (w.r.t.) D) to x. Let i  be the smallest 
index such that xi = 1 and yi = -1. Let j  be the smallest index such that xi = -1 and 
y, = 1. I f  i  > j then for every k ,  j 5 k < i, Hk ( y )  2 2. It follows that a, - b, > ai - bi 
(equality cannot occur since it implies D(x ,  z ) <  D ( x ,  y), c ( z )  = c (y ) ,  z  E X, where 
z ,  = 1, z, = -1, zk = yk for k # i, j). Thus, part (i) of the condition does not hold. If i  < j 
then for every k, i I k <j,  H k ( x ) 2  2. Similar arguments imply a,  - b, > ai - bi and in 
this case part (ii) does not hold. 

3. The algorithm. We shall first describe our algorithm in general terms and then 
elaborate on its details. In this section we concentrate on the validity of the algorithm; 
an estimate of the number of operations is given in •˜ 4. 

Let MI = (1 ,  . . . , m ) ,  M2 = { m  + 1, . . , n}. For every x E X  let 

~ ( x ) = m i n { i E M I : H k ( x ) ~ 2 f o r a l l  k ,  i S k I m ) ,  

J ( x ) = m a x { j ~ M ~ : H ~ ( ~ ) 2 2 f 0 r a l l k , m + 1 I k 5 j - 1 ) .  

Our algorithm generates a sequence xO, .  . . , x r  of vectors in X such that 
D ( x ~ - ' ,  x k ) =  2. This sequence develops according to the following scheme. 

Scheme. 
0 .  Initiate with x = ( I , .  . . , 1, -1, .  . . , - 1 ) ~ x .  
1.Find  an E M  such that x i = l ,  i Z I ( x )  and ai -b i= 

min {ak - bk: I ( x ) S  k  5 m ,  xk = 1); find a j E M2 such that xi = -1, j I J ( x )  and 
a i - b j = m a x { a k - b k : m + 1 5 k 6 J ( x ) , x k = - 1 ) .  

2; If ai - bi 4 a, - b, then terminate; otherwise, set xi = -1, x, = 1 and go to 1. 
Let x i  ( i  = 0 ,1 ,  . a )  denote the vector x stored after i  executions of step 2,  and 

suppose that the scheme terminates after r  iterations. It can be easily verified that 
c (xk - l )<c (xk ) ,  k  = 1 , .  , r. Moreover, since H,,,(x~)= m -2k  and H , , , ( X ~ ) ~ O  for 
k = 0 ,  1, . . . , r, it follows that r  S m /2 .  

We shall now prove that upon termination the vector x = x r  is a solution to 
Problem 2. This is done by verifying that the condition stated in the theorem is 
satisfied. Let i  < j  be any pair (1 5 i, j I n) .  Distinguish cases: (i) x, = -1, xi = 1. If 
i , j ~  M 1  then there is q <r such that x?= 1, iZ I ( x q )  and ai -bi = 
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min {ak - bk : I ( x q )  5 k  S m, X :  = 1). This implies a,  - b, 5 a, -- b,. Analogous 
arguments hold in case i, j~ M2. The case i E M,, j E M- can be handled by applying 
this type of arguments twice. (ii) xi = 1, xi = -1 ,  and H k ( x ) ?  2 for i S k < j. If i, j E .Mi 
then there is q < r  such that xy= 1 , j Z  I ( x q )  and a, - b, = min {ak  - b k :  I ( x " ) 5  k 5 111. 

x,"= 1). However, since H k ( x q ) 2 H k ( x )  ( k  = 1 , .  . . , m),  it follows that i 2 I ( x q )  and 
hence ai - bi 2 a, - bi. A similar argument holds in case i, j E M2. If i E MI  and j E M2 
then termination implies ai - bi 2 a, - bi. 

In fact, the sequence xo, . . . , x r  can be generated without calculating the values 
I ( x ) ,  J ( x ) ,  H k ( x )  explicitly. This can be performed as follows. First, the elements i of 
MI  are sorted according to increasing magnitude of a, - b, and the elements j of M2 
are sorted according to decreasing magnitude of ai-  b,. Let xq  be a vector in the 
sequence generated by the scheme. Let A l  denote the ordered (by the natural order 
on M I )  q-tuple of the indices i  E M1 such that xP = -1. An index i  E A is called a right 
minimum if Hi(xq )<Hk(xq )  for every k E MI such that k > i. Let B,  denote the 
ordered set of right minima. Linearly ordered sets A2 ,  B2 are defined in analogous 
manner with respect to the elements in M2; A2 is the ordered tuple of the indices 
j E M2 such that x?+~ = 1  and B2 consists of those j E A z  such that Hi(xq)< H k ( x q )  for 
every k  < j ( k  E M2). Once the lists A I ,  B1,  A2 ,  B2 (w.r.t. a vector x )  are known, it is 
easy to execute step 1  of the scheme. The following algorithm generates the same 
sequence as that generated by the scheme, and at the same time maintains the lists 
A l ,  B1, A2 ,  BZ Our algorithm operates symmetrically on the sets M I ,  M2. Hence we 
shall describe in detail only the part concerning M I .  

ALGORITHM. 
Phase I: Sort the elements i  of M1 to form a list L1 arranged in order of 

increasing magnitude of ai - bi;  sort M2 to form a list L2 aqranged in decreasing order. 
Phase 11: 
0. Initiate with x  = ( I , .  - . , 1, -1 , .  . . , - 1 j ~ X  and A l  = B1 = A 2 = B 2 =  63. 
1. Let i  be the first element in L1  and let s = # { k :  k  E A 1 ,  k < i}.  
2. If i  -2s <2 then delete i  from L1 and go to 1; otherwise go to 3. 
3. If there is no k E B1  such that k > i  then set i* = oo, s* = 0 and go to 5; 

otherwise let i* be the smallest element of B1 such that i*>i  and let 
s* = # { k :  k  E A I ,  k  < i*}. 

4. If i* -2(s* + 1)< 2  then delete i from L1 and go to 1; otherwise go to 5. 
5. Pick an element j E M2 in a manner similar to that by which i  is picked from 

Ml (see steps 1-4; j is the first in L2 such that 2m - ( I -  1)-2t 2 2 ,  where 
t  = # { k :  k  E A2,  k 2 j}, and either there is no k  E B2 such that k  < j, or 
2 m  - j* -2t* 2 2,  where j* is the largest element of B2 such that j* < j - 1 
and t* = # { k :  k  E A2 ,  k  2 j*}). 

6. If ai - bi 2 a, -6, then terminate; otherwise, set xi = -1, x, = 1  and go to 7. 
7. Delete i  from L 1  and insert i  into A l .  
8. If i  - 2(s + I ) ?  i* - 2(s* +2)  then set i  = i*, s  = s* + 1  and go to 9; otherwise 

insert i  into B1. 
9. If there is no k  E B1  such that k < i then go to 11; otherwise let i t  be the 

largest element of B1 such that i t<  i  and let s' = # { k :  k  E A l ,  k  < i ') .  
10. If i f -2 (s1+ 1)<i -2(s+ 1 )  then go to 11; otherwise delete i f  from B1 and go 

to 9. 
11. Perform on j, A2,  B2 operations similar to those performed on i, A l ,  B1 in 

steps 7-10 (delete j  from L2; insert j -  1  into A2,  if j > m + 1; insert j - 1 into 
B2 if it has become a "left minimum" and delete from B2 those elements that 
have ceased from being left minima). 

12. Go to 1. 
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4. The efficiency of the algorithm. We may employ the device of a 2-3 tree (see 
[ I ,  p. 1461 for a precise definition) for handling the linearly ordered sets 
A l ,  B1, A2, B2 in our algorithm. Again, the symmetry enables us to restrict our 
attention to A1 and B1. Let T be a 2-3 tree which represents Al.  For every vertex v of 
T which is not a leaf, L[u] is the largest element of Al assigned to the subtree whose 
root is the leftmost son of v ;  M[u] is the largest element of A,, assigned to the subtree 
whose root is the second son of u. For every vertex v of T let a(v) denote the number 
of leaves of the subtree rooted in v, and let b(u) denote the number of leaves of this 
subtree storing an element of B1. 

It can be easily verified (see [1]) that each one of the following operations can be 
executed in at most O(1og n )  steps: (a) Find the smallest element of A l  which is 
greater than a given i E MI.  (b) Find the smallest [largest] element of B1 which is 
greater [smaller] than a given i~ MI. (c) Insert an element into Al.  (d) Insert an 
element of A,  into B1. (e) Calculate s, s*, s'. 

Since each one of the operations listed above can be executed no more than O(n)  
times in Phase I1 of our algorithm, and since these are essentially all the operations 
executed during Phase 11, it follows that Phase I1 requires no more than O(n . log n )  
steps. It is well-known that Phase I can also be executed in O(n log n )  steps (see [I]). 

REFERENCES 

[I] A.  V. A n o ,  J.  E. HopCROm AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms, 
Addison-Wesley, Readiqg, MA, 1974. 

(21 J.  EDMONDS, Paths, trees andflowers, Canad. J.  Math., 17 (1965), pp. 449-467. 
[3] S. EVEN AND 0. KARIV, A n  0(n512)  algorithm for maximum mptching in general graphs, presented at 

the 16th Annual Symposium on Foundations of Computer Science, Univ. of California at Ber- 
keley, October 1975. 

(41 H. N. GABOW, A n  efficient implementation of Edmonds' algorithm for maximum matching on graphs, J .  
Assoc. Comput. Mach., 23 (1976), pp. 221-234. 


