
SIAM J COMPU7
Vol 7, No 2. May 197%
Copyrtghr @I978 FoElety f o r Indusfr~al and Appl~ed Marhrmalac\

AN O(N . log N) ALGORITHM FOR A CLASS OF MATCHING
PROBLEMS*

NIMROD MEGIDDOt AND ARIE TAMIRJ.

Abstract. The following class of matching problems is considered. The vertices of a complete und~res-
ted graph are indexed 1, . . . , n, where n = 2m. Every vertex i is assigned two numbers a,, b,. The length of
every edge (i , j), where i < j, is d(i , j)= a, + b,. This class of weighted graphs is applicable to scheduhng and
optimal assignment problems. A maximum weighted (perfect) matching is found in O(n . log n) operations.

Key words. matching, assignment, scheduling, polynomial-time algorithm, 2-3 trees

1. Introduction. The maximum matching problem has many applications in
operations research. The first polynomial-time bounded algorithm for the maximum
weighted matching problem is Edmonds' [2]. The most efficient algorithm for the
maximum (cardinality) matching, known to the authors, is Even and Kariv's [3].
Gabow [4] has the most efficient algorithm for the weighted matching. In this paper
we focus on a subclass of maximum weighted matching problems (see •˜ 2 for a precise
definition). Our study is motivated by the following two problems which are easily
shown to belong to our class.

In the first problem, a group of individuals, ordered by seniority, is to be
partitioned into teams, having the same mission. Each team consists of two posi-
tions-a senior position and a junior one. The senior position must be manned by the
more senior individual between the members of the teant. Assuming that we know the
effectiveness of each individual in both the senior and the junior positions, we wish to
maximize the total effectiveness of the teams.

The second problem is to schedule 2m jobs to m identical processors, two jobs to
each processor, preserving the arrival ordering. The objective is to minimize the total
flow time, or equivalently, the average waiting time of a job.

Using a dynamic programming approach, these two models can be solved in
0 (m2) time. In this paper we present an algorithm which solves the above problems in
O(m . log m) operations.

2. Preliminaries. Our goal is to develop an efficient algorithm for the following
problem.

Problem 1. Given numbers ai, bi, i = 1, . . , n (n = 2m), find a perfect matching
(il, jl), - . . , (im, jm), where ik < jk, k = 1, - . . , m, which maximizes x,",, (aik + b,,).

We may assume without loss of generality that a maximum matching
(il, jl), . . , (i,, j,) satisfies ik < ik+l, j k < jk+l, k = I , . . . , m - 1. In view of this we
shall restrict our attention to matchings (il, jl), - . . , (i,, j,) which satisfy ik < jk, k =
1, . - . , m, and ik < ik+l, j k < k = 1, . . . , m - 1. These can be handled by
introducing the following notation.

Let x, = (xl, . - - , x,) be a vector whose components are either 1 or -1. Denote
H.(x)=C;=, xk, i = 1, . . , n. Let X be the set of all vectors x (x = (xl, . . . , x,),
xi E (1, -1)) such that Hi(x)2 0, i = 1, . . . , n - 1 and H,(x) = 0. Consider the follow-
ing problem.

* Received by the editors April 7, 1977.
t Department of Statistics, Tel-Aviv University, Tel-Aviv, Israel. Now at Department of Business

Administration, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
$ Department of Statistics, Tel-Aviv University, Tel-Aviv, Israel.

AN O (N . log N) ALGORITHM 155

Problem 2 . Maximize c (x) - I:=, (a , - b,) . x, over X.
We claim that Problems 1 and 2 are equivalent. Specifically, if (i l , I ,) , . . . , (i,, 1,)

solves Problem 1 then the vector x, where xk = 1 if k = iq and x k = - 1 if k = jq, solves
Problem 2. Conversely, if x solves Problem 2 then a solution to Problem 1 is defined
recursively as follows. Let i l = 1. Suppose that i l , . . . , iq and j l , . . . , jr (0 5 r 5 q) have . .
been defined, and { i l , . . , I,, 11, - . . , jr} = { I , . . . , q + r). Then, if xq+,+l = 1 let iq+l =

q + r + 1 and if xq+r+l = -1 let j rc l = q + r + 1. Thus, we shall henceforth be dealing
with Problem 2. We note that Problem 2 can be transformed to a linear program with
a iotally unimodular matrix whose basic solutions yield solutions to our problem.
Thus, the theory of linear programming suffices for solving Problem 2. However, we
shall present an algorithm which is more suitable. Our algorithm is based on the
following theorem.

THEOREM. A vector x solves Problem 2 if and only if the following condition holds.
For every pair i, j, 1 S i < j 5 n, (i) if xi = -1, xi = 1 then ai - bi 5 a, - b, and (ii) i f xi = 1,
xi=-1 a n d H k (x) 2 2 , f o r i S k < j , thenai -b iZa , -b , .

Necessity is obvious, since if the condition does not hold, then by defining
,, , x , , a n d y k = ~ k f o r k # i , j w e h a v e y ~ X a n d c (y) > c (x) . W e s h a l l n o w Yi=-x. Y . = -

prove the sufficiency of the condition. For x, y E X define a metric D (x , y)=
#{ i : xi # yi). Suppose that x E X does not solve Problem 2 and let y E X be a solution
to Problem 2, which is nearest (with respect to (w.r.t.) D) to x. Let i be the smallest
index such that xi = 1 and yi = -1. Let j be the smallest index such that xi = -1 and
y, = 1. I f i > j then for every k , j 5 k < i, Hk (y) 2 2. It follows that a, - b, > ai - bi
(equality cannot occur since it implies D(x , z) < D (x , y), c (z) = c (y) , z E X, where
z , = 1, z, = -1, zk = yk for k # i, j). Thus, part (i) of the condition does not hold. If i < j
then for every k, i I k <j, H k (x) 2 2. Similar arguments imply a, - b, > ai - bi and in
this case part (ii) does not hold.

3. The algorithm. We shall first describe our algorithm in general terms and then
elaborate on its details. In this section we concentrate on the validity of the algorithm;
an estimate of the number of operations is given in •˜ 4.

Let MI = (1 , . . . , m) , M2 = { m + 1, . . , n}. For every x E X let

~ (x) = m i n { i E M I : H k (x) ~ 2 f o r a l l k , i S k I m) ,

J (x) = m a x { j ~ M ~ : H ~ (~) 2 2 f 0 r a l l k , m + 1 I k 5 j - 1) .

Our algorithm generates a sequence xO, . . . , x r of vectors in X such that
D (x ~ - ' , x k) = 2. This sequence develops according to the following scheme.

Scheme.
0 . Initiate with x = (I , . . . , 1, -1, . . . , - 1) ~ x .
1.Find an E M such that x i = l , i Z I (x) and ai -b i=

min {ak - bk: I (x) S k 5 m , xk = 1); find a j E M2 such that xi = -1, j I J (x) and
a i - b j = m a x { a k - b k : m + 1 5 k 6 J (x) , x k = - 1) .

2; If ai - bi 4 a, - b, then terminate; otherwise, set xi = -1, x, = 1 and go to 1.
Let x i (i = 0 ,1 , . a) denote the vector x stored after i executions of step 2, and

suppose that the scheme terminates after r iterations. It can be easily verified that
c (xk - l)<c (xk) , k = 1 , . , r. Moreover, since H,,,(x~)= m -2k and H , , , (X ~) ~ O for
k = 0 , 1, . . . , r, it follows that r S m /2 .

We shall now prove that upon termination the vector x = x r is a solution to
Problem 2. This is done by verifying that the condition stated in the theorem is
satisfied. Let i < j be any pair (1 5 i, j I n) . Distinguish cases: (i) x, = -1, xi = 1. If
i , j ~ M 1 then there is q <r such that x?= 1, iZ I (x q) and ai -bi =

156 NIMROD MEGIDDO A N D ARIE I'AMIR

min {ak - bk : I (x q) 5 k S m, X : = 1). This implies a, - b, 5 a, -- b,. Analogous
arguments hold in case i, j~ M2. The case i E M,, j E M- can be handled by applying
this type of arguments twice. (ii) xi = 1, xi = -1 , and H k (x) ? 2 for i S k < j. If i, j E .Mi
then there is q < r such that xy= 1 , j Z I (x q) and a, - b, = min {ak - b k : I (x ") 5 k 5 111.

x,"= 1). However, since H k (x q) 2 H k (x) (k = 1 , . . . , m), it follows that i 2 I (x q) and
hence ai - bi 2 a, - bi. A similar argument holds in case i, j E M2. If i E MI and j E M2
then termination implies ai - bi 2 a, - bi.

In fact, the sequence xo, . . . , x r can be generated without calculating the values
I (x) , J (x) , H k (x) explicitly. This can be performed as follows. First, the elements i of
MI are sorted according to increasing magnitude of a, - b, and the elements j of M2
are sorted according to decreasing magnitude of ai- b,. Let xq be a vector in the
sequence generated by the scheme. Let A l denote the ordered (by the natural order
on M I) q-tuple of the indices i E M1 such that xP = -1. An index i E A is called a right
minimum if Hi(xq)<Hk(xq) for every k E MI such that k > i. Let B, denote the
ordered set of right minima. Linearly ordered sets A2 , B2 are defined in analogous
manner with respect to the elements in M2; A2 is the ordered tuple of the indices
j E M2 such that x?+~ = 1 and B2 consists of those j E A z such that Hi(xq)< H k (x q) for
every k < j (k E M2). Once the lists A I , B1, A2 , B2 (w.r.t. a vector x) are known, it is
easy to execute step 1 of the scheme. The following algorithm generates the same
sequence as that generated by the scheme, and at the same time maintains the lists
A l , B1, A2 , BZ Our algorithm operates symmetrically on the sets M I , M2. Hence we
shall describe in detail only the part concerning M I .

ALGORITHM.
Phase I: Sort the elements i of M1 to form a list L1 arranged in order of

increasing magnitude of ai - bi; sort M2 to form a list L2 aqranged in decreasing order.
Phase 11:
0. Initiate with x = (I , . - . , 1, -1 , . . . , - 1 j ~ X and A l = B1 = A 2 = B 2 = 63.
1. Let i be the first element in L1 and let s = # { k : k E A 1 , k < i}.
2. If i -2s <2 then delete i from L1 and go to 1; otherwise go to 3.
3. If there is no k E B1 such that k > i then set i* = oo, s* = 0 and go to 5;

otherwise let i* be the smallest element of B1 such that i*>i and let
s* = # { k : k E A I , k < i*}.

4. If i* -2(s* + 1)< 2 then delete i from L1 and go to 1; otherwise go to 5.
5. Pick an element j E M2 in a manner similar to that by which i is picked from

Ml (see steps 1-4; j is the first in L2 such that 2m - (I - 1)-2t 2 2 , where
t = # { k : k E A2, k 2 j}, and either there is no k E B2 such that k < j, or
2 m - j* -2t* 2 2, where j* is the largest element of B2 such that j* < j - 1
and t* = # { k : k E A2 , k 2 j*}).

6. If ai - bi 2 a, -6, then terminate; otherwise, set xi = -1, x, = 1 and go to 7.
7. Delete i from L 1 and insert i into A l .
8. If i - 2(s + I) ? i* - 2(s* +2) then set i = i*, s = s* + 1 and go to 9; otherwise

insert i into B1.
9. If there is no k E B1 such that k < i then go to 11; otherwise let i t be the

largest element of B1 such that i t< i and let s' = # { k : k E A l , k < i ') .
10. If i f -2 (s1+ 1)<i -2(s+ 1) then go to 11; otherwise delete i f from B1 and go

to 9.
11. Perform on j, A2, B2 operations similar to those performed on i, A l , B1 in

steps 7-10 (delete j from L2; insert j - 1 into A2, if j > m + 1; insert j - 1 into
B2 if it has become a "left minimum" and delete from B2 those elements that
have ceased from being left minima).

12. Go to 1.

AN O (N . log N) ALGORITHM 157

4. The efficiency of the algorithm. We may employ the device of a 2-3 tree (see
[I , p. 1461 for a precise definition) for handling the linearly ordered sets
A l , B1, A2, B2 in our algorithm. Again, the symmetry enables us to restrict our
attention to A1 and B1. Let T be a 2-3 tree which represents Al. For every vertex v of
T which is not a leaf, L[u] is the largest element of Al assigned to the subtree whose
root is the leftmost son of v ; M[u] is the largest element of A,, assigned to the subtree
whose root is the second son of u. For every vertex v of T let a(v) denote the number
of leaves of the subtree rooted in v, and let b(u) denote the number of leaves of this
subtree storing an element of B1.

It can be easily verified (see [1]) that each one of the following operations can be
executed in at most O(1og n) steps: (a) Find the smallest element of A l which is
greater than a given i E MI. (b) Find the smallest [largest] element of B1 which is
greater [smaller] than a given i~ MI. (c) Insert an element into Al. (d) Insert an
element of A, into B1. (e) Calculate s, s*, s'.

Since each one of the operations listed above can be executed no more than O(n)
times in Phase I1 of our algorithm, and since these are essentially all the operations
executed during Phase 11, it follows that Phase I1 requires no more than O(n . log n)
steps. It is well-known that Phase I can also be executed in O(n log n) steps (see [I]).

REFERENCES

[I] A. V. A n o , J. E. HopCROm AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Readiqg, MA, 1974.

(21 J. EDMONDS, Paths, trees andflowers, Canad. J. Math., 17 (1965), pp. 449-467.
[3] S. EVEN AND 0. KARIV, A n 0(n512) algorithm for maximum mptching in general graphs, presented at

the 16th Annual Symposium on Foundations of Computer Science, Univ. of California at Ber-
keley, October 1975.

(41 H. N. GABOW, A n efficient implementation of Edmonds' algorithm for maximum matching on graphs, J .
Assoc. Comput. Mach., 23 (1976), pp. 221-234.

