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Abstract 

A parallel algorithm for the stable matching problem is presented. The algorithm is based on 
the primal-dual interior path-following method for linear programming. The main result is that 
a stable matching can be found in 0*(Jiii) time by a polynomial number of processors, where 
nz is the total length of preference lists of individuals. @ 2000 Published by Elsevier Sciencc 
B.V. All rights reserved. 
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1. Introduction 

In this paper we consider networks made of gates of constant size. We focus on 
non-expansive networks (to be defined below). The problems of evaluating the gate 
to which a network converges, and of finding a stable configuration in a network, 
are quite simple in the context of sequential computation; they can all be solved in 
linear time in the scatter-free case (a special case, [ 5 ] ) ,  and in quadratic time in the 
non-expansive case [I]. An interesting question is the existence of sublinear parallel 
algorithms with a polynomial number of processors. 

We present parallel algorithms for the above problems which run in o*(&) time, 
with a polynomial number of processors, where I is the size of the input and f ( I )  
= O*(LJ(I)) means that there exists a constant k such that f ( I )  < y(I)(log I ) ~ .  Our 
approach is based on formulating the problems as linear programming problems and 
solving them with the primal-dual interior path-following method. 
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As an application, the problem of stable matching [3] can be solved in O*( f i )  

time, where nz is the total length of the preference lists of individuals. 
In Sections 2 and 3 we introduce networks of gates and the concepts of non- 

expansive and convergent networks. The material in these sections is from Feder [I]. 
In Section 4 we study the relation between these concepts and linear programming. In 
Section 5 we obtain the general result of recognizing stability in a network. This result 
is then applied to the stable matching problem in Section 6. 

2. Gates and networks 

A (boolean) ~lssiynrnelzt is a mapping x : S + {0,1) with a domain S = S(x).  An ele- 
ment i E S(x)  is a coordinate of x,  and the image x(i) is its value. Given a set of coor- 
dinates T C S(x), we denote by x~ the restriction of x to the set T. If T = {i) (i E S(x)) 
then x~ is denoted by xi. If x and y are assignments with S (x )  n S(y)  = 01, then xy 
denotes the union of the two assignments, with S(xy) = S(x)  U S(y).  In particular, if 
S(x)  = { 1,2,. . . , M), then x = xlx2 . . .x,,. With a slight compromise of notation, we shall 
identify each x, with its value x(i). For example, the statement x =xlx2xj = 01 1 indi- 
cates that S(x)  = { 1,2,3} and (x(l ), x(2), 4 3 ) )  = (0,1,1). Two assignments x and y 
are consistent if xi = y; for all i E S(x) n S(y).  

A gate is a mapping g : (0, 11' + (0, I}() from assignments on the input set I = I ( q )  
to assignments on the output set O =  O(g). The coordinates in I(g) and O(g) are 
called inputs and outputs of y, respectively. The gate g is a k-input, /-output gate 
if Il(g)l = k  and 10(y)  =/.  Given a gate g, an assignment x with S(x)  c l ( c j )  and a 
coordinate set T C O(g), the rpstriction <J,,T of the gate g is the gate g' obtained from 
$1 by discarding the outputs not in T and discarding the inputs in S(x)  after assigning 
to them the values given by x. More formally, the gate g' has inputs I (gf)  = l(g)\S(x), 
outputs O(gf )  = O(y) n T, and satisfies yf(y)  = y ( ~ y ) ~ .  

A rzetwork is a set of gates that share neither inputs nor outputs. This means that 
if N is a network and g and y' are distinct gates in N, then I (g)  n l (ql )  = 0 and 
O(g) n O(~J') = a. On the other hand, given two (not necessarily distinct) gates g, g' in 
N,  it may happen that an output of g is also an input of y'. If i E O(y)n l (g f ) ,  then 
we say that output i of gate g and input i of gate g' are linked. By the disjointness 
property, every input is linked to at most one output, and every output is linked to at 
most one input. These links induce a topology on the network that can be described by 
a directed multigraph on the gates of the network, i.e., a directed graph with the gates 
as the vertices, with a directed edge from g to g' for every output of y linked to an 
input of g'; loops and parallel edges are allowed. If the underlying directed multigraph 
of a network is acyclic, the network is called a circuit. 

The transition Junction of a network N is a single gate f which is equivalent 
to the entire network as we explain below. The gate J' has I( f )  = U0,, l (g)  and 
O( , f )  = U,,, O(g) ,  and satisfies y = , f (x)  if and only if yoc , )  = g(x,(,)) for all gates 
g t N. Note that if ,f is the transition function of N, then the networks N and N' = { f) 
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have the same transition function; we shall see that, for many purposes, they can actu- 
ally be treated as the same network. The set R ( N )  = I( f )  U O ( f )  of a network N with 
transition function f is the set of coordinates of the network N .  It consists of three dis- 
joint subsets: the set of links L ( N )  = I (  f )  n O( f ) ,  the set of inputs I ( N )  = I(f')\O( f ) ,  
and the set of outputs O ( N )  = O( f )\I( f )  of the network. 

A configuration of a network N is an assignment u on the coordinate set R ( N ) ,  
and consists of an input assignment U I ( N ) ,  an output assignment uocN), and an internal 
assignment UL(*T). A network N can be used to define an associated mapping on the 
configurations of N .  Given two configurations x and y of a network N with transition 
function J', we write y = N ( x )  if y l ( ~ )  = X I ( N )  and Y ~ A , ) U L ( N )  = ~ ' ( X ~ ( ~ ) ~ L ( A , ) ) .  In other 
words, all gates are evaluated using the values assigned to their inputs by x ,  thus 
obtaining at their outputs the values for the configuration y ;  the inputs to the network 
are not outputs of any gate, and thus keep their value from x .  A configuration x is 
stuhle if N ( x )  = x .  Thus, a configuration x is stable if it satisfies f ' ( x l ( f ) )  = x o ( f )  for 
the transition function f or, equivalently, g ( x l ( , ) )  = xo(,) for each gate y E N ,  i.e., if 
it satisfies all the gate equations. 

The kth iterate of a mapping z on a set U is the mapping d k )  defined inductively by 
letting d 0 ) ( z )  = z  and d" ' l ) ( z )  = z ( d U ( z ) )  for all z E U. A periodic point of s is a z 
such that z ( " ) ( z )  = z for some p 1 .  The least such p is the period of z.  A ,fixed point 
of z is a periodic point of period 1. We are particularly interested in the iterates and 
periodic points of the mapping associated with a network N .  It will sometimes be use- 
ful to look at the iterates N ( ~ )  in terms of the transition function f of the network. For 
this purpose, we define two restrictions o f f '  given an input assignment for the network. 
Given an assignment x on I ( N ) ,  the output function of the network is the mapping 
gx = , f 'x ,O(N),  and the internal function of the network is the mapping hx = J'x,L(,%,),  SO 

that if z is an assignment on L(N ), then f ( x z )  = gx(z )hx ( z ) .  If y is an assignment 
on O ( N ) ,  then N ( x y z )  = xgx( z )hx ( z ) ,  and N ( ~  ' l ) (xyz)  = xgx(hik)(z))h(ikf " ( z )  for all 
k 3 0 .  The periodic points of the mapping associated with N are called periodic con- 
,figurations; the fixed points are precisely the stable configurations. The periodic con- 
figurations xyz consistent with an input assignment x are determined by the choice of 
a periodic point z of the internal function h,. For if z has period p and z' = hip-"(z) ,  
then the periodic configuration must have z = h X ( z f )  and y = g,(zf). Thus, the periodic 
configurations are the configurations xgX(zf)h,(z ')  with z' a periodic point of h,. 

3. Non-expansive mappings and convergent networks 

The distance d ( x , y )  between two assignments x and y on a set S is defined by 

A gate g is non-expansive if for any two assignments x and y on I (g ) ,  



A network N is said to be conrerq~nt if for every input assignment x there exists 
an output assignment y such that every configuration consistent with x maps to a con- 
figuration consistent with y under sufficiently many iterations of N. More precisely, for 
every configuration u consistent with x,  there exists an integer ko such that N( ' ) (u )  is 
consistent with y for all k >ko. Since every configuration maps to a periodic configura- 
tion for sufficiently large k ,  and every periodic configuration maps to itself for infinitely 
many values of k,  the condition of convergence is equivalent to the requirement that 
every periodic configuration consistent with x must also be consistent with y. Recall 
that the periodic configurations of N are the configurations xq,(z)h,(z), where z is 
a periodic point of h, and the mappings g,, h, are the output and internal functions 
of N (see Section 2). The condition defining convergent networks becomes then the 
statement that y,(z) = y  for all periodic points z of h,. If a network N is convergent, 
then for every input assignment x there is a unique corresponding output assignment y 
for N ,  and we say that N conwrges to the gate q with I ( c j ) = I ( N )  and 0 ( q ) =  O ( N )  
that computes y (x )  = y. 

The notion of a convergent network evolved out of discussions between the first 
author and Ashok Subramanian, and was motivated by the following observation. 

Lemma 3.1. E r q ,  netivork of non-expunsit-c yutes conceryes to u non-cxpvpan.,iccl 

CJUte. 

Proof. Let J' be the transition function of a network N of non-expansive gates, given 
by f(xz)=q,(z)h,(z), where y, and h, are the output and internal functions. Let z 
and z' be periodic points of h,. Under these conditions, 

so d(y,(z), y,(zl)) = 0 and y,(z) = y,(zl). Therefore, the output y = g,(z) depends 
only on x,  and not on the choice of a periodic point z. This shows that the network is 
convergent, and converges to some gate y, where y (x )  = g,(z) for all periodic points 
z of h,. 

Given two input assignments x and x', let z and z1 be periodic points of h, and h,!, 
respectively, that are closest to each other. In particular, d(z, 2 ')  = d(h,(z), h,<(z1)). 
Then 

< d(xz, x l z l )  = d(x ,  x ' )  + d(z, z ' )  

Thus, d(g(x) ,  y ( x l ) )  = d(q,(z), y,,(z1)) <d(x ,  x ' ) ,  so the gate y is non-expansive. 
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4. Convergent networks and linear programming 

4.1. Linear chaructrrizutions of stability 

Let N be a non-expansive network with transition function f '. A configuration x  is 
stable if and only if for every configuration a, 

d( f (a / (  f ) ), Xoc f ,) d ( q  f 1, XI( f , ). (1) 

For every fixed a, this is a linear inequality in terms of x  since, for example, 

Definition 4.1. Denote by ,d the system of all the linear inequalities ( 1 )  correspond- 
ing to the configurations a,  the inequalities O<x, < 1 ,  and the initial assignments 
X [ ( N )  =a,(t,,) for some fixed input assignment a l ( ~ , .  Denote by n the number of vari- 
ables in d. 

Proposition 4.2. The sjvtem .d has a solution. 

Proof. Let us extend the mapping f' into a continuous multilinear mapping ,f on the 
full hypercube [0, I]", by defining 

where the summation ranges over all ( 0 ,  1)-configurations a, and 

if ui = 1 
w(x,  a, i )  = {:- x, otherwise. 

We claim that the extension f is also non-expansive, i.e., for any two vectors x,y  E 

[O, I]", d ( f ( x ) ,  , f ( y ) )  < d(x ,  y ) .  The proof is as follows. Given any two points x,  y E 

[O, I]", consider the points p1  = ( y , , .  . . , y l_ l , x l ,  . . . ,x,), j = 1,. . . , n + 1. Since d ( p l ,  
pl+' ) = lxl - yl 1 ,  it follows that 

Since = x  and pn+' = y ,  by the triangular inequality, 

Thus, it suffices to show that for every j ,  
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and 

and denote by e l  a unit vector with a 1 in the jth position. By definition, 

and 

Now, for every i f j ,  and every a  such that a ,  = 0, w(v1, a  + e l ,  i )  = w(q1, a, i ) ,  so 

Thus, 

and we get 

For two assignments y  and z  on L ( N ) ,  we say that g ( y )  = z if , f ( a l ( N p )  = zu for 

some assignment u  on O ( N ) .  By Brouwer's theorem, g  has a fixed point y ,  i.e., 
g ( y )  = y .  Such a point a l ( ~ ) y u  satisfies the conditions in .el. U 

Proposition 4.3. Gicen un input (0, 1)-ussiynment a l ( ~ ) ,  the system d ha5 a unique 
rolution for time zwiuhles corresponding to the coordinates in O(N) .  This unique 
solution mincidcs it.ith the value of the gate to which the network converyes 

Proof. Let x be a solution of .d as proven in Proposition 4.2. For every a and z,  
represent f ( a z )  = g,(z)h,(z) where g, and ha are the output and the internal functions, 
respectively. Let z be an integer periodic point of h, which is closest to xl,(,v, (recall 
that XL(Y)  consists of those variables In x associated with the links of N). We have 
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Also, from the inequalities in the system ,d, 

It follows that d (y , ( z ) ,xo (~~~ , )  = 0. 

Unfortunately, the size of .d is expolzelztiul since there are 2" choices for a .  How- 
ever, we may consider the gates g E N separately, and require instead that 

where b ranges over the possible input assignments for each gate 8.  When the gates 
are of constant size, this gives a number of constraints that is lineur in the number of 
gates. 

Definition 4.4. Denote the system of linear inequalities ( 2 ) ,  0 <x, < 1, and x,(,v) = a l ( ~ ,  

by .#. Denote by the total number of variables and inequalities in .I by m.  

4.2. The primal-dual path fbllon~irzq method 

Consider a linear program of the form 

Minimize cTx 

( P )  subject to Ax = 6, 

x 3 0 .  

The dual of (P)  is 

Maximize bTy 

(D)  subject to + s = c,  

s>O. 

The ce~ztral yuth of this primal-dual pair (P, D) (Megiddo [ 6 ] )  consists of all the points 
( x , y , s )  that satisfy the constraints of (PI and (D) together with the equations 

where p varies over the non-negative reals. The duality gap associated with ( x , y , s )  is 
given by 

cTx - bTy = sTx. 

Kojima et al. [4] and Monteiro and Adler [7] developed polynomial-time algorithms for 
tracing the primal-dual central path. They showed, in particular, that for any constant 



6 > 0, given an initial triple ( X ~ ) , ~ ~ , S ~ )  on the central path, the duality gap sTx can 
be reduced in O ( 6  l o g ( ( ~ O ) ~ x ~ ) )  (where m is the total number of primal and dual 
variables) iterations to at most cj. 

Definition 4.5. For the sake of this definition, we say that x, and 2, = I -x, are posititv 
terms while -xi and - 2, are negative ones. A linear programming problem is said to 
be in special fbrm if it calls for minimizing a sum 6, of distinct positive terms, subject 
to a set constraints of the form 11/30, where each 11/ is a sum of positive terms as 
well as terms of the form --xi or -2 , ,  which we call negative terms. Included are the 
constraints x, 2 0  and ? ,>0 .  Furthermore, a problem in special form has an optimal 
solution and the optimal value is equal to zero. The size of the problem is total number 
m of constraints. 

Theorem 4.6. A line~ir program in special ,form qf size m can he reduced into an 
equivalent ,f;)r~n .such that for any constalzt ii > 0, uj'ter O( f i  log m )  iterutiorzs, the 
ciuality yap of' the current solution is ut nzost (5. 

Proof. The idea of the proof is to transform the problem that is given in special form 
into an equivalent linear programming problem for which a point on the central path 
is readily available, and the size of which is not greater than some constant times the 
size of the given problem. At that point on the central path, each primal variable is 
equal to $ and each dual slack variable is equal to 1. Starting the algorithm of [4] 
or [7] from such a point, it takes O ( 6  log m )  iterations to get to a point where the 
duality gap is at most 6. 

The transformation is carried out as follows. Let 1//>0 be any constraint of the 
given problem, other than a non-negativity constraint x, 2 0 .  Let \I($) denote the value 
of $ which results when all the variables in 11/ are set to ;. We distinguish cases: ( i)  
\)(I,!) > 0. In this case we introduce a new variable ~ $ 2 0  and replace the constraint 
1 b 3 0  by the constraint I,! -- 2v($). u,,, = 0. (ii) \(t,b)<O. In this case we introduce two 
new variables ulk, ~ $ 2  0 and replace the constraint $2 0 by t,b - u - ( 2  - 1 ). q, = 0. 
Note that the constraints are satisfied when all the variables, including u,k and z.dl are 
set to l. In case (i) the transformation produces an equivalent problem. In case (ii) 
the new problem would be equivalent to the given one if it were guaranteed that at an 
optimal solution v,,, = 0. To that end, we replace the objective function 6, by 6, + t>,b. 
Since the original objective is a sum of non-negative terms and has a feasible solution 
where all of them vanish, it follows that at an optimal solution of the new problem the 
variables z y ,  must vanish. Thus, we have transformed the problem into a problem of 
the form of (P) where cj E { I ,  0 , l )  for every j ,  and the point xo = (i, . . . , i)T is a 
feasible solution. Also, for every feasible solution x, xi < 1 for every j .  We now show 
how to transform the problem so that an initial point (x",yO,s") on the central path 
is available. Let so = ( 1,. . . , 1  )T and yo = (0,. . . , o ) ~ .  If c, = 1, then the dual constraint 



(yTA), + si = c, is satisfied by yo and so. If c, = 0, we add a redundant constraint 
xi + u, = 1, where ui is a new non-negative slack variable) with a corresponding dual 
variable z,. The initial value is u) = i. By choosing the initial value to be zi! = - 1, we 
satisfy the dual constraint z: + ((yo)TA), + .$' = c,. The dual constraint corresponding 
to u ,  is z, + v, = 0 (where v j  is a new non-negative dual slack variable). By choosing 
the initial value to be t.7 = 1 the latter constraint is also satisfied. Finally, if L;. = -1, 
we add a redundant constraint 2x, + ui + w, = 2, where u, and w, are new non-negative 
slack variables, with a corresponding dual variable zj .  We choose u/O = o) = i. Again, 
by choosing z: = -1, we satisfy the dual constraint 2z; + ( ( y o ) T ~ ) j  + s) = c,. The dual 
constraints corresponding to ui and w, are zi + vi = z, + r ,  = 0 (where v, and r i  are 
new non-negative dual slack variables) and we choose vq = rp = 1. In summary, all the 
primal variables are initially set to and all the dual slack variables are set to 1, so 
the initial point is on the central path. 

4.4. Conceryeizt nrtirwk cvaluution 

The linear programming problem associated with a non-expansive network N is 

where a l ( y )  is the input assignment to the network, g ranges over gates and b ranges 
over input assignments. The linear program is thus of the special form as in 
Definition 4.5, so Theorem 4.6 can be applied. 

The duality gap can be reduced below any constant 6 > 0. Let a  be a periodic 
configuration consistent with the input assignment al(v ,  which is closest to x. Thus, 

On the other hand, when the linear program is put into the equivalent form, we obtain 

where the yl's are the artificial variables that were added to the objective function. 
This can be rewritten as 

since all the y, 's appear in the objective function, so by combining the three inequalities 
we get 



Provided that (5 < $, this can be used to obtain the value of a o ( ~ ) ,  which is the output 
value produced by the gate to which the non-expansive network converges. 

It is observed in Goldberg et al. [2] that one iteration of the interior point algorithm 
can be performed in 0(log2 m) time in the concurrent-read concurrent-write (CRCW) 
PRAM model with nz3 processors. Thus, we have the following: 

Theorem 4.7. For any ,fixed integer k, and for any non-expansive network N with 
gates of' at most k inputs and outputs, thc~ gate to which N converges can he eval- 
uated in O ( f i  log m )  iterations, and i~z an overall parallel time q f  O( f i  log3 m) 
on un m3-processor CRCW PRAM, ~vhere rn is the the total number of' gates 
in N .  

5. Convergent networks and stable configurations 

Let f' be a non-expansive gate with I( f )  = O( f )  = T .  A ,fixed point of j' is an 
assignment a on T such that f ( a )  = a .  

For a subset S c T, we define the projectiorz ,Js to be the gate g with I ( g )  = O(y) = S 

such that y(u) = b if and only if for every periodic point, z ,  of fa,T\S, there exists a 
z' such that f ( a z ) =  bz'. Thus, if f' is the transition function of a non-expansive 
network N with I( f ' )  = O( f )  = T, and if S 2 T, then ,f'. can be defined as the pro- 
jection on S of the gate to which the network N converges. The following is from 
Feder [I]. 

Lemma 5.1. (i) A ~zon-expansive mapping f has a j x e d  point if'urid only if: for every 
S i T ~c,ith IS/ = 1 ,  ,fS has a ,fixed point. 

(ii) A configuration a is a ,fixed point of' f' if' and only i f f o r  all S c T with 
S1 = 2, as is a ,fixed point o f '  f s .  

(iii) In (ii), iJ'J' is the transition junction qf'a network N ,  then S may he restricted 
to sets of' t ~ c ~ )  rlen~ents thut are inputs or outputs of the sume gate. 

Corollary 5.2. The set of',fixed points of' J' can he chumcterized as an instance of 
the 2-SATISFIABILITY problem with clauses (xi # a ; )  v ( x ,  # a,) for all i , j ,ui ,  and 
a, such thut aiui is not a ,fixed point of' f {,,,). If' ,f is the transition junction of rx 

network N, then { i ,  j }  1nay he restricted to t u v  elements that are inputs or outputs 
of' thc .same yute. 

It follows that the question of deciding whether a non-expansive network has a stable 
configuration reduces to 2m evaluations of gates to which non-expansive networks 
converge, and the search for a stable configuration reduces to 4 ( ' y )  evaluations of 
such gates; in fact only O ( m )  evaluations are needed here if for some fixed integer k 
the gates have at most k inputs and outputs. Since 2-SATISFIABILITY is in the class 
NC, we obtain: 



Theorem 5.3. For m y  ,fixer/ integer k, there exists an rn4-proces.ror O ( f i  log3 m )  
tirne C R C W  P R A M  algorithnl that .finds a stable cmfiyurution in a non-expansizlc 
network wYth gates qf' at  nzost k inputs and outputs. 

6. Network stability and stable matching 

Definition 6.1. The X-gate is a 2-input, 2-output gate which on inputs xl,xz produces 
outputs y ~ ,  yl,  such that 

It is easy to see that the X-gate is non-expansive. Subramanian [8] showed that the 
stable matching problem can be viewed as the problem of finding a stable configuration 
of a network of X-gates. The coordinates of the network are pairs i j ,  where i is the 
name of an individual and O<j<d i ,  where t, is the length of the preference list of 
individual i. If the jth choice of individual i is individual i', and the j'th choice of 
individual i' is individual i, then the network has an X-gate with the coordinates i( j -  I )  
and i ' ( j1 - I )  as inputs, and the coordinates { j  and i'j' as outputs. The input iO has the 
value xio = 1. Thus, in a stable configuration, the values xii for a fixed individual i are 
monotonically non-increasing. If there is an index j such that xi(,- 1, = 1 and xi, = 0, 
then i is matched to his jth choice. There can be at most one such index. The outputs 
i t i  indicate whether i is matched to some partner, and are independent of the choice 
of stable matching. 

It is of interest to see what the inequalities in (2) correspond to in the case of 
X-gates. Recall that 

For b = 10, g(b) = X(b) = 10 and the non-expansiveness condition is 

Writing down all four non-expansiveness conditions and simplifying, we get: 

Proposition 6.2. Two puirs (xl,x2), ( y l ,  y2)  E (0, 1 1 2  satisfj the X-gate rrlutiolz y1 y2 
=X(xlx2) if and only if they sutisfjl the jd lo~cing linear systn?z: 
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From the results in the last two sections, we obtain: 

Theorem 6.3. ( i )  For n individuals wit11 preference lists (over the set qf' indizGduals) 
@total length m, the set of'people that are matched in stable rnutclzings can be found 
in O( fi log3 r n )  time orz an rn3-processor C R C W  PRAM. 

(ii) If a stable matclziny exists, then it can be ,fbund in O( fi log3 r n )  tirnc on an 
rn4-processor C R C  W PRAM. 

(iii) A characterization of all the stable matchings by means of a 
2-SATISFIABILITY instance can be fbund witlzin the bounds in (ii). 
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