
Published in:

RJ 4984 (52161) 1/8/86
Computer Science

Theoretical Aspects of Reasoning about Knowledge,
J. Y. Halpern, E d . , Morgan Kaufmann Publishers, Inc.,
Los Altos, California, 1986, pp. 259-274.

Research Report
ON PLAY BY MEANS OF COMPUTING MACHINES

Nimrod Megiddo

IBM Almaden Research Center, San Jose, California
Mathematical Sciences Research Institute, Berkeley, California
and Tel Aviv University, Tel Aviv, Israel

Avi Wigderson

Mathematical Sciences Research Institute
Berkeley, California

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a
Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM
prior to publication should be limited to peer cornmumications and specific requests. After outside publication, requests should be filled only by
reprints or legally obtained copies of the article (e.g., payment of royalties).

--- - --- - - , ---- , ,, Research Division - - --- - - - --- --- -- - - . - - Yorkton Heights, New York San Jose, California * Zurich, Switzerland

RJ 4984 (52161) 1/8/86
Computer Science

ON PLAY BY MEANS OF COMPUTING MACHINES

Nimrod Megiddo

IBM Almaden Research Center, San Jose, California
Mathematical Sciences Research Institute, Berkeley, California
and Tel Aviv University, Tel Aviv, Israel

Avi Wigderson
Mathematical Sciences Research Institute
Berkeley, California

Abstract: This paper examines the "bounded rationality" inherent in play by means of computing
machines. The main example is the finitely repeated prisoners' dilemma game which is discussed
under different models. The game is played by Turing machines with restricted number of internal
states using unlimited time and space. The observations in this paper strongly suggest that the
cooperative outcome of the game can be approximated in equilibrium. Thus, the cooperative play
can be approximated even if the machines memorize the entire history of the game and are capable
of counting the number of stages.

ON PLAY BY MEANS OF COMPUTING MACHINES

(preliminary version)

Nimrod Megiddo' and Avi Wigderson

Mathematical Sciences Research Institute
Berkeley, California 94720

Abstract. This paper examines the "bounded rationality" inherent in play by means of computing

machines. The main example is the finitely repeated prisoners' dilemma game which is discussed

under different models. The game is played by Turing machines with restricted number of internal

states using unlimited time and space. The observations in this paper strongly suggest that the

cooperative outcome of the game can be approximated in equilibrium. Thus, the cooperative play

can be approximated even if the machines memorize the entire history of the game and are capable

of counting the number of stages.

1 The IBM Almaden Research Center, 650 Harry Road San Jose, California 95120-6099,
and Tel Aviv University, Tel Aviv, Israel.

1. Introduction

We consider here the famous prisoners' dilemma game, a version of which is stated below. The

framework however applies to games in general. The prisoners' dilemma game was chosen since it

focuses on the central issue raised in this paper.

Definition 1.1. By the (one-shot) prisoners' dilemma game G we refer to a game as follows. The game

is played by two players with symmetric roles. Each player has to choose (independently of the

other) between the action C ("cooperate") and the action D ("defect"). The payoffs to the two

players, corresponding to the four possible combinations of choices of actions, are as follows. The

players are each paid 3 units of utility if both play C. Both are paid 1 if both play D. If one plays

C and the other one plays D then the one who plays C gets 0 and the other one gets 4.

Definition 1.2. The finitely repeated prisoners' dilemma consists of N rounds, where during each

round the one-shot prisoners' dilemma game is played, and both players are then informed of each

other's actions. The number N is common knowledge between the players, that is each knows N,

each knows that each knows N, each knows that each knows that each knows N, and so on.

Definition 1.3. A Nash-equilibrium point in a 2-person game is a pair a = (01,a2) of strategies (one

for each player) such that, given that player i (i - 1,2) is playing oi, the other player, 3 - i , cannot

get a higher payoff for himself by playing any strategy other than 03-i.

The perplexing fact about the finitely repeated prisoners' dilemma is the following:

Proposition 1.4. The only equilibrium papffs in the finitely repeated primners' dilemma correspond to *2iefection"

by both players throughout. Momver, this equilibrium is obtained by iterated elimination of dominated stmtegies.

Proof. It can easily be shown by induction on k that in any equilibrium the players must play (D, D)

in round N + 1 -k, (k = 1 ,..., N).
It has been said that the prisoners' dilemma may be "resolved" by "bounded rationality". One

possibility of bounding rationality is to have the players play the game through computing machines.

In this paper we discuss issues that can be dealt with under different models of play by means of

computing machines. We do not attempt to present a formal theory of rationality and bounded

rationality. Our work was inspired by the works of Neyman [N] and Rubinstein [Ru] where the

prisoners' dilemma game was considered as being played by means of finite automata. Neyman's

results are cited in Section 2. We consider two approaches: (i) Given the number of rounds, choose

a machine for playing the game. (ii) Choose a machine that will be play any number of rounds,

given as input at the start of the game. The only restriction is on the number of internal states of

the machine. It should be emphasized that most of the results are nonconstructive and we do not

believe that the approach taken in this paper will lead to a practical resolution of the prisoners'

dilemma

2. Play by means of finite automata

In this section we cite results recently obtained by A. Neyman [N]. He has pointed out that

finite automata [HU] of appropriate sizes may cooperate in the finitely repeated prisoners' dilemma

game.

Definition 2.1. Let GN(s l ,g) denote a 2-person game as follows. Two ("human") players, 1 and 2,

independently choose finite automata of sizes $1 and a, respectively, which then play the prisoners'

dilemma game for N rounds. The action of an automaton amounts to the combination of its play

and the state it switches to. The action depends on its own state and on the play of the other

automaton during the preceding round (except, of course, for the very first round).

A fairly simple result stated in [N] is the following:

Proposition 2.2. (i) If 2 < sl , Q < N - 1 then in the game GN(sl, g) there exist equilibria that result in the

play of (C, C) in each round. (ii) If either sl or g is at least N then there does not exist an equilibrium point

that results in the play of (C, C) during every stage of the game.

Intuitively, Proposition 2.2 can be traced to the fact that an automaton with less than N states

cannot recognize that it is playing the last round of an N-round game, when the last round is being

played. In this context, we can state another result that follows easily by a similar argument:

Proposition 2.3. If both sl 1 N and s2 1 N then every pure strategy equilibrium (that is, a pair of deterministic

choices of deterministic automata, which is in equilibrium) results in the play of (D, D) throughout.

Interestingly, even when sl 1 N, if n< N then there exist other deterministic equilibria that

approximate the cooperative play. For example, if sl is unbounded and Q = 2, the following automata

are in equilibrium. Player 2 plays C in his START state, and stays in this state as long as player 1

plays C. In this state, if 1 played D then 2 switches to his second state END, at which he plays D

and stays in END, regardless of what player 1 does. Player 1 uses N of his states to count to N. In

his state qi (i = 1, ..., N- 1) he plays C and switches to state q,+l, if 2 played C; otherwise, if 2 played

D then 1 plays D and switches to state q ~ . In his state q~ he plays D and stays in q ~ .

A much stronger result, with respect to equilibria in mixed strategies in GN(s l ,n) , is stated in

[N]. A mixed strategy amounts to a probability distribution over automata. Thus, the players in

this case are allowed to randomize their choices of automata, and their probabilistic choices are

considered to be in equilibrium if the expected payoffs satisfy the equilibrium conditions. The stronger

result of [N] is as follows.

Proposition 2.4. For any integer k, there is an No with the following property: for every N 2 No and every pair

(sl , q) such that N''~ < min(sl, Q) < max(sl, q) < Nk, there exists a mixed strategy equilibrium, where the

payoffs to each player are at least 3 - 1 / k.

3. Play by means of unrestricted Turing machines

Our purpose is to study Neyman-type models with more general computing machines. For the

sake of completeness we include in the Appendix a description of how the game is actually played

through Turing machines. We also include a brief definition of one type of a Turing machine. The

unfamiliar reader is however advised to consult, for example, IHU] for more detail. Intuitively, one

can think of computer programs instead of Turing machines. Thus, our model corresponds to a

situation where real players write computer programs to play the game for them.

Our approach differs from Neyman's in several ways: (i) We consider machines with unlimited

memory, whereas automata have no memory besides their states. (ii) We work with uniform machines,

that is, our players write programs that can play any number of rounds, where the number of rounds

is given to the program at the start of the game. (iii) We concentrate on deterministic choices of

machines, whereas Neyman considers choices of probability distributions over the space of all possible

deterministic machines.

Rationality in our model is bounded in the sense that, regardless of the number of rounds the

game, choices of actions in the game are determined by a finite control, even though the entire history

of the game may be held in memory. The implications of this restriction are discussed below. As

we show later, finiteness in itself does not suffice for obtaining high payoffs in equilibrium. For high

payoffs to be feasible in equilibrium, there has to be a specific bound on the size of the machine,

that is, the number of internal states (or the length of the computer program, in the intuitive

interpretation).

One may consider various definitions of the game, corresponding to different restrictions on the

computational resources. In this paper we consider only restrictions on the number of internal states

of the machine. In real computers this corresponds to restricting the length of the computer program,

that is the space for storing the instructions, excluding the space for storing program variables. We

start with the case where the number of internal states of the machine is not restricted. A more
precise definition follows.

Definition 3.1. Let r denote a game as foliows. Two players independently choose Turing machines

for repeatedly playing the prisoners' dilemma game for some unknown finite number of rounds. The

number of rounds, N, is chosen by "nature" and given to the machines as input before round 1.

A natural question here is whether the players are at all restricted (in the game I') when they

have to play through Turing machines. The answer is yes:

Proposition 3.2. There exist strategies for playing the game I' that cannot be played through any Turing machine.

Proof. The proof follows by a classical cardinality argument. Since a strategy for I' amounts to

choosing a strategy for each N-round game, it follows that there are 2Ko strategies for playing the

game I". On the other, there are only N,, Turing machines.

Those strategies of I", which can be played by Turing machines, may be called recursive strategies.

The "advantage" of the definition of r is that it allows for "bounded rationality" without imposing

a strict limit. Rationality is bounded in the sense that players are restricted in their decision rules,

even though they may have unlimited time and space for computation.

So far, we have not defined a payoff function for the game I". In other words, we have not

specified how the number N is chosen by nature after the players have selected their machines.

However, we show below that, regardless of the rule by which payoffs for different values of N are

aggregated, there does not exist a "cooperative equilibrium". Given any pair of strategies (al, q) , we

say that player i has a profitable deviation if there is a strategy of that yields him payoff higher than

ai, given that the other player plays 0 3 4 .

Proposition 3.3. For any pair of machines (TI, T2) playing I' and for each player i (i = 1,2), there exists a

machine T: with the following property: for every A! if in the N-round game there exists a profitable deviation

for i (relative to the play of (TI, T2)), then T; discovers such a possibility for a pn?fitable deviation and executes

it.

Proof. The proof is based on a "simulation" argument. One Turing machine can simulate the

execution of another, that is, compute the entire run of the other machine. Since the size of the

machine is not restricted, player i can choose a machine that, given N, simulates the entire play of

TI against T2. This machine can thus find a profitable deviation (whenever there exists one) and

then play the game, carrying out that deviation.

We thus conclude the case of unrestricted machines with the following theorem, which follows

from Propositions 1.4 and 3.3:

Theorem 3.4. If the players are restricted to recursive strategies, but the size of machine is not restricted, then

every equilibrium results in the play of (D. D) rhrvughout any N-round game.

Remark 3.5. It can be shown that even when players are allowed to choose probabilistic machines,

still every equilibrium pair of machines results in the steady play of (D, D).

4. On machines with limited numbers of internal states

It is important to note that in all our models we do not require the machines to halt after N

rounds. Such a requirement would probably make most of the questions trivial. Of course, only the

first N rounds are taken into the account of payoffs.

Henceforth, we consider only play through machines with restricted numbers of states, that is,

each player must choose a machine whose size does not exceed some given upper bound. The

simulation argument used in the preceding section does not hold anymore. A simulation may require

a number of additional states which exceeds the limit. Thus, machines may be in a highly paying

equilibrium if they use a number of states close to the limit. In the present section we study this

aspect. We first consider (for a didactical purpose) the case where the number of rounds is fued in

advance, that is, "given N, choose a machine." We return later to the uniform case of "choose a

machine, get W'.

Definition 4.1. Let rN(sl,n) denote the N-round game where players, knowing N, choose machines

of no more than sl and s2 states, respectively.

Consider any sequence S = ((~ 1 , s:) , ... , (s;, s$)), of pairs of choices in the N-round game,

that is, S ~ E {C,D], (i = 1,2, j= 1 , ..., N). Obviously, there are many pairs of machines that together

produce the same sequence S. Denote by B(S) the set of all such pairs of machines.

Proposition 4.2. The set B(S) is a cartesian product, b (S) = &(s) x B2(s), of sets of machines for the

individual playrs.

Proof. It is easy to verify that if (TI, T2) and (7'1, p2) produce S then so do (TI, 7'2) and (PI, T2).

Let us define more restricted sets and d as follows.

Definition 4.3. For any S, let @' = @'(s) be the set of all the machines for player i that do the following:

(i) Play S! in round 1.

(ii) Keep playing according to S if the opponent does.

(iii) If during any round the opponent deviates from S then switch to playing D in all following rounds.

Let us examine the possibility of achieving (in equilibrium) payoffs higher than those of the steady

play of (D,D), when the number of rounds N is fixed, while the number of states is restricted. The

question is which sequences S can be realized in equilibrium, given the limits on the numbers of

states. Player i is mostly limited with respect to S if he must use all of his states for playing according

to S. Intuitively, sequences S, with respect to which the players are mostly limited, are good

candidates to be realizable in equilibrium, since the machines have minimum freedom for deviating

from such strategies.

Definition 4.4. For any sequence S, other than the steady play of (D, D), let the critical round,

j* = j * (S), be the last round where at least one of the players plays C.

Proposition 4.5. Let S be any symmetric sequence of actions (that is, = S? for every j) other than the steady

(D, D). Suppose player 2 chooses a machine T2 E @(s). Under these conditions, if TI is a machine for player

1, that yields him a pupff higher than the machines in a l (S) , then TI plays according to S in rvuncfs

1, ..., j * (S) - 1 and then switches to playing D.

Proof. The proof follows from the fact that if 1 deviates from S during some round j < j * then his

payoff can increase only in round j. However, the local gain (getting 4 instead of 3) is washed off

by the loss in round j* (a drop from 3 to 1) which is caused by this deviation.

We are now led to the interesting problem of designing highly paying sequences S, which are

feasible subject to the limit on the number of internal states, such that none of the players can deviate

precisely in round j* (S). We first develop some concepts that suggest solutions to the problem. Recall

that we do not require the machines to halt at any time after round N.

Definition 4.6. Consider a Turing machine T that "plays" either C or D (see the Appendix for a

detailed description of how the game is played). We say that T can count if for any natural number

N, starting with the number N written on the work tape (in binary), T plays C precisely N times in

a row, and then plays D.

Proposition 4.7. There exists a Turing machine with tno states that can count.

Proof. The construction is simple and is left as an exercise to the reader.

Denote by f(s) the number of different Turing machines (as specified in the Appendix) with s

internal states that work with three tape symbols: {O, 1, #). It is easy to see that there are integers

p and y such that f(s) = (ps)". Obviously, the number of different strings (of C's and D's) that such

machines can generate is bounded by f(s). This observation gives rise to the following definition,

which is in the spirit of Kolmogorov complexity [K]:

Definition 4.8. For any x E {c, D] ~ (that is, x is a string of of length k consisting of C s and D's) the

stare-complexity of x, denoted s(x), is defined to be the minimum number of internal states in a Turing

machine (as specified in the Appendix) that outputs the string x and then halts.

The configuration of two machines playing together may be thought of as a single "distributed"

machine producing some output. However, if the machines send each other the same signals then

this configuration is duplicating the work of each of them. Thus, s(x) is also the minimum number

of states in each member of a pair of Turing machines that (when playing together some finitely

repeated prisoners' dilemma) produce the symmetric sequence corresponding to x and then halt.

We are interested in strings x that are hard to construct. The idea is that each machine would

have to "waste" most of its power on the generation of the string x.

Remark 4.9. Suppose the machines also have to watch each other, that is, to switch to D as soon

as the opponent has deviated from x. Here more states may be required. However, for symmetric

play, only one more state suffices. We assume each machine can read in round i > 1 the moves of

both machines during round i - 1 before it has to choose its move for round i. Alternately, it suffices

to assume that each machine can read whether the moves in the preceding round were identical.

Thus, what the machine has to do is verify that in the preceding round both players made the same

move; if not, it enters a special state NOMORE. Once in NOMORE, it always plays D. In fact,

often there no additional state is required. Suppose the machine is not taking full advantage of the

power of s states. For example, the machine never finds itself in a situation that it reads a blank

on its work tape while its internal state is some q,. This suggests a slot that can be used for watching

the opponent. We can modify the machine as follows. Whenever the moves of the preceding round

are not identical, the machine erases the contents of the current cell of its work tape, leaves the

work-head in its place, and switches to internal state qi. If the machine reads a blank while in state

qi then it plays D, and does not change anything else. Thus, in symmetric play at most one additional

state may be required for watching the opponent and this may happen only when the full power of

s states is used.

Definition 4.10. A string x is called efficient with respect to s if it exploits all the states, that is, s(x) =s.

Proposition 4.11. For every s, there exists an string x, efficient with respect to s, whose length is not greater

than log2f(s).

Proof. There are precisely 2k different strings of length k. On the other hand, there are at most

f(s) different strings that can be produced by s-state machines. Let k = L log2f(s) J. It follows that

there is a string y of length k + 1 that cannot be produced by any s-state machine. Let y = m ...yl+l

be such an infeasible string of minimal length (hence 15 k). Consider the prefix y' =&..a. This latter

string is feasible. Suppose, per absurdum, it is not efficient. Thus it .can be produced by an

(s- 1)-machine T which halts after y' is produced. It is this halting property that allows us to modify

T into an s-state machine that produces the string y. Specifically, instead of entering the halting

state of T, the modified machine enters the additional state, prints y ~ + l , and then halts. Thus, we

have reached a contradiction and it follows that y' is efficient.

5. Fixed N, deterministic machines, unlimited space

In this section we consider the case of a fixed N, that is, the players may choose different

machines for different numbers of rounds. For simplicity of the discussion, let us assume that these

machines receive no input in this case.

We propose a machine that works as follows. It plays according to a string of the form xC",

where x is a certain string of length k, and e" is an infinite string of Cs. If during any round the

opponent machine has not played the same way, our machine switches to playing D throughout.

Recall that f(s) = (fls)" denotes the number of different Turing machines (as specified in the Appendix)

with no more than s states. The following proposition is analogous to Proposition 4.11:

Proposition 5.1. There exists a string x of length O(s log s) such that xC" is played by some s-state machine

(when the opponent is doing the same) but not by any (s - 1)-state machine.

Proof. There are 2k distinct infinite strings of the form xCm where x is of length k. Obviously, if

2k > f(s) then there exists a string x of length k, such that xC" cannot be produced by any s-state

machine. As in Proposition 4.11, let yt denote the suffix of length I of a stringy of length I + 1, where

ye" cannot be produced by any s-state machine and, furthermore, y is of minimal length with respect

to this property. It follows that I log2fls) = O(s1ogs). Moreover, y' cannot be played by any

(s - 1)-state machine.

Obviously, we can also show that there exists a string xC", where x is of length O(slogs), which

can be played by an s-state machine that also watches the opponent, such that no (s- 1)-state machine

can do the same.

At this point it seems that we are close to proving the existence of a high-payoff equilibrium.

Suppose both players use the same machine T* that plays xe" and also watches the opponent, that

is, switches to playing D as soon as the opponent deviates from the string xCm. Moreover, suppose

x is so complex that no (s- 1)-state machine can do the same. It is conceivable that there is an

(s- 1)-state machine that plays xCm without watching the opponent. But since one additional state

always suffices for watching the opponent, it follows that there is no (s - 2)-state machine that plays

xCm. The resulting play is described by the string X C ~ - ~ , where k < N is the length of x, even though

the machines keep on playing C ad infiniturn. By Proposition 4.5, the only profitable deviation for

either player is to play according to x ~ ~ - ~ - ~ during the first N- 1 rounds, and then play D. The

key question is whether there exists an s-state machine that does it. In other words, the only way

to deviate profitably is to use a machine that not only plays according to the string xCNVk-l in the

first N- 1 rounds but also "counts" so as to play D in round N. Intuitively, this counting task seems

to require (at least for mme strings x obtained in this way) computational resources that are not

available (for example, two more internal states). Of course, there may exist special strings x such

that although xCm requires s - 1 states, there is a machine that produces enough information on its

work tape so that it can play I) in round N with just one more state. However, this seems to imply

some connection between the string x and the number N. It seems reasonable to conjecture that

there is at least one string x of length O(1og f(s)) for which this does not happen.

Motivated by the previous discussion, wc now state a specific conjecture and prove results implied

by it. Note that we do not have any specific reason to insist on play of strings of the form X C ~ - ~ .

The only property we need from a string is that it be complex and contain sufficiently many Cs.

Recall that f(s) is the number of Turing machines (as defined in this paper) with s states. We say

that a Turing machine Tproduces a string x if the output of T starts with x. In particular, the machine

is not required to halt or even to stop outputing.

The Hypothesis. If N and s are given so that log f(s) = o(N) then there exists an N-string x with following

properties: (i) x is produced by some s-state Itmring machine T. (ii) x contains only o(N) D's. (iii) If j is the

largest index such that xj= C then the N-string x', where x: = xi for i # j and x: = D, is not produced by any

s-state machine.

The hypothesis reflects our intuition that at least for some strings y, a string of the form yC"

contains less information than a string of the form y ~ l ~ . If Kolmogorov complexity is a good measure

of information contents then this difference should be reflected in the number of states in the machine.

We are not aware of any result with respect to Kolmogorov complexity which does not follow by a

counting argument. However, counting arguments do not seem to work here so we believe new

techniques have to be developed for proving this hypothesis. We conjecture that a stronger assertion

is true, namely, that in (iii) the string x' cannot be produced by any machine with s+ g(s) states for

some slowly increasing function g(s). However, for our purpose, it suffices to consider only one

additional state for the difference between watching and not watching the opponent. Stated more

directly, we rely on an extended hypothesis as follows.

The Extended Hypothesis. Under the conditions of the Hypothesis, the string x @ut not x') is produced by

an s-state machine T* that also watches the opponent.

Recall that the payoff to both players when they play (C, C) in the one-shot game is 3 and the goal

is to achieve (in equilibrium) an average payoff of approximately 3 per round.

Theorem 5.2. Assuming the extended hypothesis, if s = o(N/ log N) then for every E > 0, there is an No such

that for all N 1 N, an average papff of at least 3 - E can be obtained in equilibrium in the N-round game,

played by s-state Turing machines (with no limit on space).

Proof. Obviously, s = o(N / log N) implies log f(s) = o(N). Let T* be an s-state machine the produces

a string x as stated in the extended hypothesis. Suppose both players use T* for playing the game.

Thus, in every stage they play either (C, C) or (D , D) . But the number of D's is o(N), hence the

average payoff per stage tends to 3 when N tends to infinity. This pair of choices is in equilibrium

since the only profitable deviation is to play according to x, except that the last C is replaced by a

D (see Proposition 4.5). The extended hypothesis states that such a deviation cannot be implemented

by an s-state machine.

Remark 5.3. It is interesting to compare Theorem 5.2 to Neyman's results (Propositions 2.2, 2.4).

For the comparison, recall that automata have no memory, so in a certain sense they have to use

some of their states as memory. Thus, they need at least N states just for counting to N. It is

therefore not surprising that even (N- 1)-state automata can play steady (C, C) in equilibrium. On

the other hand, a Turing machine with only two internal states can count to any N, when given the

number N in binary as input (Proposition 4.7). We note that the results of the present section can

be easily adapted to a model in which the number N is also given to the machine as input. It is

obvious that with N states, both automata and Turing machines can play only the steady (D,D) in

equilibrium relative to deterministic choices of machines. The proof of this claim is as follows. Given

any pair of machines (MI, M2). each player i can design an N-state machine M: that plays precisely

what Mi would play against M 3 4 (regardless of what 3 - i actually plays) and yet deviate in the

critical round if there is one. Consider a game where players have to choose specific machines rather

than probability distributions over machines. If the machines are automata then a restriction to

N- 1 states allows steady (C, C) in equilibrium, but N states leave only the steady (D, D) in equilibrium.

Thus, in the context of deterministic choice of automata, the issue is precisely the ability to count to

N; this amounts to sufficient "memory" in the form of states. In the case of Turing machines,

memory is not the issue. The equilibrium is based on complexity of computation. The machines

have unlimited space but they play strategies that waste their computational power so that with the

remaining power they cannot count. We have not yet pursued the case of probabilistic choices of

(deterministic) machines.

6. Uniform deterministic machines with limited number of states

In the tradition of theoretical computer science a Turing machine is perceived as a "uniform"

tool. Here this corresponds to machines that can play a game of any number of rounds N which is

given to the machine as input. Thus we are now interested in a game as follows.

Definition 6.1. We denote by r(s1, Q) a game where the players have to choose Turing machines TI,

T2 with no more than sl and s2 states, respectively. The machines then play an N-round prisoners'

dilemma game, where the number N is written in binary on the input tapes of the machines.

We discuss here the symmetric case, that is, sl = g = s. The asymmetric case is a trivial extension

of the symmetric one (see the conclusion of this paper). Notice that neither have we defined a

payoff function for the game r (s 1 , a) nor have we specified the mechanism by which the number of

rounds N is selected. One can think of a strong notion of equilibrium as follows.

Definition 6.2. A pair of machines (T I , T2) for I'(sl, s2) is in srmng equilibn'um if for any other allowable

machine f i for player i (i = 1.2) there does not exist a number N (or, more weakly, there is an No

such that there does not exist a number N > No) such that in the N-round game i strictly prefers

over q, given that the opponent plays T3-,.

Unfortunately, as we see in the following proposition, the notion of strong equilibrium is "too strong".

This is true because machines may interpret their inputs in various ways.

Proposition 6.3. Suppose Ti and T2 are deterministic machines for playing the game r(s, s) and suppose that,

except possibly for finitely many values of N, the play of these machines in the N-round game is different from

the steady (D, D). Under these conditions, for s sufficiently large, for at least one player i, there exists an s-state

machine such that for infinitely many values of N, i prefers f i over 3;: when his opponent plays T34.

Proof. Consider a "universal" machine g:., for player i , that acts as follows. For input N sufficiently

large, q reads the 2k-bit prefix of the input string (where k is some sufficiently large constant whose

construction by will be discussed later) and decodes it as a description of a pair of Turing machines.

In most of the cases this would be meaningless and we allow to play arbitrarily. However, when

the 2k-bit prefix describes a valid pair of machines, (T;, T;), then simulates the play of (T;, T;)

on the input N and discovers a round (if one exists) in which player i can deviate profitably in the

sense of the N-round game. When actually plays the game, it plays like T; would have played

against but deviates in the critical round. We now discuss the choice of the number k. First,

there are obvious ways to encode the description of a Turing machine in binary. Let us fix such an

encoding. Obviously, the size of the code of a machine with s states is O(s1ogs). Given the number

s, we would like to construct a number k such the length of code of any machine with s states does

not exceed k. Obviously, we can construct a number k of the form k = 2J where j= O(1ogs) is an

integer, and moreover, this effort does not require more than O(1ogs) states. Now, if N > 2k, all the

pairs of s-states machines are encoded by some strings with less than 2k bits, so in some fixed fraction

of the cases (at least 2-2k), simulates precisely the pair (TI, T2). Obviously, for at least one of

the players such a machine f i is preferred in infinitely many cases. Note that the universal machine

needs a only constant number of states (that is, independent of s) for most of its work except for

the construction of the number k.

Because of Proposition 6.3, we prefer to work with a weaker notion of equilibrium. We consider

a weighted average of the payoffs of the N-round games. That is, if the play of the machines results

in payoffs #(TI, T2) (for player i) in the N-round game, then in the "grand game" we define payoffs

U, (Ti, T2) = P ~ u ~ (T ~ , T2), where PN 1 0 and EpN = 12. We argue that under a certain assumption
N N

on the weighting sequence PN and the extended hypothesis, there exists a pair of deterministic

machines in equilibrium yielding high payoffs.

2 It should be noted that this weighting function does nor turn our game into a kind of an infinitely repeated one. It
is well-known that if a game is repeated indefinitely, but after each round there is a probability a > 0 of stopping,
then despite ending (with probability 1) after a finite number of rounds, this game is equivalent to an infinitely
repeated game with discounted payoffs. In our case, the interpretation may be that the players play the N-round
game with probability PN but they always know the number of rounds in advance.

As argued before, the idea behind the equilibria in this paper is that the machines playing them

are so busy with the implementation of the strategy, that they cannot do almost anything else. We

now extend the ideas developed in the previous sections to the case of selecting uniform machines,

given a distribution on the number of rounds. The strategy to be used by the machines is similar to

the one described for the case of a fixed N.

In Section 5 we stated an hypothesis about machines with no input. Here we discuss machines

with input and we believe an analogous assertion is also true.

The Extended Hypothesis (for machines with input). For every s, there exist numbers L = L(s) and

No = No(s), and a monotone increasing function ~r, (N), such thal for every N 1 N, there exists an N-string x

with following properties: (i) x is produced by some s-sme Turing machine T when given the number in N in

binary as input, and T also watches the opponent. (ii) x has the form y ~ N - k where the length of y less than

L(s). (iii) For every N' 1 N - #(N), a string x' thut begins with y ~ M - k - l ~ is not produced by any s-state

machine when given the number N as input.

The intuition here is that there has to be a string y that can be produced only by machines with at

least s states and there is one which produces yCm. Since N is considerably larger than k, it seems

there is a y with the following property: if y is produced as a prefix of a string z #yC" then z and

yC" must disagree on some index less than N- p3(N), for some slowly increasing function ps(N).

Let H(s) denote the set of s-state machines T such that for any input N, while watching the

opponent, the machine T plays according to a string of the form where the length of y is less

than L(s). Denote the number of such machines by h(s).

Proposition 6.4. Suppose the input N is drawn from a probability distribution P = (PN : N = 1,2, ...) and denote

~ ' (s) = C PN. men, under the extended hypothesis for machines with input, for any s, there exists an s-state
NL No (J)

machine T E H(s) that satisfies the following: (i) T plays a string of the form watching the opponent.

(ii) m e probability (induced by the distribution P), that any string y ~ M ~ k - l ~ , where N' 1 N - ps(N) can be

playd by some s-state machine (given N, not necessarily watching the opponent) is less than 1 - ~ ' (s) /h(s).

Proof. Let us say that machine T is "defeated" by machine ? on the number N if, given N, T

produces a string y ~ V - k (watching the opponent) while produces the string y ~ M - k - l ~ with

N' > N- ps(N). Notice that only the case h." = N corresponds to a profitable deviation. For any

T E H(s) and any input N, let a(T, N) = 1 if T is not defeated on AT by any s-state machine; otherwise,

let a(T, N) =O. By the extended hypothesis for machines with input, for every N > N,,(s),

It follows that

so that

The left-hand side of the latter inequality is the average, taken over all T E H(s), of the probability

that the output of T is not defeated on N by any s-state machine. It follows that there is at least

one such machine for which this probability is at least Pt(s) /h(s).

Proposition 6.4 suggests conditions on the distribution P and the number of states s, under which

good equilibria exist. The idea is as follows. Suppose both players "agree" to use the machine T

described in Proposition 6.4 but one of them is unfaithful and uses another s-state machine instead.

Consider a distribution P that does not converge too fast to zero. For a deviation in a certain

N-round game (against a faithful player) to be profitable, it must occur in the lasf round. The profit

then is only 1. However, if the deviation occurs before round N- &(N) then the unfaithful player

incurs a loss of at least ~ c (, (N) -1, since for at least F ~ (N) rounds the faithful player would then play

D instead of C. The assumption is that a(N) is increasing. If the probability for large values of N

is sufficiently large, the expected profit is negative. For simplicity, we state the result as follows.

We first determine the scope of our probability distributions. Given a natural number n and a positive

E , let P,,, denote the set of probability distributions P = (P I , P2, ...) (Pi 2 0, Z & = l) , over the naturals,

for which P((N s n)) E .

Theorem 6.5. Under the extended hypothesis for machines with input, for any number of states s, there exist a
natural number n = n(s) and an E = E (S) > 0, such that for any probability distribution P E P,,,, there exists a

pair of s-state deterministic machines that are in equilibrium in r (s , s) relative to the distribution P, whose average

papffs per round in the N-round game tend to that of (C , C), as N ten& to infinity.

7. Conclusion

We have discussed mainly the symmetric case of the the prisoners' dilemma game, that is, players

have to use machines under the same restrictions. Similar ideas can be used in a more general

situation, that is, asymmetric restrictions (not necessarily on numbers of states) and more general games.

Consider first the asymmetric prisoners' dilemma game. More precisely, suppose the players are

restricted to sl and sy states in their machines, respectively, where sl and g are not necessarily equal.

The extension is easy. Suppose q < 52. Player 1 uses the same strategy as in the symmetric case,

that is, he plays xC" where x is chosen appropriately and also watches player 2. Player 2's strategy

depends on the value of g. Let q denote the minimum number of states, with which player 2 could

play according to xC*, except that in the last round he would play D. The high-payoff equilibrium

depends on the the value of q. The extended hypothesis essentially states that q > s l . If g 2 q + 1

then player 2 plays this way and also watches player 1; this is possible since only one additional state

is required for watching. If g < q - 1 then player 2 plays exactly as in the symmetric case. The

difficult case is ~2 = q. Here player 2 can profitably deviate from the strategy of the symmetric case.

However, he may have to do that at the expense of not watching player 1. On the other hand, if

player 1 is not being watched then he can deviate profitably.

In a general repeated game situation the long sequence of (C, C) of the prisoners' dilemma game

should be replaced by a sequence of payoff pairs that yield high average payoff. For sufficiently

large s and N (but s must be small relative to N) , any individually rational payoff pair can be

approximated by the average payoff in some equilibrium. The players choose a sequence of pairs of

moves which is, on the one hand, complex (so that it requires all the states of the machine), and on

the other hand yields approximately the desirable payoff. The equilibrium is achieved by prescribing

"punishments" to a deviator. These ideas seem fairly standard in the context of repeated games.

We have discussed here restrictions only on the numbers of states, or alternately, lengths of

programs. It seems that similar ideas should work when other computational resources are limited.

For example, one might consider a game where players can use any number of machines of a fixed

type where the total number of machine operations between rounds is limited. Then an equilibrium

is likely to exist, based on a string whose computation requires the maximum number allowed.

However, even if such equilibria can be shown to exist, it would probably be very hard to construct

one and prove that it is an equilibrium.

References

[HUl J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages, and computation,

Addison-Wesley, Reading, Mass., 1979

[Kl A. N. Kolmogorov, "Three approaches for defining the information quantity", Prob. Inform.

Trans., 1 (1965) 1-7.

[Nl A. Neyman, "Bounded complexity justifies cooperation in the finitely repeated prisoners'

dilemma", manuscript, February 1985.

[Rul A. Rubinstein, "Finite automata play -- The repeated prisoner's dilemma", Research Report

No. 149, Department of Economics, The Hebrew University, Jerusalem, Israel, 1985.

Appendix: The mechanism

In this appendix we specify the mechanism by which our machines play the game. Our machines

are standard Turing machines with the following features: (i) a read/write w r k tape, (ii) a read-only

input tape, (iii) a play device which can be set to either C or D and also can be read, and (iv) an eye

which can read either C, D or #. Before round 1 the eye sees #. The game is administered by a

"referee". The referee first writes into the input tapes of the participating machines the number N

of rounds to be played (in binary encoding). After round i the "referee" shows each "eye" what

was "played" by the other machine. The machine then has to specify its choice of C or D for the

following round. The machine can be in one of a finite number of internal states including two special

states: PAUSE and GO. The work of each machine is determined by a "next move" function 6.

The arguments of the function 6 are the following: (i) the current state (except for PAUSE), (ii) the

symbols currently being scanned on the work and input tapes, the symbol currently seen by the eye,

and the symbol shown on the play device (before round 1 this play device shows #). The function

6 then gives the next state (possibly PAUSE), a direction command (left, right, or stay) for moving

the head of the work tape or reading the next symbol on the input tape, a symbol to be written on

the work tape and a "play" (i.e., C or D). After the state of the machine is changed to GO, the

latter is supposed to enter the state PAUSE, with either C or D on the play device, after a finite

number of steps. The "referee" acts as follows. When both machines are in their respective PAUSE

states, the referee reads the play devices and shows the contents to each other's eye. He then changes

the states of both machines to their respective GO states.

A probabilistic machine is almost the same as a deterministic one with the addition of a "coin".

This is another device that at any time reads either 0 or 1 with probability X each, independently of

other parts of the system and the history of the run. This reading is also an argument of the
next-move function of the machine.

Note that we do not assume any time limit. So, if a player uses a machine that may not enter

its PAUSE state is a certain situation, it may be impossible to prove that he is using an illegal machine

even though the game will not proceed.

