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Absiczet. The problem of finding a minimum dominating set in a tournament can be solved in
n®"8 ) time. It is shown that if this problem has a polynomial-time algorithm, then for every
constant C, taere is alse a polyncmial-time algorithm for the satisfiability problem of boolean
formulas in conjunctivc nc:iaal form with m clauses and C log2 m varizbles. On the other hand,
the problem can be reduce ' ins polynomial time to a generai satisfiability problem of length L
with O(log? L) variables. Ano.her relation between the satisfiability problem and the minimum
dominating set in a tournament says that the former can be solved in 2°/*'n¥ time (where v is
the number of variables, n is the length of the formula, and K is a constant) if and only if the
latter has a polynomial-time algorithm.

1. Entroduction

It is easy to pose restricted versions of NP-complete problems for which there
exist algorithms which run in subexponential (yet superpclynomial) time. For
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example, consider the problem where one has to decide whether a given graph with
n vertices has a clique of [log, n] vertices. Enumeration of all subgraphs induced
by sets of [log; n] vertices reveals the answer. This procedure runs in 7°“°®™ time.
It would be very interesting to know whether this problem has a polynomial-time
algorithm. The restriction of the clique problem to size [log, n] is somewhat
unnatural. :{owever, one would expect the complexity of the restricted problem to
be similar if the size were restricted to [c log, n] for any positive consiant c.

In this paper we consider a problem which is in a way more natural. This is the
problem of finding a minimum dominating set in a tournament. It is in fact a
restricted version of the minimum dominating set problem on a directed graph but
there is no cxplicit restriction on the size of the set itself. However, it is easy to
show (see Section 2 for definitions and procfs) that in any tournament with n vertices
there exists a dominating set with [log, n] vertices and hence the problem has an
n®°8" algorithm. We do not know whether it can be solved in polynomial time.
However, in Section 3, we show that it is a hard problem in the following sense.
We prove that if there exists a polynomial-time algorithm for the minimum dominat-
ing set problem in a tournament, then, for every constant C, there is also a
polynomial-time algorithm for the class of satisfiability problems (of boolean for-
mulas in conjunctive normal form) in which the number of variables is bounded
by C log2 m variables (where m is the number of clauses). On the other hand, the
problemr of minimum dominating set in a tournament can be reduced in polynomial
time to a satisfiability problem (not necessarily in conjunctive normal form) with
O(log? L) variables, where L is the length of the formula. It is not known to us
whether general satisfiability problems of length L with O(log® L) variables can be
reduced in polynomial time to satisfiability problems in conjunctive normal form
keeping the number of variables O(log® L). However, in Section 4, we do prove a
theorem which says that the satisfiability problem can be solved in time 2°¢*'nX
(where v is the number of variables, n is the length of the formula, and K is a
constant) if and only if the minimum dominating set problem in a tournament can
be solved in polynomial time. This equivalence sheds some light on the complexity
of finding a minimum dominating set in a tournament. The naive exhaustive search
takes O(2"n) time. There are only few NP-complete problems for which improve-
ments over the naive exhaustive search are known. For instance, Tarjan and
Trojanowski [7] give a search algorithm for finding a maximal independent set in

a graph in time O(2"/?), where v is the number of vertices. For more examples and
discussion, see [2, Section 6].

2. Some properties of tournaments

Definition 2.1. A tournamen is a directed graph T = (V, E) where every two vertices
u, ve V are connected by one edge, that is, |E n{(4, v), (v, u)}| = 1. If the edge is
(u, v), then we say that u dominates v.
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For miore about tournaments, see [6].

Definition 2.2. A set S< V is dominating in a tournament T =(V, E) if for every
v£ S there exists a u € S which dominates v.

We are concerned with the following computational problem:

Problem 2.3 (Minimum dominating set). Given a tournament T=(V, E), find a
dominating set S< V of minimum cardinality.

Remark 2.4. Let £(G) denote the cardinality of a minimum dominating set in G.
In the literature on tournaments one finds a definition of property P, of a tournament.
A tournament T is said to have property P; if for every set S of k vertices of T

there exists a vertex v which dominates every vertex in S. Obviously, T has property
P if and only if u(T)>k.

The following fact is attributed to Erdos [6, p. 28]. We include the simple proof
for completeness.

Fact 2.5. If T is a tournament with n vertices (n=2), then u(T)< [log, n].

Proof. Let d(u) denote the number of vertices dominated by a vertex u. Obviously,
¥, d(u)=3n(n—1). 1t follows that there exists at least one vertex which dominaies
at least [3(n—1)] vertices. Thus a dominating set can be found as follows. Pick a
vertex u, which dominates at least [3(n —1)] vertices. Remove u, and all the vertices
dominated by u, together with the edges incident on these vertices, and continue
recursively. Following the removal at the first recursive step, the remaining tourna-
ment has at most [3(n —1)] vertices. This process finds a dominating set of no more
than [log, n] vertices. O

Corollary 2.6. A minimum dominating set in a tournament can be found in n®"*®"™ time.
Proof. In view of Fact 2.5, a minimum dominating set can be found by enumerating
all subsets of V of cardinality not greater than [log, n]. There are ), ,.":fz"] (7) such
subsets and ihis establishes the proof. (]

Erdos [1] used the probabilistic method to prove the following fact.

Fact 2.7. For every £ >0 there is a numtzr K such that for every k=K there exists
a tournament T, with no more than 2"k* log(2+ ) vertices such that u(T,)> k.

Proof. Consider a random tournament T with n vertices; that is, for every pair of
vertices, u, v, the direction of the edge cornecting u and v is chosen to be (u, v) or
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(v, u) with equal probability, independently of the directions of the other edges.
Thus the probabiiity that vertex u dominates vertex v is 5. For every set S of k
vertices and every vertex u £ S, the probability that ¥ dominates every vertex in S
is 27%. The probability that S is dominating is hence (1—27%)""%. The expected
number of dominating sets of cardinality k is (§)(1—-2"%)""% If n is sufficiently
large so that the latter is less than 1, then there exists a tournament T on n vertices
so that u(T)> k. The claim follows by showing that if n>2*k*log(2+¢), then
Mma-2"H"*<1. O

Corollary 2.8. There exists a constant ¢c>0 such that for every n there exists a
tournament T with n vertices such that u(T)> c log n.

Giaham and Spencer [3] give an explicit construction of tournaments with similar
properties as follows. For every k, if p is a prime such that p>2%*~%k? and
p =3 (mod 4), then the construction given in Definition 2.9 below gives a tournament
T on p vertices so that u(T)> k.

Definition 2.9. Givena number k, let p denote the smallest prime such that p > 2**~2k2
and p=3 (mod 4). Define a tournament T(k) with p vertices corresponding to the
residues modulo p. For u, ve Z, (u # v) we say that u dcminates v if and only if
u— v is a square, that is, u — v=a’ (mod p) for some a € Z,.

Remark 2.10. We note that T(k) is a tournament since in every prime field Z,
(p #2), half of the nonzero elements are squares. Moreover, if p=3 (mod 4), then
—1is not a square. Thus, in this case w # 0 is a square if and only if —w is not a square.

For our purposes it is it ‘portant to know the rate of growth of the function p*(k)
that assigns a prime p to each number k as in Definition 2.9. The question is of
course related to the density of prime numbers in arithmetic progressions.

Proposition 2.11. p*(k) = O(2%*k>).

Proof. The following is taken from Huxley’s book [4]. Let A(j)=Ilogp if j=p'
where p is prime and i=1, and A(j) =0 otherwise. Let

¥(x;da)= ¥ A()).

j=<x
j=a(modd)

If a and d are relatively prime (in our case a =3 and d =4), then (see [4, p. 72])

¥(x; d, a) - O(x e'“‘/ﬁg_")
e(d)
where ¢(j) denotes Euler’s function (giving the number of integers i <j relatively
prime to j), and c is a certain constant. It follows that, for every a and d relatively
prime and every a >0, there exists a K such that for all x= K, between x and
(1+a)x there is at least one prime p= a (mod d). This implies our claim. O
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Definition 2.12. Given a tournament T =(V, E) and a positive integer r, we define
another tournament T"=(V’, E") as follows. Let V'=V x{l,...,r}. For all i,j
(1<i,j<r) and u,ve V (u#v), let (u, i) dominate (v,j) in T' if and ouly if u
dominates v in T. For i #j and ue V, let (u, i) dominate (v, j) if and only if i <j.

It is easy to verify that T' is indeed a tournament.

Proposition 2.13. For every tournament T =(V, E), an integer r, and any i (i=
i,...,7), if S is a set of vertices of T" (see Definition 2.12) which dominates all the
vertices in V x {i}, then the cardinality of S is at least un(T).

Proof. Let S be a set of vertices which dominates the set V x{i}. Thus, for every
u € V, either there is a j<i such that (u, j) € S or there is a ve V such that (v,j)e S
for some j (1<j=<r) and v dominates u in G. Let S’ denote the projection of S on
V, that is, S’ is the set of vertices ve V such that (v,j) € S for some j. Obviously,
S’ is a dominating set in T. Since the cardinality of S’ does not exceed that of S,
our claim follows. [

3. Some classes between P and NP

The reader is referred to [2] for clarification of concepts related to reductions,
the satisfiability problem, etc.

Definition 3.1. We define here the complexity classes SAT g n, SATE:::F" and Py,z*,
(k> 1) (the definition of the latter is essentially the same as in [5]).

(i) Alanguage L is in SAT,,*, if there exists a Turing machine M, a polynomial
p(n), and a constant C, such that for every string I of length n, M converts I in
p(n) time into a boolean formula ¢; (whose length is necessarily less than p(n))
with at most C log* n variables, so that I € L if and only if ¢, is satisfiable.

(if) The definition of SATﬁ:'k"; is essentially the same as of SAT,y.*, except that
the formula ¢, is in conjunctive normal form.

(iii) A language L is in Py,*, if there exist a nondeterministic Turing machine
M, a polynomial p(n) and a constant C, such that M recognizes instances of length
I in p(n) time using no more than C log* n nondeterministic steps.

It is easy to see that, for each k=1,

Pc SATCNkF c SAT|°S",, = P|°g",, < NP.

log'n

Thus, if any of the inclusions in this chain is proper, then P # NP.

Problem 3.2 (DOMT). Given a tournament T with n vertices vy,..., v, and an
integer K, recognize whether T contains « dominating set with no more than K
vertices.
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Proposition 3.3. The problem DOMT is in the class SAT 5?5

Proof. Without loss of 2enerahtv assume K < [log, n]. Denote /= [log, n]+1. We
use zero-one variables x; (i=1,..., K, j=1,...,1) to describe an ordered set S of
at most K vertices, which is our candidate for a dominating set. The variable x;
signifies the jth digit in the binary representation of the index h (of a vertex v,
which is chosen as the ith member of a set S. Thus, the ith member is the vertex
v, where h =Z;=1 x;2~'. For any integer h, let b;(h) denote the jth binary digit of
h, that is, h=Y; bj(h)?“. The proposition: “The ith member of the set S is the
vertex v,,” is expressed by the conjunction:

1
o= A {xij = bj(h)}
ji=1

The proposition: “The vertex v, is e lther in the set S or dominated by some member

of $” is Avprneend bv the disin ‘ct ion

LWOOWS Uy viiw weivjyee

il
<
 n
o

é3

where D; is the union of {v,} with the set of vertices which dominate v,. Finally,
the proposition: “S is a dominating set™ is expressed by the conjunction:

n K 1
o=A V V A {x;=b(h)}
s=1 vpe Dy i=1 j=1
Obviously, ¢ is satisfiable if and only if there exists a dominating set with no more
than k vertices. The proof follows since ¢ has O(log’ n) variables and its length is
O(n*log’n). O

Theorem 3.4. Every Le SATlog « is reducible in polynomial time to DOMT.

Proof. Let us denote by SAT(k, C) the set of instances of the satisfiability problem
(in conjunctive normal form) with v variables and m clauses where v < C(log, m)".
Let Le SAT,(::':, Thus, there is a constant C = C(L) and a polynomial P;(n) such
that every I € L of length n can be reduced in P(n) time to an instance of SAT(2, C).
We now show that, for any C, there is a polynomial-time reduction from SAT(2, C)
to the problem of minimum dominating set in a tournament. Let ¢ = E,A- - - A E,,
be a boolean formula where each E; is a disjunction and the total number of distinct
variables occurring in ¢ is not greater than C log? m. Without loss of generality,
assume the number of variables is precisely Cl! where I =1og, m, and let us rename
them for convenience with double indices: x;; (1=<i=< Cl, 1=<j< ). We first construct
a certain tournament T with u(T)= CI+1, and then prove that u(T)=CI+1 if
and only if ¢ is satisfiable.

(i) The construction of the tournament T. The vertices of T are organized in
groups as follows (see Fig. 1).
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(D))
\

Fig. 1.

(1) For each clause E, (r=1,...,m), assign a vertex with the same name in T.
Denote E ={E,,..., E,}.

(2) Fori=1,..., Cl, let P, be disjoint sets of m vertices each (P, ~ E =@). Denote
their vertices by p,, (i=1,...,ClL h=0,...,m—1) and let P=U,.("='l P.

(3) Let Py={u*} be the singleton set of an additional vertex.

(4) Let k= CI+1. Let T(k) be the tournament constructed in Definition 2.9. Let
r=1+1 and let (T(k))" denote the tournament constructed in Definition 2.12. The
vertices of (T(k))" will also be vertices of our tournament T. Denote this set by Q.
Vertices in Q will be denoted by g, (i=0,...,Cl, h=1,...,p*(Cl+1)), and the
set of those with the same index i will be denoted by Q. (Recall that p*(CI+1) is
the number of vertices in T(k)).

We now define the edges of the tournament T.

(5) Within the set Q dominations are induced by the tournament (T(k))" as
explained above (see Step (4)).

(6) Every vertex in ¢ dominates all the vertices in E.

(7) For every i (i=0,1,..., Cl), every vertex in P, dominates all the vertices in
Q.. For i#j (0=<i,j=< Cl), every vertex in Q; dominates all the vertices in P,.

(8) The vertex u* dominates all the vertices in P (as well as those in Q,) and is
dominated by all the vertices in E (as well as those in U, Q). /
(9) Within the set P and within the set E the dominations are set arbitrarily.

(10) The dominations between vertices in P and vertices in E are more compli-
cated and depend on the structures of the clauses. These dominations are designed
to establish the following connection with the assignment of truth values to the
variables x;;. Suppose there exists a dominating set for T which contains exactly
one vertex P, (0<h<m-1) for each i (i=0,..., Cl). Let bj(h) denote the jth
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binary digit of h; that is, h =Z;=, b,(h)2’~". Then x; is true if bj(h) =1 and false
otherwise. Consider any vertex E.. The vertices py, which dominate E, are determined
as follows. If the literal x;; occurs in E,, then E, is dominated by all the vertices pi
where b;(h)=1. Analogously, if the literal X; occurs in E,, then E, is dominated
by all the vertices py, where b;(h)=0. In all other cases, E, dominates p;,.

(ii)) We claim that u(T)= Cl+1. To prove this fact, suppose, to the contrary,
that S is a dominating set of vertices such that |S|< CL It follows that there exists
an i (0<<i< Cl) such that S n P,=9. Thus, to dominate the members of Q,, the set
S must use elements of Q. However, by the construction and from Proposition 2.13
it follows that S must contain at least Cl+2 elements of Q. The contradiction proves
our claim.

(iii) Suppose ¢ has a satisfying assignment. We now show that in this case
w(T)=CIl+1. Let & =1if x; is true and &; =0 otherwise (i=1,...,CLj=1,...,]).
Let S be the set of vertices consisting of u* and all the vertices p,, where h=
;-1 &2 (i=1,..., Cl). Clearly, |S|=CI+1. The set S is dominating since u*
dominates P, each set Q; is dominated by the single member of P; which is contained
in $ (i=0,..., Cl), and each E, is dominated by a member of S corresponding to
a literal which makes E, true in the satisfying assignment.

(iv) Suppose p(T)= Cl+1. We now show that ¢ has a satisfying assignment.
From part (ii) of this proof it follows that SN P;#@ (i =0, .. ., Cl). Thus, S contains
a unique element from each of the sets P.. In other words, for each i (i=1,..., Cl)
there is a unique h = h(i) such that p;;;, € S. We now set x;; to be true if b;(h(i)) =1
and false otherwise. It is easy to verify that each clause E, is satisfied since the
corresponding vertex E, is dominated by some member of S.

(v) We finally argue that the reduction we have described runs in polynomial
time. First, the reduction from L to SAT(2, C) takes P(n) time. In the reduction
from SAT(2, C) we construct a tournament T with Cm log m +1 vertices in the sets
P, (Clog rm+1)p*(C log m+2) vertices in Q, and m vertices in P. In view of
Proposition 2.11, the function p*(C log m +2) is polynomial in m and exponential
in C. However, C is constaut for a fixed L and hence for every L the size of T is
polynomial in terms of the length of the instance of L. The same argument holds
for the time it takes to construct the tournament ( T(C log m+2))€ '*¢™*!_ Here we
have to compute the prime number p*(C log m+2)=0(m log’ m). Thit can
obviously be done in polynomial time in terms of m in a brute-force way. Note that
this prime number depends only on the numbers m and C and not on the particular
instance. Altogether, the reduction is polynomial for every L in SATSY.. O

log2 n*

4. The relation between dominating set and satisfiability

In this section we provide another interpretation to the results of Section 3. First,
note that the complete enumeration algorithm for the satisfiability problem runs in
O(2°n) time, where 7 is the length of the formula and v is the number of variables.
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It is not known whether there exists an algorithm for the same problem which runs
in 2°*)n¥ time for any constant K. We claim that such an algorithm exists if and
only if there exists a polynomial-time algorithm for the minimum dominating set
problem in a tournament. This will follow from the following three propositions.

Proposition 4.1. If there is a polynomial-time algorithm for DOMT, then there is an
algorithm for the (CNF)-satisfiability problem with v variables and m clauses which
runs in 2°Y'mX time for sorie constant K.

Proof. We rely on the reduction described in the proof of Theorem 3.4. Let ¢ be
a (CNF)-formula ¢ with v variables and m clauses. Without loss of generality,
assume the number 2v is a square of an even number, 2v = (2»)°. We reduce the
problem of deciding the satisfiability of ¢ to a problem of recognizing whether a
tournament T with N v.rtices (the dependence of N on v and m will be described
below) has a dominating set of cardinality » + 1. Following the notation of the proof
of Theorem 3.4, the tournament has the following structure. First, it has m vertices
corresponding to the m clauses' of ¢. Second, it hes disjoint sets of vertices
P,, P,,..., P, as follows. The set P, consists of a single vertex. Each set P, (i=
1,...,») consists of 2*” vertices. Thus, ¥,_, log,|P,|=2»>=v. The vertices of the
third type are organized in disjoint sets Q; (i=0, 1,..., ») where each set contains
pE(r+1)=0(2*"*V(v+1)? vertices. The total number of vertices is hence m+
294 If there is a polynomial-time algorithm for DOMT, then the satisfiability
problem has an algorithm which runs in 2°“”m* time where K is a constant. [

Proposition 4.2. There is a linear-time reduction from the general satisfiability problem
to the (CNF)-satisfiability problem.

Proof. Let A(¢) denote the total number of occurrences of variables in the formula
¢. We call A(¢) the length of ¢. We actually preve the following claim: for every
formula ¢(x,,..., x;) of length A(¢) there is a (CNF)-formula ¢'(x;,..., X, )
of length A(¢’)<7A(¢) such that ¢'(x,,..., X, y) is equivalent to the formula
&(x;,...,x)=y (the formulas use only A and v; the connective = is used here
for brevity). The proof goes by induction on A (). The claim is trivial for formulas
of length 1. Let ¢ be any formula of length greater than 1. Thus, ¢ is either the
conjunction or the disjunction of two shorter formulas. Suppose

¢(x19'"sxl:)=¢l(xl,'"ka)v¢2(xl,"'axk)'

By the induction hypothesis applied to the formulas ¢, and ¢,, there exist (CNF)-
formulas ¢(x,, ..., X, y;) (i=1,2) which are equivalent to ¢;(x;,..., %)=y (i=
1, 2), respectively. Obviously, A{¢)=A(p,)+A(,). Now, let ¢'(x;,..., Xk, Y1,
¥,, y3) denote the following (CNF)-formula

1%y, oo X V) AD2AXs s .o, Xy y2)A Ohvy2v7s) A vy A (y-zV}’z)-
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The conjunction of the last three terms in this formula is equivalent to y;=(y, v ¥a)-
Thus, we have reduced ¢ to (CNF)-formula of length not greatcr than 7A(¢). The
other possibility, ¢ = ¢, A ¢, is handled analogously.

Proposition 4.2. If there is an algorithm for the satisfiability problem which runs in
200 K e (where v is the number of variables, n is the length of the formula, and
K is a constant), then there is a polynomial-time algoriti:m for DOMT.

Proof. The proof follows easily from Proposition 3.3. The problem DOMT with N
vertices can be reduced to a formula whose length is pciynomial in N, and whose
number of variables is O(log? N). This establishes the proof. O

We now have the following theorem.

Theorem 4.4. The general satisfiability problem can be solved in 2°V"'n* time (where
v is the number of variables, n is the length of the formula, and K is a constant) if
and only if the minimum dominating set problem in a tournament has a polynomial-time
algorithm.

Acknowledgment

We thank Noga Alon for helpful conversations and references to the i:icrature
on the largest possible m'nimum dominating set in a tournament.

References

[1} P. Erdds, On a pivbicm in graph theory, Math. Gaz. 47 (1963) 220-223.

{2] M.R. Garey and D.S. Johnson, Computers and Initractability: a Guide to the Theory of NP:.mpleteness
{Freeman, San Francisco, 1979).

[3] R.L. Graham and J.H. Spencer, A constructive solution to a tournament problem, Canad Math.
Bull. 14 (1271) 45-48.

{41 M.N. Haxley, The Distribution of Prime Numbers (Oxford University Press, London, 1972).

{5] C.M.R. Kintala and P.C. Fischer, Refining nondeterminism in relativized polynomial-time bounded
computations, SIAM J. Comput. 9 (1980) 46-53.

[6] J.W. Moon, Topics on Tournaments (Holt, Rinehart and Winston, New York, 1968).

[7] R.E. Tarjan and A.E. Trojanowski, Finding a maximum independent set, SIAM J. Comput. 6 (1977)
537-546.



