SIAM J. ArrL. MATH.
Vol. 29, No. 3, November 1973

P

y

(\QD/,’ TENSOR DECOMPOSITION OF COOPERATIVE GAMES*

NIMROD MEGIDDO*

Abstract. A decomposition theory for n-person games is introduced. A ““unique factorization™
theorem is proved. In general, every monotonic game has 4 unique decomposition with 4 quotient that
is either prime or absolutely decomposable. Finally. an application to reliability theory is suggested.

1. Introduction. The tensor composition of nonnegative characteristic
function games is a generalization of Shapley's compound simple games [11], [12],
[13], [14]. This composition was suggested by Owen in [9].

Shapley has proved a unique decomposition theorem with respect to his
composition concept. This theorem was proved, independently, also by Birnbaum
and Esary in [4]. In this paper we generalize the results of Shapley, namely, we
prove a unique decomposition theorem with respect to Owen’s composition.
Particularly, Shapley’s “committees”™ are generalized in a suitable way.

All the games in this paper are assumed to be monotonic. As a matter of fact,
this assumption is not necessary for most of the theorems. It is essential only to the
proof of Assertion 4.3a. Monotonicity was assumed also by Shapley, Birnbaum
and Esary.

2. Definitions. A characteristic function game is a pair I' = (N; v), where
N = {1, ---, n} is a nonempty finite set and v is a real-valued function defined
over the subsets of N. We usually assume that

(2.1) o(N) =1,
(2.2) Q) =0

and

(2.3) us) = 0, ScN.

The elements of N are called players and the subsets of N are called coalitions.
The game is called monotonic if for every pair of coalitions S, T,

(2.4) ScT=uvS) = uT).
A player i is termed dummy if for every coalition S,
(2.5) S U {i}) = u(S).
A coalition D is said to be inessential if for every coalition S « N\D,
(2.6) (S U D) = uS).

Otherwise D is said to be essential.
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DECOMPOSITION OF GAMES 389

DerINITION 2.1 (Owen). Let Ty = (M;u)and T, = (Njswy) i= 1, - m,
be games satisfying (2.1){2.3). Suppose that M = {I,--- , M}and N, AN =
for every pair of distinct elements i, j € M. The tensor composition of the components

r,, -, I, with the quotient T, is defined to be the game

2.7) I=(N;v)=T,,, -, .

where

(2.8) N=N,U---UN,

and for every S < N,

(2.9 us) = > {ﬂ wi(SNN)TTI —wisS N N,-)]}u(T).
T<eM LigT i¢T

Sometimes we write [,{I";:ie M]for [y[I'y, -, T,].
It was proved by Owen [9] that v(S) defined by (2.9) is the unique function that

satisfies

(2.10) v<U N,~> = u(T), T <M,
and e
(2.11)

oS U {i}) — ofS) = [wi(S NN U {ih — wiS N NS U N) — (S\N,)]

for every S = N and ieNj,jeM.

Justifications of Definition 2.1 were given in [9], [10]. A nongame-theoretic
interpretation is given in Appendix B.

A game [ is called decomposable if it can be represented as a composition of m
components (1 < m < |N]). Otherwise the game is called prime.

DEFINITION 2.2. Let ' = (N; v) be a game satisfying (2.1)-(2.3) and let C be
a nonempty coalition in I'. A game I'; = (C;¢) is called a committee game of T if
forevery S © N, ~

(2.12) w(S) =S N WS U C) + [1 — oS N O(S\C).

The coalition C is then called a committee of T

Itis easy to verify that Definition 2.2 generalizes Shapley’s committees [ 14, p. 6].
A committee C is said to be proper if it is a proper subset of N and contains at least
two players.

The concept of the committee can be interpreted in the following way. Given
a coalition C, define the relative contribution of a coalition B < C to a coalition
T <= NXC (such that o(T) # o(T U C)) to be the fraction (o(T U B) — (T))/
(T U C) — »(T)). Thus a committee is a coalition such that the relative contribu-
tion of every B < C to T is independent of T.

We shall use the notation

(2.13) u(S)=1-—v(S)

for every characteristic function v.
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DeriNniTION 2.3, Let I' = (N; r) be a game and let C be a coalition in I
Denote by i, an element which does not belong to N and let N = (N\C) U {i.}.
Define a characteristic function v, over N as follows. For every S = N,

(2.14) 1ulS) = {u((S\{ic}) U ific €S,
r{S) ifi-¢S.

The game [/ = (N:v)1s called the contraction of I on the coalition C.

LEMMA 2.4, Let T = (N:v) and Ty = (C; ¢) be games satisfring (2.1)—(2.3)
and such that C = N. Then U is a committee game of T if and only if there is a
representation of T as a composition (se¢ Definition 2.1}, where T is one of the
components.

Proof. (a) Suppose that ' is the tensor composition I' = I'j[I',, -, T,.],
where I'y = (M;u), [, = (Nyiwy), k = 1, -- -, m (see Definition 2.1), and assume
that C = N,. Thus for every S < N (see (2.13)),

WS = ¥ {n w(S NN TS N N,)}u(T)
TeM LieT i¢T

i

—w(SNO Y {H wiS NNy [ 7S N N,)}H(T)
leTeM et il

(2.15)
+ w(S N C) Z {l—[ wi(S N'N) n w(S N NE)}“(T)

1¢T<M lieT i¢T
‘ i

= w (SN OWS U N,) + #,(S N COWS\N,),

It follows that I", = (C:w,) is a committee game of I'.

(b) Suppose that C is a committee of I' with the characteristic function ¢. For
each player i ¢ C, let I'; = ({i};w;) be a l-player game where w{{i}) = 1. Denote
N;.= C,w;. = candforeachi # i., N, = {i}. Forevery § < N,

oS) = (S N WS U C) + &S N OWSN\C)
=S N COwl(SNCYU {ic}] + &S N CO)e(SN\C)
—dasnNo Y {ﬂ w(S N NY [T w48 N Nn}vc(T)
(2.16) feel = Ne 550 T
+asnc Y {ﬂ w(S NN ] 7SN N,-)}UC(T)
icgT<Ne lieT ii;'{‘(
= Z {H wi{S N Ny H w(s N Ni)}vC(T)'
T<Ne UeT igT
Thus
(2.17) [ =TI/{T:ieNJ.

where I'; . = (N
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COROLLARY 2.5. A game is decomposable if and only if it has a proper committee.

3. Basic properties of committees.
LemMA 3.1. If C is an essential committee of I' = (N ;v), then there is a unique

function c over the subsets of C such that T - = (C; c) is a committee game of I.
Proof. If C is an essential committee of I', then there exists T < N\C such

that

(3.1 (T U C) # u(T).

If I = (C;c) is a committee game, then for every B = C, necessarily

oBU T) — o(T)

Lemma 3.2. (i) Let i be a dummy in the game T and let C = N be a coalition in T.
Then C is a committee of T if and only if the coalitions C U {i} and C\{i} are
committees of T

(i) Ifiis a dummy in the committee game T'c = (C;¢) of ' = (N;v), then it is a
dummy in T too.

The proof is immediate.

Henceforth we assume that all the players are nondummies. We say ['¢
= (C;c¢) is an essential committee game of I' if C is an essential committee of T".

LeMMA 3.3. Let T = (C; ¢) be an essential committee game of I’ = (N; v)
and let D < C be a nonempty coalition. Then D is a committee of U if and only if it is a
committee of T

Proof. (a) Suppose that [', = {D:d) is a committee game of I'c.. For every
S < N,

o(S) =S N OWS U C)+ &S N OWwSN\C)
= {d(S N D)[(S N C)U D] + d(S N D)c[(S N OO\DJ}(S U C)
+ {1 = d(S N D)e[(S N C)U D] — &S N D)[(S N C)N\DIAS\C)
= d(S N D){c[(S N C) U DS U C) + &(S N C) U DI(S\C)}
+d(S N DY{[(S N C)N\NDIS U C) + (S N C)\DIHS\C)}
=d(S N Dy(S U D) + d(S N Dw(S\D).

(3.3)

It follows that ', is a committee game of I too.
(b) Suppose that I, = (D;d) is a committee game of I'. Let T < N\C be a
coalition such that o(C U T) # o(T) (notice that C is essential). For every S < C,

SUDUT) - uoT
(3.4) asuU Dy =2 &0 T)_)U(T"g )

3

S\D)U T] = oT
(3.5) (S\D) = ”[(U(C U) - _] U(T”; )
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and
i) < SU T —uT)
T wcun - an
_dSNDSUDUT)+dS N DR{SND)U T] — o(T)
(3.6) oC U T)—oT)
- (SUDUT) - uT) USND) U T = o(T)
sasnm HCU T) = o(T) A4S N D) o(C U T) = uT)

i

d(S N DY«(S U Dy + d(S N D)(S\D).

Thus I'p is a committee game of [ too.
LEMMA 3.4. Let U= (C;¢) be a committee game of I = (N:r) and let
D = N\C be a nonemprty coalition. Then D is a committee of I if and only if it is a
committee of the contraction game T/ ..
Proof.(a) Suppose that '), = (D:d) is a committee game of I'. Let S « N.bea
coalition (see Definition 2.3). If i € S, then
vl S) = vl(SN\{ic) U C]
= d(S\{ic) U €) N DS\ {ich) U € U D]
(3.7) + dl((S\{i-}) U C) N D[S \{ic-}) U C)\D]
~ = d(S N DyrAS U D) + d(S N D)o(S\.D).
If i ¢S, then
vc(S) = u(S)
d(S N Dy(S U D) + d(S N D)w(S\.D)
= d(S N DyvAS U D) + d(S N Dyv(S\D).

(3.8)

It follows from (3.7)—(3.8) that ', is a committee game of [/ too.
{b) Suppose that I, = (D:d) is a committee game of ['/. Forevery S = N,

$) =S N OWS U Cy+ &S N O(S\C)
= (S N O (SNOY U Li}] 4+ &S N COredSNC)
= (S N O {dS N Dp[(S\NCYU i} U D]
(3.9 + d(S N D JJUSNCY YU {i:Hh\D]}
+ &S N C){dS N Dy J(S\NC)U D] + dS N D) [ISNC)\D]}
=dS NDHASN S U DU C) + &S N Cwl(S U D)Y\CY}
+ d(S N DYL(S N COR[(S\D)U €] + &S N C)e[(S\D)\C}
= d(S N DS U D) + d(S N D)(S\D).

Thus I', 1s a committee game of I too.

LemMa 3.5, Ler T = (C; ¢) be a committee game of T = (N;v) and let
D < N be a coalition such that C < D. Denote D = (DN\C) U {i.} (see Definition
2.3). Under these conditions, D is a committee of T if and only if D is « committee
of the contraction game T'/.



DECOMPOSITION OF GAMES 393

Proof. (a) Suppose that '), = (D;d) 1s a committee game of I'. For every
B < D define

310 1 (B) = d(B) if i ¢ B.
(3.10) CE BN\t U €] ifieeB.
Let S = N be a coalition. If i ¢ S, then

ve(S) =1(S)
(3.11) =d(S N DS U D)+ dS N D(S\D)

= d (S N DJrAS U D) + ddS N DA SN\ D).
Similarly, if i € S, then
vdS) = o[(S\Vi¢}) U (]
= d[((5\{ic}) U C) N D[(S\Hic}) U D]
(3.12) + dl((S\{ic}) U O) N D[S\ {icH\D]
=dAS N DS U D) + do(S N De)r(SN\D¢).
It follows from (3.11)~(3.12) that (D,:d.) is a committee game of I'/..
(b) Suppose that I';,_ = (D;d.) is a committee game of I'/.. Forevery B = D
define
(3.13) d(B) = ¢(B N O} (B\C)U {i-}] + B ) C)dAB\C).
Let S = N be a coalition and denote B = S 1 D. Thus
(S U C) = v [(SN\NO) U {ic}]
= d{(SNCYU {ic})) N DeJoclUSNO) U {ich U D]
(3.14) + d JSNC) U {ic}) N DJecSNCY U {ic))\D¢]
=dJ(B\C)U {i-}Jo(S U D) + d(B\C) U {ic}1e(S\D).
Also,
SNC) = vASN\C)
= dJ[(SN\C) N Do(SNCYU D]
(3.15) + dASNC) N Do J(SNOND]
=ddB N Cu(SU Dy + ddB N Cw(S\D).
It follows from (3.14)-(3.15) that
o{S) = (BN Cw(SU C) + BN C)p(S\C)
= (B N CHd[(BN\C) U {ic}1o(S U D) + dABN\CYU {i}Jo(SN\D)}
+ B N OY{d(B\Cx(S U D) + d(BN\CW(S\D)}
= d(B)(S U D) + d(B}(S\D).
Thus I', = (D d) is a committee game of I,

(3.16)

4. Intersecting committees. In this section we shall be dealing with dummy-
free monotonic games. It is a consequence of these assumptions that every non-
empty coalition is essentiul.
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We use the following notation. T = (N:r) is a game and [, = (C:c¢) and
I, = (D:d) are two committec games of I'. Denote

@la.bc.d E=CUD. E, =C\D. E,=CND, E,=D\C.

We assume that E . Es. and £ are all nonempty.

LEMMA 4.1. The interscction. E, = C (\ D, of the committees C, D is also a
committee of T.

Proof. Let T = N\(E, be a coalition such that

{4.2) dE, U T)# ofT).

(Notice that E, is assumed to be nonempty and. therefore, essential.) Denote

T,=TN\E.T,=T NE.i=123{see(4.1). Forevery B c E, define
(4.3) (B) = fi(,lip_n_,— uT)
' T WE, UT) o1y

The committeehood of C implies
[BU T) = dT)[C U T) — dTNC)]

A e, U T) = o€ U T) = oTNO)
ABUT) — oT)

TAE,UT) - ATy

(4.4)

Thus the definition of e,(B) (see (4.3)) is independent of T, and T, (provided (4.2} is
satisfied). Analogously, the committechood of D implies

d(B U T;) — d(T3)

(45) B = WETUT Zam)
and thus the definition of ¢,(B) is also independent of T, (provided (4.2} holds).
Moreover, if T', T" = N\\E, satisfy (4.2). i.e.. (E, U T') # o(T) and o(E, U T")
# o(T").thenthesameistruefor(T' N E,) U (T"\E)and(T' N E;) U (T"\E;).
Thus I'y, = (E,:e,) 1s a committee game of I'.

LemMa 4.2, Let T = (N:v) be a dummy-free game satisfving (2.1)-(2.4), and
let C. D be committees of T such that E,. E, and E; are all nonempty (see (4.1)).
Under these conditions, E, = C\D is a committee of T.

We first prove the following.

ASSERTION 4.2a. If d(E;) = 0. then there exists a coalition T < N'\E such
that

(4.6) HEUT)+# o(CUT).
Proof. 1t follows from the equality d(E,) = 0 that for every T< N\E,
(4.7) WE, U T)=u(T).
Suppose. per absurdum. that for every T < N'\(E.
(4.8) oEUT)y=noCUT).
On the other hand. for every (* < C,
(4.9 o(C* U Ty = o(CH(C U T) + &CF (T
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and

4.10) W(C*UE,UT)=c(CHEUT)+ (C*E; U T).
It follows from (4.7)-(4.10) that

(4.11) HC*U T)=o(C*U E; U T).

Thus E, is inessential, in contradiction to our assumption.

ASSERTION 4.2b. [If there is a coalition T = N\E such that o(E; U T)
# WE U T), then there exist real numbers A, u such that A* + p* # 0, and for every
Bc E,|,
(4.12) Ac(B) = ple(BU E,) — ¢(E,)].

Proof. For every B < E, and T< N\E,

WBUE; U T)dBWEU T) + &BWE, U T)
=c(B)WEU T) — vo(E; U T)]

+ dEj)(D U T) + d(E;)(T)

4.13

“.13) =cB)WEUT) - uv(E; U T)
+ d(E){MEU T) — (E5; U T)JE,) + u(E; U T)}
+ d(E)u(T).

On the other hand,

14 UBU E;UT)=dE){EUT)—-oE;UT)c(BUE,)+ v(E;U T)}

(4.14) + d(E;){[(C U T) — o(T))e(B) + oT)}.

Define

(4.15) A=uEUT) = oE; U T) = HE)WC U T) — o(T))

and

(4.16) p=d(E)[MEU T) — E; U T).

If d(E,) = 0, then
(4.17) A=vEUT)-uo(CUT)

(see (4.7)). According to Assertion 4.2a we can choose T such that 1 # 0. If d(E,)
# 0, then we can choose T such that u # 0 (this is actually our assumption). It
follows from (4.13)-(4.16) that (4.12) is satisfied.

The proof of Lemma 4.2. Let S « N\ E, be a coalition such that o(S U E))
# v(S) (notice that E| is essential). For every B < E| define

_ uBUS) - uS)
o = e US) )

We shall prove that this definition is independent of S (provided o(E, U S) # (S)).
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Denote D* = S N D and T = S\E. A short calculation yields
(4.19)
e (B) =
dAD*) (B U Ey) — (E)WE U T) ~ {E;UT)] + dD¥)ABYC U T) — (7))

ADHAEN[HE U T) — (E, U TY] + d(DF)e(E,)[W(C U T) — o(T)]
If for every coalition T N\\E,
(4.20) HEU Ty=uE; UT),
then (4.19) 1s reduced to
4.21) e(B) = dBY(c(E ).
This is obviously independent of S. Suppose that T < N\\E is a coalition such
that
{4.22) HEU Ty o(E; U T
It follows from Assertion 4.2b that ¢,(B) is independent of the numbers

dDH[(EU T) - (E;U T)]

and
dD*)[e(C U T) —o(T)].

Thus ¢,(B) is independent of D* and T (provided v(S U E, # (S)) and hence E,
is a committee of I

LEMMA 4.3. Under the conditions of Lemma 4.2, the union E=C U D is a
committee of T.

We first prove the following.

ASSERTION 4.3a. Under the above conditions, either d(Ey) # 1 or ¢(E,) # 0.

Proof. Suppose, per absurdum, that both

(4.23) d(E;) = 1
and

(4.24) (E,) = 0.

Let T« NX\E be any coalition and denote

(4.25) vy = o(T),

(4.26) v, = olE; U T, i=1.2.3,

(4.27) b, =oE,UEUT),  15i<j<3,
and

(4.28) Uyys = o(EU T).

It follows from (4.23}-(4.24) that

(4.29) ry, = Uy.

(4.30) Uyy = Uy,
(4.31) Uyy = U'ya23
(4.32) oy, = d(Ey)vsy + c?(EZ)L*(,.
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It follows from (4.29) and (4.32) that
(4.33) d(E ), — vg) = 0.

If d(E,) = 0, then E, is inessential. This can be deduced from Lemmas 3.3 and 4.2
since they imply for B < E;, d(B) = d(E;)e;(B) + &,5(B)d(J) = ey(B). and
d(B U E,) = d(D)ey(B) + ¢,(B) d(E,) = ¢,(B). That is, E, is inessential in T ).
whence inessential in I'. Thus necessarily d(E,) # 0, and (4.33) implies

(4.34) Uaz = Up-
Also,
(4.35) U3 = (B Ly + dE ey,

If ¢(E,) = 0, then by (4.35) v,; = v5, so that (4.30}, (4.31), and (4.34) imply
(4.36) Uiay = Ug.

Thus E is inessential. If ¢(E,) = I, then E, can be seen to be inessential from
Lemmas 3.3 and 4.2 as above. If 0 < C(E,) < l.then (4.31), (4.34) and (4.35) imply
(4.36) (notice that (4.34) implies vy = v, by monotonicity) and. again. E is in-
essential. Thus Assertion 4.3a is proved.

The proof of Lemma 4.3. For every S < N,

(4.37) o[(SNC) U D] = ¢«(E,)e(S U E) + &E,)e[(S U D)N\CT.
(4.38) o[(S U DYNC] = d(E[(SN\C) U D] + d(E4)(S\E).

Consider (4.37)-(4.38) as a system of two simultancous linear equations for the
unknowns ¢[(SN\C) U D] and o[(S U D)NC]. Assertion 4.3a implies that this
system has a unique solution, namely,

E)d(Ey)u(S U E) + d(E ) (5\1:)

(4.39) o[(S U D)NCT =

I — d(E)d(E,)
E(SU E) + HE,) dE )(S\E)
4.40 SNC)U D] = — -
(4.40) v[( 1= T~ d(EAE,)
Symmetrically,
) {E)CE)S U E) + (E )L(S\E)
4.41 (S U C)\D] = 52 .
(4.41) v[( )IN\D] |~ o(E )
(4.42) J(S\D) U €] = d(E)u(S U E) + ‘I(E%)‘_(hl_’,lf‘,s,\,ﬁ)
o 1 = (E(E,)

For every S « N,
(4.43)
oS) = (SN Cw(SUCy+ S N Cr(SNCO)
=dSNOAISU O N DS U E)+d[SUCYN DS U ONND]]
+ S N OYAUSNC) N DI[(SNCY U DY + d[(SNCY N DIe(S\E};.
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For every B < E define
e(B) = ¢(B N C){d[(B uonbj+
B N COW{(B\C)Y N DIE,)

I — d(E)(E,)
Substituting (4.40) and (4.41) in (4.43), we find that
(4.45) WS)=e(SN EWS U E)+ &S N EY(S\E).

ﬂBUOﬂDM%ME}

(4.44) - C(El)a(Ez)

Thus, (E:e) is a committee game of T

LeMMa 4.4, Under the conditions of Lemma 4.2, E, U E; = (C\.D) U (D\C)
is also a committee of T

Proof. (a) Let T, be a 3-player game satisfying (2.1)-(2.4) and denote the value
of a coalition § < {1,2, 3} in 'y by vs. It is easy to verify (see Lemma 3.1) that
{1,2} is a committee of I';if and only if both

(4.46) Uyslvyy — v3) = vy(1 = v3)
and
(4.47) Uiy, — U3) = vo(1 — vy).

(Equalities (4.46), (4.47) are necessary and sufficient for defining a value to {1},
{21, respectively, in a committee game over {1, 2}, and these two coalitions are the
significant ones since {l,2} must have a unit value.) Analogously, {2,3} is a
committee of I'; if and only if both

(4.48) Va3, — Uy) = vl —vy)
and
(4.49) vy5le s — 1) = vs(1 — vy).

Suppose that both {1, 2} and {2, 3} are committees of I';. We shall prove that also
{1,3} is a committee of I'y. Indeed, if v,, = 0, then v, = v, = 0 and by (4.49),
0231)13 = 03. Thus bOIh

(4.50) Uy a0y, — ty) = vyl = vy)
and
{4.51) Uy — vy) = 03l — 1y).

If vy = 1, then v,5 = v,; = . In this case, (4.51) holds and (4.48) implies (4.50).
If both v,, # 0 and v, # 1, then (4.46)-(4.47) imply

(4.52) oy(ryy — vy) = vlv,3 — v3).

Equalities (4.49) and (4.52) then imply (4.51).
Symmetrically, if eithet r,; = 0 or v, = I, then both (4.50) and (4.51) hold,
and if both v,; # 0 and r; # 1, then (4.48)—(4.49) imply

(4.53) Calty> — v)) = vy(vy3 — by).
Equalities (4.46) and (4.53) then imply (4.50). Thus in every case, (4.50)+4.51) hoid
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and, therefore, {1, 3} is a committee of I'5.

(b) In Lemmas 4.1-4.3 we have proved that E |, E,. E5. and E are committees
of I'. Lemma 3.3 implies that they are all committees of the committee game
I, = (E;¢) too. Also, E,.U E, and £, U E; are committees of I';,. The game ')
can be represented as

(4.54) rl-_‘ = r3[rE1~ rl—,‘;' rh]~

where Iy . i = 1, 2, 3, are the appropriate committee games and I'; 1s a 3-player
game of which (1,2} and {2,3} are committees. According to part (a) of the
present proof, {1,3} is a committee of I'y. Thus, following Lemma 3.5, E, U E;
is a committee of I', whence (Lemma 3.3) of T,

5. Perfect compositions.

DEFINITION 5.1. (i) A tensor composition I' = [o(I"}, - -+, I,.] (see Definition
2.1) is called perfect' if for every nonempty coalition T < M the coalition NT
= U, N, is a committee of .

(ii) An absolutely decomposable game is a game every nonempty coalition of
which is a committee.

(iii) A composition (or decomposition) is called prime if the quotient game is
prime.

LEMMA 5.2. A composition T = I'y[I',, -+, I',.] (see Definition 2.1) is perfect
if and only if the quotient game T is absolutely decomposable.

The proof follows from successive applications of Lemma 3.5.

Example 5.3. Let ®™ be the m-player (m Z 1) unanimity® game. Obviously.
®™ is absolutely decomposable (for every nonempty coalition T« M the |T}-
player unanimity game over T is a committee game of ®"). Thus the product
®"[y, -, TI,] of the games [';, ---, [, in which

m

(5.1) uS)= [ w(SNN), ScN,
i=1
is a perfect composition.

Example 5.4. Let @™ = (M ; u) be an m-player game, where (T) = [ for every
nonempty T = M and u() = 0. Obviously. ®"™ is absolutely decomposable and
therefore the sum @ ™[, ---, '] of the games ", ---, ', is a perfect compo-
sition. It follows from [9, Lemma 1, p. 314] that for every § < N,

(5.2) uS)= Y (=D wS N NY.
HFET<M el
Remark 5.5. According to our definitions, every 2-person game is both prime
and absolutely decomposable. Moreover, this property characterizes the games of
at most two players. Thus every composition of two components is perfect.

" We relate the word “perfect” both to compositions and decompositions
S ®" = (M), where (M) = L and forevery T& M u(T) = 0
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Remark 5.6. Every additive® game is absolutely decomposable (with additive
committee games). A composition with an additive quotient is therefore perfect.

A composition I' = ([T, ---, I, ], where I, is additive, is a “convex combina-
tion” of the games I' |, - -, T',, in the sense that for every S < N,
(53) uS) = Y udihmw(S N N).

i=1

Example 5.7. Let 'y =(M;u) be a 3-player game, where u({i}) = 1/7,
i=1,23u{ij})=371=2i<j=<3ud) =0andu(M) = 1. Itiseasily verified
that I'; is a nonadditive absolutely decomposable game which is different from
®3and 3.

LEMMA 5.8. A dummy-free game I' = (N; v) has a perfect decomposition if and
only if there is a partition of N into m (m 2 2) disjoint committees N, ---, N,
such that for every pair i, j,1 £ i <j £ m,N; U N, is also a committee of T

Proof. Necessity follows from Lemmas 5.2 and 2.4. Suppose that there exists a
partition of N as specified in the Lemma. We shall prove, by induction on |T},
that for every T< {l,---, m} the coalition N* = U, N, is a committee. If
IT| £ 2, then N is assumed to be a committee. If |T| > 2, then N7 is a union of
two intersecting coalitions, NT* and N2, where |T}| = |T,| = |T| — 1. N and
N7z are committees by the induction assumption. Lemma 4.3 implies then that
also N7 is a committee. It follows that by contracting I on the committees N, - - -,
N, successively, we finally reach an absolutely decomposable game I';, such that
I'=T,[,, -,T,] (where ['; is the respective committee game over N, i = 1,
-+, m). Thus I" has a perfect decomposition.

DerINITION 5.9. Let I' = (N;v) be a game and let N=C, U --- U C,
=D, U ---U D, be two perfect decompositions of I" (see Lemma 5.8). If r > ¢
and if for every i,i = 1,---,r, there is j, | <j < g, such that C; = D;, then the
decomposition N = C, U --- U C, is called a refinement of the decomposition
N =D, U --- U D,. A perfect decomposition which has no refinements is called
an unrefinable perfect decomposition. Notice that if I is an absolutely decompos-
able game, then the trivial decomposition, with I itself as the quotient game, is
an unrefinable perfect decomposition.

LEMMA 5.10. Let I’ = (N; v) be a dummy-free game satisfying (2.1)-(2.4)
and let N =N, U --- U N,, be an unrefinable perfect decomposition of T. If C
is a committee of T, then for every i,i = 1,---,m, either C N N, = &, or C = N;
or N, C.

Proof. Suppose, per absurdum, that our statement is false. Without loss of
generality, assume that C N N, # &, N\NC # & and C\N,| # &. Lemmas
4.1-4.4 imply that N; N C and N, \C are committees and also for every i,
i=2-,m (N, NC)U N, and (N,\C) U N, are committees. Thus, according
to Lemma 58, N=N, NOUNNCOUN,U ---UN,, is a perfect de-
composition of I', in contradiction to our assumption that N = N, U --- U N,
is unrefinable.

TrHEOREM 5.11. If T = (N;v) is a dummy-free game satisfying (2.1)-(2.4),
then there can be no more than one unrefinable perfect decomposition of T

T = (M;u)is called additive if forevery T < M. u(T) = Y, ut{i}).
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Proof. Suppose, per absurdum, that there are two distinct unrefinable perfect
decompositions of T,

(54) N=C,U---UCc,

and

(5.5) N=D U ---UD,

Denote

(5.6) E;=C ND, =1, j=1 .4

According to Lemma 4.1, every nonempty coalition of the form E,; is a committee
of I'. Let E;; and E,; be two committees. If E;; = E,; = . then

(5.7) E,UE,=(C,UCyNn(,U Dy,

and since C; U C, and D; U D, are committees, it follows that E;; U E,; is a com-
mittee (Lemma 4.3). If, for example, E;; # & (and E,; is either empty or nonempty),
then

(5.8) E;UE, = (C\D)U (D\C().
where

(5.9) C=C N;UDby

and

(5.10) D= (C;UC)ND,

Since C and D are committees, it follows that E;; U E,, is a committee too. Thus.
according to Lemma 5.8,

(5.11) N=U{E; I Sisnl 2j<qE;# 2]

is a perfect decomposition which refines (5.4) and (5.5). in contradiction to our
assumption that they are unrefinable.

Remark 5.12. A component in an unrefinable perfect decomposition can have
a perfect decomposition of its own. For example, in the game* Ty = (B, @ B))
® B,, N = {1,2} U {3} is an unrefinable perfect decomposition of I",. whereas
{1,2} = {1} U {2} is a perfect decomposition of B, & B,.

6. The unique decomposition theorem.
Example 6.1. Let Bg denote the unanimity game over the nonempty finite set
S (see Example 5.3). It can be easily verified that

(6.1) Bi,;=B,®B;=8,,8®8B,=8,&®B,,

(see Remark 5.12). Thus the game B, has at least thiee different decompositions,
Notice that B, ,, is dummy-free. Moreover, since every 2-person game is prime, it
follows that these decompositions of B, arc all prime (see Definition 5.1).

* B, is a l-player unanimity game. 8, @ B, = @°[B,, B,] (sc¢ Example 54), and B, ® B,
= ®-[B,, B,] (see Example 5.3).
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The game B, ,; in Example 6.1 also has a perfect decomposition, because this
game is absolutely decomposable (see Definition 5.9). We shall prove that when-
ever a game has at least two prime decompositions, it has a perfect decomposition.

LEMMA 6.2. If T = (N; ) is a dummy-free game satisfying (2.1)~(2.4), then
exactly one of the following statements is true:

(1) T has a perfect decomposition.

(i) There are at least three maximal® committees of U and they are disjoint.

Proof. (a) Suppose that there are two distinct maximal committees C, D of
I' such that C N D # . According to Lemma 4.3, C U D is a committee too.
Since C and D are maximal, necessarily, C U D = N. Moreover, Lemmas 4.1-4.4
imply that also C\\D, C.N D, D\C, and (C\D)U (D\C) are committees.
Thus N = (C\D)U (C N D)U (D\C) is a perfect decomposition of I' (see
Lemma 5.8).

{b) If there are exactly two maximal committees and they are disjoint, then I’
has a perfect decomposition into two components.

(c) If there are at least three maximal disjoint committees, then I does not
have a perfect decomposition since each committee is contained in a maximal
committee and the union of two maximal committees is not a committee under
these conditions.

THEOREM 6.3. If T = (N;¢) is a game satisfying (2.1)-(2.4), then exactly
one of the following statements is true:

(1) T has a unique unrefinable perfect decomposition.

(i) T has a unique prime decomposition with at least three components.

Proof. (a) If there are no proper committees, then I' is prime. In this case, the
game has a unique prime decomposition, namely, the trivial decomposition with I’
itself as the quotient game. If there are at least three players, then there can be no
perfect decomposition of I' and (i) is true. If I" is 2 2-person game, then (i) is true.

(b) Suppose that I' is dummy-free and there is at least one proper committee.
Consider the maximal committees of I'. If C, and C, are two maximal committees
such that C, N C, # &, then I has a perfect decomposition (Lemma 6.2). Accord-
ing to Theorem 5.11, this implies that " has a unique unrefinable perfect decom-
position. If all the maximal committees, Cy, -- -, C,, are disjoint, then I can be
decomposed as I' = I'[T¢,---, ¢ ], where I, is an r-player game and [,
i=1,---,r is the committee game over C,. I', is obtained by successive con-
tractions on C,, C,, ---, C,. Notice that each I'. may happen to be a 1-person
game. There are no proper committees in T, since, by Lemma 3.5, the existence of a
proper committee of I", would have implied the existence of a proper committee
of I' which would have properly contained a maximal committee of I'. Thus the
above decomposition is prime. Contractions on other committees, or not on all the
maximal committees, yield decomposable quotient games. Thus the above de-
composition is the unique prime one.

(¢) Suppose that there are dummies in T'. In this case, I has the following perfect
decomposition:

(6.2) N={i1}U{i2}U-~~ {[.k}UN,’

> A committee C & N is called maximal if it is not contained in any other proper committee.

Notice that a 1-player committee can be maximal even though it is not a proper committee.
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where i, - . i, are the dummies and N’ is the set of the nondummies (see Lemma
3.2). Let I be the committee game over N'. If I'" does not have a perfect decompo-
sition, then (6.2) is the unique unrefinable decomposition of T". If I'" has a perfect
decomposition, then it has a unique unrefinable perfect decomposition

(6.3) N=C,U---UJcC, mz=2.
Then
(6.4) N=4U U~ uUuyuc,---ucg,

is the unique unrefinable perfect decomposition of I'.

Remark 6.4. According to Theorem 6.3, the component games (in either prime
or perfect decomposition) can be decomposed as well. After a finite number of
decompositions, each component game will be either a prime or {-person game.
The pattern of this successive decomposition yields a unique hierarchy of com-
mittees which is ordered by inclusion. In each grade of this hierarchy, all the com-
mittees are disjoint.

Appendix A: Duality.
DEFINITION A.1. The dual of a game I' = (N; ¢) is the game I'* = (N1 t¥%),
where for every S < N,

(A.D) v*(S) = t(N) — v(N\S).

LemMma A2 Let I, i = 0,1, -, m, he games satisfving (2.1)-(2.3) such
that To=M:u),M={1,--- ., m},T,=(N;iw).i=1,---,m and N, NN;=
Jor 1 £i < j < m. Under these conditions,

(A2) (FpTy. o Oy = Ty, - TR0
Proof. For every S =N,

v*(S) = 1 — o(N'\S)
=1~ Z {H wiNNS) ] Wi(N,-\S)}u(T)
TeM el i¢T
(A.3)
=1~ Z {H “ - W,‘*(S,' n N,” l_[ “,*(S ﬂ A)Vi)}ll(T)
TcM LieT i¢T

=1~y {n WHS OAN) [Twfis N N.-)}u(M\Tr

TeM lieT igT
By [9; Lemma 1],
(A.4) 5 {]‘[ wHS N N)TIwES N N.-)} = 1.
T<M lieT
Thus (A.3)}{A.4) imply
(A5) S = Y {I"l wHS NN [T wHS N N»}“*”‘)

T<eM el i¢T
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COROLLARY A.3. (i} 4 coalition C < N is a committee of I = (N v) if and
only if it is a committee in T'* = (N;v*). The committee game with respect to I'*
is the dual of the committee game with respect to T

(1) A game is absolutely decomposable if and only if its dual is absolutely
decomposable.

(ili) (Owen). The tensor composition of constant-sum® components with a
constant-sum quotient is a constant-sum game. The proof follows from the fact that
a game is constant-sum if and only if it is self-dual.

Appendix B: An interpretation. A performance indicator is a binary random
variable X;. A control unit is a nonempty finite set of performance indicators
X ={X,,---, X,} (not necessarily independent). A reliability function is a
function v(X) such that 0 £ »(X) < 1. We call the pair (X ; v} a system and interpret
v(X) to be the probability that the system is functioning when X is the result of
control tests. Obviously, a system is isomorphic to a game. A subset C < X is
called a subsystem if there is a reliability function ¢(C) such that

(B.1) (X)=c(OWwX v C)+ (1 — c(O)w(X ~ C),

where (X v C); = leither if X; = l or if ie C and (X v C); = 0 otherwise, and
(X ~C);=1ifand only if i¢ C and X; = 1. Thus, a subsystem is a set of perfor-
mance indicators which can be replaced by a single performance indicator. It is
easily verified that a subsystem is a committee in the isomorphism between games
and systems. A decomposition of a game corresponds to a partition of a system
into disjoint subsystems. Our main theorem states that a system decomposes in
a unique way into subsystems, every one of which can be replaced by a single
performance indicator.
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