Operational Semantics for Secure Interoperation

Adriaan Larmuseau
Uppsala University, Sweden
first.last@it.uu.se

Marco Patrignani
iMinds-Distrinet, K.U. Leuven, Belgium
first.last@cs.kuleuven.be

Dave Clarke
Uppsala University, Sweden
iMinds-Distrinet, K.U. Leuven, Belgium
first.last@it.uu.se

Abstract
Modern software systems are commonly programmed in multiple languages. Research into the security and correctness of such multi-language programs has generally relied on static methods that check both the individual components as well as the interoperation between them. In practice, however, components are sometimes linked in at run-time through malicious means. In this paper we introduce a technique to specify operational semantics that securely combine an abstraction-rich language with a model of an arbitrary attacker, without relying on any static checks. The resulting operational semantics, instead, lifts a proven memory isolation mechanism into the resulting multi-language system. We establish the security benefits of our technique by proving that the obtained multi-language system preserves and reflects the equivalences of the abstraction-rich language. To that end a notion of bisimilarity for this new type of multi-language system is developed.

Categories and Subject Descriptors D.3.1 [Programming Languages]: Formal Definitions and Theory—Semantics

General Terms Languages, Interoperability, Security

Keywords memory protection, multi-language semantics, bisimulation, fully abstract compilation

1. Introduction
Modern software systems consist of numerous interoperating components written in different source languages. Reasoning about the semantical properties of such a system is often done by developing a combined language composed of the models of the source languages.

Securing a multi-language software system requires, at least, that the combined language preserves the abstractions of each of the composed languages. This is because language based security relies on a notion of equivalence: no client of a component should be able to distinguish between two different implementations of that component if all manifestations of the differences between the implementations are masked by language abstractions. A client of two \(\lambda \)-calculus terms \(\lambda x. (\text{iszero } x) \& \text{true} \) and \(\lambda x. (\text{iszero } x) \), for example, cannot distinguish between the two as the \(\lambda \)-term abstracts away the implementation details of its subterm.

Previous approaches to securing multi-language software systems have relied on static methods that check both the components individually as well as the interoperation between them [8, 9, 23]. However because some software components may be dynamically linked at run-time, written in languages with no abstractions or susceptible to code injection attacks, these static solutions are easily circumvented in practice [17]. Current multi-language security techniques thus do not preserve the abstractions of the composed languages when faced with a component that is malicious. We refer to such a malicious component as the arbitrary machine-level attacker.

To study this problem, this paper introduces a technique for specifying operational semantics that enable an abstraction-rich language to interoperate securely with a model of an arbitrary machine-level attacker without relying on any static checks on the components not written in the abstraction-rich language. To that end this paper lifts a proven memory isolation mechanism that protects a certain memory area by restricting access to that area through a set of designated entry points, into the semantics of the combined language (Section 2). Efforts are underway to embed such a memory isolation mechanism into future commercial Intel processors [16].

We illustrate our technique by securing the interoperation between the simply typed \(\lambda \)-calculus, hereafter referred to as the \(\lambda_s \)-calculus and a model for an arbitrary machine-
level attacker. This machine-level attacker is modeled as a λ-calculus extended with the syntactical equality operator \equiv, referred to as the λ_m-calculus. Given how precise such an operator is at distinguishing components, we argue that the λ_a-calculus is a good model of an arbitrary attacker.

We provide an informal overview to our method by first combining the λ_a- and λ_r-calculus into the combined language λ_m, using the commonly used multi-language semantics of Matthews and Findler [15] (Section 3). This combined language, however, does not preserve the abstractions of the λ_r-calculus. Lifting the memory isolation mechanism into the λ_m-calculus to resolve this security issue fails due to the direct syntactical embedding that Matthews and Findler’s method relies on.

This issue is resolved by removing the direct syntactical embedding between the λ_r- and λ_a-calculus (Section 4). Instead the interoperation between both calculi is encoded into partial evaluation stacks similar to how continuation passing style conversion makes continuations explicit. The resulting combined language is referred to as the λ^+-calculus.

To establish that the resulting combined language λ^+ is capable of preserving the abstractions of the λ_a-calculus, a secure/fully abstract compilation scheme from the λ_a-calculus to the λ^+-calculus is introduced. This compilation scheme preserves and reflects the equivalences of the λ_a-calculus (Section 5). Contextually equivalent terms in the λ_a-calculus are thus compiled to contextually equivalent terms in the λ^+-calculus and all compiled terms that are contextually equivalent in the λ^+-calculus are contextually equivalent in the λ_a-calculus.

Because directly proving contextual equivalence is complex [22], we develop bisimulations that coincide with contextual equivalence for the λ_r- and λ^+-calculus. The fact that this compilation scheme is indeed fully abstract is established by systematically relating the states of the bisimulations over the λ_r- and λ^+-calculi.

This paper makes the following contributions:

- Operational semantics that ensure secure interoperability between the simply typed λ-calculus and an arbitrary machine-level attacker.
- A bisimulation over the produced combined language.
- A fully abstract compilation scheme from the simply typed λ-calculus to the combined language that results from our technique.

This technique for specifying operational semantics for secure interoperation is currently limited to multi-language software systems between two languages as well as languages that are not concurrent. In the future, however, this technique could be extended to multi-language software systems that securely interoperate between a number of complex and concurrent languages.

2. A Memory Isolation Mechanism

Preserving the abstractions of a source language from an arbitrary machine-level attacker has been achieved by employing a memory isolation mechanism [4, 19]. In this paper we lift a low-level isolation mechanism referred to as Protected Modules Architecture (PMA) into the operational semantics of a multi-language system.

PMA is a fine-grained, program counter-based, memory access control mechanism that divides memory into protected and unprotected memory. The unprotected memory is further split into two sections: a protected code section accessible only through designated entry points, and a protected data section that can only be accessed by the code section. As such the unprotected memory is limited to executing the code at the entry points, neither the code nor the data of the protected memory can be executed, written or read by the unprotected memory. An overview of the access control mechanism between the protected and unprotected memory is given in Table 1.

<table>
<thead>
<tr>
<th>From \ To</th>
<th>Protected</th>
<th>Unprotected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
<td>r x</td>
<td>r x</td>
</tr>
<tr>
<td>Code</td>
<td>r x</td>
<td>r w w x</td>
</tr>
<tr>
<td>Data</td>
<td>r w x</td>
<td>r w x</td>
</tr>
</tbody>
</table>

Table 1: PMA protects its data by forcing the unprotected memory to use the designated entry points.

Note that this technique could be considered to be the dual of sandboxing. When securing a system through sandboxing it is the attacker that is placed within a confined memory area, while the secure program operates as usual.

A variety of PMA implementations exist. While most of them are research prototypes [18, 21], Intel is developing a new set CPU instructions, referred to as SGX, that enable the creation of protected modules in commercial processors [16].

3. Informal Overview

A combined language must preserve and reflect the equivalences of the combined languages. This section firstly details why the λ_a-calculus is an accurate model of an arbitrary machine-level attacker (Section 3.1). The λ_a-calculus is then combined with the simply typed λ-calculus (λ_s) by applying Matthews and Findler’s natural embedding, resulting in a calculus that we refer to as the λ_m-calculus (Section 3.2). This λ_m-calculus is, however, not capable of preserving the equivalences of the λ_s-calculus. To resolve that issue we attempt to lift the PMA mechanism into the calculus but fail (Section 3.3). The failures encountered point out how to develop a combined language that can lift the PMA mechanism (Section 3.4).

The terms, types and contexts of the λ_r-calculus are typeset in a bold black font. The terms and contexts of the λ_a-calculus, are typeset in a grey-sans serif font.
3.1 The λα-calculus as an Attacker Model

As mentioned previously, language-based security relies solely on a notion of equivalence. The λα-calculus, an untyped lambda calculus with a syntactical equality operator, is a relevant attacker model as it has no equivalences other than trivial syntactical equalities. For any λα-term t there exists a λα-context C that can distinguish t from any term that differs from it syntactically as follows.

\[C = (t \equiv []) \]

where \(\equiv \) is a syntactical equality operator.

While the syntactical equality operation may seem like an overly strong attacker model, we argue that the syntactical equality operator simply reflects a machine-level attacker’s ability to distinguish between any combination of bits that it has access to. We do not extend the attacker with the ability to modify or introduce terms dynamically. This is not necessary as previous work by Wand [25] has established that inspection alone is sufficient as an attacker model, extending the attacker does not strengthen it.

3.2 A Natural Embedding of the λα and λα-calculus

The natural embedding introduces two new terms into the combined λm-calculus: \(AS^\sigma t \) and \(S^\sigma A t \). The former is a λα-term that embeds a λα-term t and the latter is a λα-term that embeds a λα-term t. Both terms are annotated with a λα-type \(\sigma \). These type annotations are used to perform dynamic type checks on the interaction between the terms of the λα- and λα-calculi to ensure that the typing properties of the λα-calculus are preserved.

In the λm-calculus primitive values are simply converted into the respective representation when they transition between the composed languages. Function calls rely on a wrapping mechanism: when the λα-calculus, for example, gains access to a λ-term of the λα-calculus it wraps that λ-term into a new λα-calculus λ-term as follows:

\[\sigma \rightarrow \sigma S^\sigma (\lambda x.t) \rightarrow \lambda y : \sigma. (S^\sigma ((\lambda x.t) (AS^\sigma y))) \]

The λα-calculus is not capable of preserving the abstractions of the λα-calculus. Take for example the following two λα-calculus terms.

\[t_{1F} = (\lambda x : \sigma. if \ # \ t \ then \ x \ else \ x) \]
\[t_{1D} = (\lambda y : \sigma. y) \]

The terms \(t_{1F} \) and \(t_{1D} \) are contextually equivalent in the λα-calculus as there is no λα-calculus context that can distinguish them. However in the combined λm-calculus these two terms are no longer contextually equivalent as the following λm-calculus context can distinguish between them.

\[C_{1D} = (AS^\sigma \rightarrow \sigma (\lambda y : \sigma. y) \equiv AS^\sigma \rightarrow \sigma [\lambda x.t]) \]

The problem at hand is that \(AS^\sigma t \) is a λα-term whose contents can be compared against any other λα-term, in the same way that a low-level attacker can compare any two sets of bits that it has access to.

3.3 Lifting PMA into the λm-calculus

This paper aims to preserve the abstractions of the source languages of a multi-language software system by lifting the memory isolation model of PMA into the combined language. To that end the λm-calculus is investigated as a model of PMA. Note that we are aware of the fact that operational semantics of λm-calculus were explicitly designed to abstract away low-level details such as memory models. The goal of this section is to clarify our reasons for introducing a new operational semantics.

Clearly the λm-calculus is capable of modeling the split memory model of the PMA mechanism: simply assume that the terms of the λα-calculus reside in the protected memory and that the terms of the λα-calculus reside in the unprotected memory. By extension the λα-term \(AS^\sigma t \) represents an entry point to a λα-calculus term and the λα-term \(S^\sigma A t \) represents an unprotected call to a λα-calculus term.

This model, however, is not precise enough. A first issue is the use of \(AS^\sigma t \) to model the entry point mechanism of PMA. Reconsider our previously problematic λm-context \(C_{ID} \). Whether or not this context is able to distinguish between \(t_{1F} \) and \(t_{1D} \) when \(AS^\sigma t \) is assumed to be entry point to a protected piece of memory relies, in practice, on what the binary values of the entry points are.

The λm-calculus, however, does not allow us to reason about the binary values of the entry points. This limitation also artificially restricts the attacker model: in the λm-calculus the attacker can only manipulate the entry points that have been shared with it. In practice, however, an attacker is capable of calling any existing entry point by guessing its address.

A second issue is the way the λm-calculus wraps the insecure functions it gains access to. As illustrated in Figure 1, a memory representation of what happens when a λα-calculus program is given a λα-calculus function \((\lambda x.t) \), every time a λα-program is given a λα-function it wraps that function into
a lambda function of its own and as a result writes out a new chunk of memory to the unprotected memory space. As required by λ_m, this memory chunk encodes an application of the received function to an entry point to the bound variable of the enclosing λ-term. A λ_s-calculus program thus writes out a chunk of memory to the unprotected memory when it receives an insecure function, irrespective of whether or not it immediately calls that function.

In practice, an attacker in the unprotected memory will be able to both observe and execute that memory chunk before the shared function is used. The λ_m-calculus is not capable of modeling such an attack, thus leaving the consequences of the attack open to the implementation. We argue that this way of modelling function calls raises more questions and possible security problems than it resolves.

3.4 Our Approach to Modeling the PMA Mechanism

We propose to resolve the issues that plague the λ_m-calculus by removing the direct syntactical embedding (Section 3.4.1), modeling the entry points as a naming mechanism (Section 3.4.2) and simplifying function calls (Section 3.4.3).

3.4.1 Removing Syntactical Embedding

As in Section 3.3, assume that the terms of the λ_s-calculus reside in the protected memory of the PMA mechanism and that the terms of the λ_m-calculus reside in unprotected memory. We represent this assumption literally by grouping λ_m-terms and λ_s-terms at their respective side of a fixed syntactical boundary as follows:

$$\lambda_s\text{-terms} \parallel \lambda_m\text{-terms}$$

Because we limit our technique to sequential languages, only one term on one side of the program can be executing at any given moment. In order to enforce this, all terms outside of the term that is executing must feature a hole: $[\cdot]$. These holes encode the call stack between the λ_m-calculus and the λ_s-calculus, as done previously in Jeffrey and Rathke’s fully abstract trace semantics for Java Jr [14]. Each hole in a λ_s-term is thus only to be filled by a term from the λ_s-calculus and vice versa.

3.4.2 Entry Points as Names

To more accurately model the entry points mechanism we extend the λ_m-calculus with enumerable names n_i that denote the λ_m-calculus terms that are accessible to terms of the λ_s-calculus. Programs in the λ_s-calculus can compare and construct these names, thus removing the previous limitations of the λ_m-calculus.

Reconsider, once again, our previously problematic λ_m-context. It is now defined as follows:

$$C_{ID} = (n_r \equiv [\cdot]) \parallel \lambda_s\text{-terms}$$

where the name n_r is a random guess by the attacker. The question now is whether or not the context C_{ID} could ever guess a name that allows it to distinguish between the λ_s-terms t_{IF} and t_{ID}.

Our approach to protecting from this attack is to deterministically create a new name every time a λ_s-term is shared with the λ_m-calculus, effectively enumerating the shared functionality. Two λ_s-programs will thus share the same set of names with a λ_m-calculus context if and only if they share the same number of λ-terms with that context.

Our example context C_{ID} is thus unable to distinguish between t_{IF} and t_{ID} or any other two λ_s-terms that share only one name. Even though it can easily guess the deterministically created names.

Note that this does not mean that any two λ_s-calculus terms that share the same number of λ-terms to a λ_m-context, will be indistinguishable to that context. The values and function calls that two λ_s-calculus terms share with a λ_m-calculus context can still be observed and distinguished.

Note again that these names are terms of the λ_m-calculus, not of the λ_s-calculus. As such they do not prohibit a full abstraction result, as shown in Section 5.3.

Also note that we restrict the usage of names to sharing λ-terms across the syntax boundary. In practice the PMA mechanism requires two more entry points: one for setting up the communication between the protected and unprotected memory and one that handles callbacks from the unprotected memory to the protected memory. Because every program will have these two entry points, they do not affect contextual equivalence and we thus do not model them.

3.4.3 Simplified Function Calls

Instead of wrapping shared λ-terms into a λ-term of the receiving language as in the λ_m-calculus, the combined calculi are extended with terms that denote the availability of λ-terms from the opposing side. In the λ_m-calculus that term is as mentioned previously a name n_i, in the λ_s-calculus that term is $\sigma SA(\lambda x.t)$. This term models the direct access that the λ_s-calculus has to the functions of the λ_m-calculus.

When a λ_s-calculus program now calls a λ_m-calculus function $(\lambda x.t)$, for example, it simply passes a reference to that function as well as its arguments to the λ_m-calculus program on the other side of the syntactical boundary.

This is in contrast to the λ_m-calculus, where calling the λ_m-calculus function $(\lambda x.t)$ is done by calling an insecure memory chunk that encodes an application of that function to a callback to the λ_s-calculus.

4. The λ^+-Calculus

To resolve the modeling limitations of the λ_m-calculus we introduce a new combined language the λ^+-calculus that incorporates the solutions proposed in Section 3.4.

The λ^+-calculus introduces new syntax (Section 4.1), a larger program definition (Section 4.2), new operational semantics (Section 4.3), additional typing rules (Section 4.4) and a modified notion of type soundness (Section 4.5).
provide a few examples to illustrate the effectiveness of our attacker model in this composed language (Section 4.6).

4.1 Syntax

The syntax of the λ⁺-calculus combines the λₙ-calculus and λₙ-calculus as illustrated in Figure 2.

Felleisen-and-Hieb-style reduction semantics are used to specify the operational semantics [6]. To that end the λₙ-calculus evaluation context E and the λₙ-calculus evaluation context E are introduced to lift the basic reduction steps to a standard left-to-right call-by-value semantics.

The λₙ-calculus is extended with a term: \(\sigma \mathcal{S} \mathcal{A} (\lambda x . t) \) that denotes the direct access programs in the λₙ-calculus have to the functions of a λₙ-calculus program, as those functions reside in the unprotected memory. This term is type annotated to enable the semantics to wrap the call to the denoted function with a typecheck on the output of that function.

Terms of the λₙ-calculus cannot directly access the protected terms of the λₙ-calculus. They are instead limited to the designated entry-points of the PMA mechanism. The names \(n_i \) model these designated entry-points. The set of names are denumerable as: \(n_i \neq n_j \) if \(i \neq j \). A λₙ-calculus attacker can compare these names through the syntactical equality operator \(\equiv \) and can apply them to values using the term \(\text{call } n_i v \).

The λₙ-calculus is not extended with any means to create new names dynamically. Instead we assume that, as in the example in Section 3.4.2, the attacker guesses the deterministically created names beforehand. For every possible name \(n_i \) we have that there exists a context \(C \) that can distinguish it from other names \((C = (n_i \equiv [:])) \) or apply it to some value \(v (C = (\text{call } n_i v)) \). The ability to create names dynamically does not produce stronger contexts.

Note that the λₙ-calculus does not treat call terms as values. This is because, as mentioned in Section 3.4.1, the λₙ-calculus is extended with a call stack capable of encoding such calls and returns. The λₙ-calculus is, however, an attacker and should thus be able to manipulate the structure of its call stack.

4.2 Program definition

The λ⁺-calculus does not syntactically embed the composed languages λₙ- and λₙ-calculus. The calculus instead combines a λₙ-calculus configuration, that is assumed to reside in secure memory, with a λₙ-calculus configuration, that is assumed to reside in the unprotected memory, into the program definition.

The program definition considers two modes of interaction. In one mode the λₙ-calculus configuration is executing, while the λₙ-calculus configuration is waiting on input from the λₙ-calculus configuration. In the other mode a λₙ-calculus configuration is executing, while the λₙ-calculus configuration is either empty or waiting on a callback from the λₙ-calculus configuration.

The \(\lambda \) Configuration

A λₙ-calculus configuration \(S \) is defined as follows:

\[
S = N \mid \Sigma \mathbb{E} : t : \sigma \mid N \mid \Sigma
\]

where \(\Sigma = E : \sigma \mathcal{T} \mid \varepsilon \)

and \(N := * \mid N' : n_i \mapsto (t, \sigma) \)

where \(\mathbb{E} \) denotes a sequence of open evaluation contexts \(E \) with a hole \([.] \) and \(\sigma \mathcal{T} \) denotes a sequence of function types \(\sigma_1 \rightarrow \sigma_2 \). The sequence of type annotated open evaluation contexts \(\Sigma \) thus represents the λₙ-calculus program’s view of the evaluation stack in a way that is similar to the stack mechanism used by Jeffrey and Rathke’s fully abstract trace semantics for Java Jr. [14].

The map \(N \) is used to keep track of the names that a λₙ-calculus program shares with a program in the λₙ-calculus.

The first case of the definition describes an executing λₙ-configuration, denoted as \(S_e \), that executes a λₙ-term \(t \). This λₙ-term is type annotated to allow the operational semantics to construct new typed annotated evaluation stacks at runtime. The second case describes a passive λₙ-configuration, denoted as \(S_p \), that waits on correctly typed input from the λₙ-calculus term.

The \(\lambda \) Configuration

A λₙ-calculus configuration \(A \) is defined as follows:

\[
A := \overline{C} : t \mid \overline{C}
\]

where \(\overline{C} \) denotes a sequence of λₙ-contexts \(C \). A context \(C \) differs from an open evaluation context \(E \): the former is any term with a hole in it, the latter is any term with a hole in the place where the next reduction step happens. We thus define a λₙ-λₙ-calculus program’s view of the evaluation stack as a sequence of possible attacks.

The first case of the definition describes an executing λₙ-configuration, denoted as \(A_e \). The second case describes a passive λₙ-configuration that awaits input from a λₙ-configuration \(S_p \), denoted as \(A_p \).
Protected Computations

\[\left\{ \begin{array}{l}
\varnothing \bullet E[(\lambda x.t) \nu] \parallel S_p \rightarrow \varnothing \bullet E[t[v/x]] \parallel S_p \\
\varnothing \bullet E[(v_1 \nu v_2)] \parallel S_p \rightarrow \varnothing \bullet E[\text{wrong}] \parallel S_p \\
\varnothing \bullet E[t_1 \equiv t_2] \parallel S_p \rightarrow \varnothing \bullet E[\#t] \parallel S_p \\
\varnothing \bullet E[t_1 \equiv t_2] \parallel S_p \rightarrow \varnothing \bullet E[\#f] \parallel S_p \\
\varnothing \bullet E[\text{wrong}] \parallel S_p \rightarrow \text{wrong} \parallel S_p
\end{array} \right. \quad \text{where } v_1 \neq (\lambda x.t) \quad \text{(A-App)}
\]

Unprotected Computations

\[\left\{ \begin{array}{l}
\varnothing \bullet E[(\lambda x.t) \nu] : \sigma \rightarrow \varnothing \quad \text{where } i = |N| + 1 \quad \text{(S-App)}
\end{array} \right. \]

Protected Computations

\[\varnothing, C, C \parallel N \vdash \Sigma \bullet (\lambda x. t') : \sigma_f \rightarrow \varnothing, C, C[n_i] \parallel N, n_i \mapsto ((\lambda x.t), \sigma) \vdash \Sigma \quad \text{where } i = |N| + 1 \quad \text{(S-Name)}
\]

\[\varnothing \bullet n_i \parallel N \vdash \Sigma, E : \sigma_1 \rightarrow \sigma_2 \rightarrow \varnothing \quad \text{where } N(n_i) = (t, \sigma_1) \quad \text{(A-Name)}
\]

\[\varnothing, C, C \parallel N \vdash \Sigma, E : \sigma_1 \rightarrow \sigma_2 \rightarrow \varnothing, C[\text{wrong}] \parallel \star \vdash \varnothing \quad \text{where } N(n_i) \neq (t, \sigma) \quad \text{(WrongN)}
\]

\[\text{Unprotected Computations}
\]

\[\varnothing \bullet (\lambda x.t) \parallel N \vdash \Sigma, E : \sigma_f \rightarrow \varnothing \parallel N \vdash \Sigma \bullet E[(\lambda y. \sigma_1 . ((\sigma') S A (\lambda x. t) y)]) : \sigma \quad \text{(A-Lam)}
\]

\[\varnothing, C, C \parallel N \vdash \Sigma, E : \sigma_f \rightarrow \varnothing \parallel C[\text{wrong}] \parallel \star \vdash \varnothing \quad \text{where } \nu \neq (\lambda x.t) \quad \text{(WrongL)}
\]

\[\varnothing, C \parallel N \vdash \Sigma \bullet \sigma' S A (\lambda x. t) : \sigma_f \rightarrow \varnothing \parallel C[(\lambda x. t)] \parallel N \vdash \Sigma \quad \text{(S-Lam)}
\]

\[\varnothing, C \parallel N \vdash \Sigma \bullet E[(\sigma' S A t) \nu] : \sigma \rightarrow \varnothing, C[(t \nu)] \parallel N \vdash \Sigma, E : \sigma_2 \rightarrow \sigma \bullet \nu : \sigma_1 \quad \text{(S-Call)}
\]

Value Passing

\[\text{Value Passing}
\]

\[\varnothing \bullet b \parallel N \vdash \Sigma, E : \text{Bool} \rightarrow \varnothing \parallel N \vdash \Sigma \bullet E[b] : \sigma \quad \text{(A-Bool)}
\]

\[\varnothing, C \parallel N \vdash \Sigma \bullet b : \text{Bool} \rightarrow \varnothing, C[b] \parallel N \vdash \Sigma \quad \text{(S-Bool)}
\]

\[\varnothing, \varnothing \parallel N \vdash \Sigma, E : \text{Bool} \rightarrow \varnothing, C[\text{wrong}] \parallel \star \vdash \varnothing \quad \text{where } \nu \neq b \quad \text{(WrongB)}
\]

Figure 3: The reduction rules of the λ^+-calculus. The type $\sigma_1 \rightarrow \sigma_2$ is shortened to σ_f for the sake of brevity. The expression $E[t]$ fills the hole of E with t in the obvious way and the expression $C[t]$ fills the hole of C in the obvious way.

The Program A program P that considers the two possible execution states is defined as follows:

\[P ::= t \parallel S_p \text{ or } \varnothing \parallel S_e \]

where || separates the configurations of the λ_as- and λ_as-calculi and by extension divides the unprotected memory from the protected memory.

To simplify the later full abstraction results we assume that the secure λ_as-calculus configuration is always first to execute: $P_0 = \varnothing \parallel S_e$. A program thus always terminates with a value on the insecure side: $P_f = \varnothing \bullet v \parallel N \vdash \varepsilon$.

4.3 Operational Semantics

The reduction rules of the λ^+-calculus, denoted as $P \rightarrow P'$, are illustrated in Figure 3. We divide these rules into four categories: internal computations, protected computations, unprotected computations and primitive value passing.

Internal Computations Internal computations are reduction rules that only affect the terms of one of the two languages. In these reduction rules the terms of one of the languages remain unchanged. Function application, for example, is an internal computation (rules A-App and S-App).
Protected Computations Protected computations are reduction rules that enable the λ_s-calculus terms to call functions of the λ_s-calculus. In these reduction rules the map N ensures that a λ_s-calculus attacker is limited to the λ_s-terms that have been shared with it.

In rule S-Name a λ_s-calculus λ-term is passed across to the hole of the λ_s-context, by sharing the next name n_i from the countable set of names with the λ_s-configuration. This new name and its associated type and term are stored in the λ_s-calculus evaluation stack.

In rules A-Name and WrongN, a name n_i is passed back to the head of the λ_s-calculus evaluation stack S. If the name is associated with a λ_s-term that has the same type as the hole then that λ_s-term fills the hole, otherwise the system terminates in error.

In rules A-Call and WrongC a name n_i is applied to a value. If the name matches a λ_s-term in the map N, a new λ_s-calculus reduction context, that applies a λ_s-value to the fetched term, is pushed onto the λ_s-calculus evaluation stack.

Unprotected Computations Unprotected computations are reduction rules that enable the λ_s-calculus to call functions of the λ_s-calculus. In these reduction rules only the type annotations and associated dynamic type checks are required to ensure security.

In rules A-Lam and WrongL, a λ_s-calculus λ-term is passed across to the head of the λ_s-calculus evaluation stack S if it expects a function. As a result the transmitted λ_s-term is tagged with the type of the hole it fills.

In rule S-Lam, a λ_s-calculus λ-term is passed back to the context C, the head of the λ_s-configurations sequence of possible attacks.

In rule S-Call the λ_s-calculus function $\sigmaSA \lambda t$ is applied to a λ_s-calculus value. The resulting reduction step differs from the reduction step A-Call in two ways. The first difference is that the rule does not push a new reduction context onto the λ_s-calculus. Instead the function call is directly inserted into the waiting λ_s-context. This direct approach allows us to accurately model the observational capabilities of an arbitrary machine level attacker, as such an attacker can directly observe any call to its functions. Note that as a result of this direct approach, there is no guarantee that the function call to $\sigmaSA \lambda t$ will be sucessful. Given that the λ_s-calculus models the arbitrary attacker this is to be accepted.

The second difference is that in the λ_s-calculus a cross boundary function call is not a value. In the λ_s-calculus cross boundary function calls are values, to ensure that every such call can be followed up by an attack C.

Primitive Value Passing Passing primitive value does not result in the creation of new names or stack frames. In reduction rules A-Bool and S-Bool the booleans are converted to the appropriate representation.

4.4 Typing rules

The simply typed call-by-value lambda calculus (the λ_s-calculus) is typed as follows:

$$\begin{align*}
\text{x} : \sigma & \in \Gamma \\
\Gamma \vdash x : \sigma \\
\Gamma, x : \sigma & \vdash t : \sigma_2 \\
\Gamma, \lambda x : \sigma_1 . t : \sigma_2 & \vdash t_1 : \sigma_1 \\
\Gamma & \vdash t_2 : \sigma_2 \\
\Gamma & \vdash t_3 : \sigma \\
\Gamma, \text{if } t_2 & \vdash t_3 : \sigma
\end{align*}$$

The λ^+_s-calculus extends the λ_s-calculus with a value $\sigmaSA (\lambda x . t)$ which is typed as follows:

$$\Gamma \vdash \sigmaSA (\lambda x . t) : \sigma$$

To type a Program P we only type the configuration S using the following rules.

$$\begin{align*}
\Gamma & \vdash S \\
\Gamma & \vdash A \mid S \\
\Gamma & \vdash * \\
\Gamma & \vdash N, [n_i \mapsto ((\lambda x . t), \sigma)] \\
\Gamma & \vdash N \\
\Gamma & \vdash N \mid \Sigma \\
\Gamma & \vdash N \mid t : \sigma \\
\Gamma & \vdash N \mid \Sigma \\
\Gamma & \vdash n_i : \sigma \\
\Gamma & \vdash N \mid \Sigma, E : \sigma_1 \mid N : \Sigma, E[x] : \sigma_2 \\
\Gamma & \vdash N \mid \Sigma, E : \sigma_1 \rightarrow \sigma_2
\end{align*}$$

To type check a configuration S, each individual reduction context of the evaluation stack Σ is type checked by adding the type of the hole to the variable scope. Each association in the map N is typed as well.

4.5 Type Soundness

As mentioned previously only the λ_s-configuration of a program P is type checked. As such we cannot introduce a traditional notion of type soundness. Instead we establish that whenever a program gets stuck or reduces to the error wrong, the λ_s-configuration is the cause.

Note that this approach to type soundness is very similar to Wadler’s and Findler’s blame calculus [24]. The similarities with their work are, however, out of scope for this paper.

Theorem 1 (Type Preservation). *Given $\Gamma \vdash P$ and $P \rightarrow P'$ we have that $\Gamma \vdash P'$.*

Proof Sketch. We consider the most important cases:
combined

We illustrate the effectiveness of the attacker model in the different function calls and two λ \rightarrow \Sigma \bullet t: σ; We have that Γ ⊢ t': σ follows from the fact that the λ⁺-calculus preserves the reduction rules of the λ₂-calculus.

4.6 Attacker Model Examples

Given Γ ⊢ S then if P \not \equiv P' or P \rightarrow wrong \; \| \; \star \rightarrow \varepsilon then A is the cause.

Proof Sketch. We consider the most relevant cases:

- P = A \| N \| \Sigma \bullet t: σ; We have that P \rightarrow A \| N \| \Sigma \bullet t': σ as the λ⁺-calculus preserves the reduction rules of the λ₂-calculus.
- P = A \| N \| \Sigma \bullet v: σ; By the reduction rules S-Name, S-Lam and S-Bool we have that P \rightarrow P' if and only if there is at least one context C in the passive λ₂-configuration ⊤C.
- P = A \| N \| \Sigma ; We have that P \rightarrow P' if the executing λ₂-configuration t reduces to a value v. If the value is not of the correct type we have that P' \rightarrow wrong \| \star \rightarrow \varepsilon.

Different Maps The following two λ₂-configurations:

S₁ = [n₁ \mapsto ((λx. #t), σ)], [n₂ \mapsto ((λx. (λy. y)), σ')] \| ε
S₂ = [n₁ \mapsto ((λx. #t), σ)], [n₂ \mapsto ((λx. #t), σ)] \| ε
differ only for the name n₂, which points to two non-contextually equivalent functions. The following λ₂-config can distinguish between the two.

A₂ = (n₂ \equiv [\cdot]) \bullet \text{call } n₂ \#f

This configuration first calls the name n₂ with a value #f. As a result it will receive a new name n₃ in one case and a value #t in the other the attacker context will thus reduce to #t in the first case and #f in the second.

5. Full Abstraction

Proving that the λ⁺-calculus is capable of preserving the abstractions of the λ₂-calculus is done by introducing a fully abstract compilation scheme form the λ₂-calculus to the λ⁺-calculus. This fully abstract compilation scheme preserves the equivalences of the λ₂-calculus in the λ⁺-calculus.

Direct proofs over contextual equivalence are difficult however, as one needs to reason about any reduction in any context. To that end we develop notions of bisimulation that coincide with contextual equivalence for the λ₂-calculus (Section 5.1) and for the compiled terms in the λ⁺-calculus (Section 5.2). Proving that the compilation scheme is fully abstract is done by relating the bisimulations (Section 5.3).

5.1 A Congruent Bisimulation for the λ₂-Calculus

We define contextual equivalence \(\simeq \) (Section 5.1.1) and a bisimulation relation S (Section 5.1.2) and over the terms of the λ₂-calculus. The bisimulation is a congruence and thus coincides with contextual equivalence (Section 5.1.3).

5.1.1 Contextual Equivalence for the λ₂-Calculus

A λ₂ context C is a λ₂-term with a single hole [\cdot] in it. We now define contextual equivalence as follows [5]:

Definition 1. Contextual equivalence (\(\simeq \)) is defined as: \(t₁ \simeq t₂ \iff \forall C. \exists b. C[t₁] \rightarrow^* b \iff C[t₂] \rightarrow^* b \) where \(\rightarrow^* \) denotes convergence.

Note that two contextually equivalent terms are the same type as a context observes the same typing rules as the programs of the λ₂-calculus.

5.1.2 A Bisimulation for the λ₂-Calculus

There have been multiple different bisimulations over the simply typed λ-calculus. In this paper we adopt Gordon’s definition and associated LTS over the simply typed λ-calculus [10]. The LTS models the interaction between the context and a λ₂-calculus term.

The LTS is a triple (t, α, \(\alpha \rightarrow^\alpha \)) where terms t are the states, α the set of labels and \(\rightarrow^\alpha \) the labelled transitions.
between states. The labels α are defined as follows:

$$
\alpha ::= \gamma \mid \tau
$$

$$
\gamma ::= @v \mid \text{true} \mid \text{false}
$$

Labelled Reductions are of the form $t \xrightarrow{\gamma} t'$. Values are observable by a context and are labelled as follows:

$$
(\lambda x : \sigma.t) \xrightarrow{\alpha v} ((\lambda x : \sigma.t) v) \quad \text{(Label-App)}
$$

where $+ @v : \sigma$

$$
#t \xrightarrow{\text{true}} #t \quad \text{(Label-T)}
$$

$$
#f \xrightarrow{\text{false}} #f \quad \text{(Label-F)}
$$

The LTS models the interactions between a λ_s-calculus context C and a λ_s-calculus program. In reduction rule Label-App the context observes the contents of a λ-term by applying values to it. Because the λ_s-calculus terms and contexts are typed the applied values are restricted to those that conform to the type rules.

In reduction rules Label-T and Label-F boolean values are observed directly as booleans contain no abstractions.

Reduction steps between terms cannot be observed by a context and are thus labelled as silent:

$$
\frac{t \rightarrow t'}{t \xrightarrow{\tau} t'} \quad \text{(Label-S)}
$$

We define a weak bisimulation over this LTS. In contrast to a strong bisimulation, such a bisimulation does not use the silent transitions between two states. Define the transition relation $t \xrightarrow{\gamma} t'$ as $t \xrightarrow{\tau} t'$ where $\xrightarrow{\tau}^*$ is the reflexive transitive closure of the silent transitions $\xrightarrow{\tau}$.

Bisimulation is now defined as follows:

Definition 2. The relation S is a bisimulation if and only if $t_1 \text{ S } t_2$ implies:

1. Given $t_1 \xrightarrow{\gamma} t_1'$ there is $t_2' : t_2 \xrightarrow{\tau} t_2' \land t_1' \text{ S } t_2'$
2. Given $t_2 \xrightarrow{\gamma} t_2'$ there is $t_1' : t_1 \xrightarrow{\tau} t_1' \land t_1' \text{ S } t_2'$

We denote bisimilarity, the largest bisimulation, as \approx_s.

5.1.3 Full Abstraction of the Bisimilarity

We conclude that the bisimilarity \approx_s coincides with contextual equivalence \simeq_s.

Theorem 3 (Full Abstraction of the Bisimilarity).

$$
t_1 \simeq_s t_2 \iff t_1 \approx_s t_2
$$

Due to space constraints, the proof of this theorem and those of the following lemma have been placed in an online Appendix A.\footnote{https://dl.dropboxusercontent.com/u/14314349/operational/proofs.pdf}

A proof sketch of this theorem is available in Appendix A.1. The proof sketch is a straight forward adaptation of Gordon’s proof of congruence for a bisimulation over PCF [10]. The proof sketch leverages the symmetry properties of both bisimilarity and contextual equivalence and splits the theorem into two sublemmas: contextual equivalence implies bisimilarity (Completeness) and bisimilarity implies contextual equivalence (Soundness). The latter is established by applying Howe’s method [11].

5.2 A Congruent Bisimulation for the λ^+-Calculus

As in Section 5.1 we define a notion of bisimilarity, whose bisimilarity is a congruence over the terms of the λ^+-calculus (Section 5.2.2). We first introduce a definition of contextual equivalence that reflects the assumptions of the compilation scheme (Section 5.2.1).

5.2.1 Contextual Equivalence for the λ^+-Calculus

The goal of the secure compilation scheme is to preserve the abstractions of the λ_s-calculus in the combined λ^+-calculus. The secure compilation does not simply compile λ_s-calculus terms into a λ^+_s or λ^+_o-calculus context. Instead it produces a λ_o configuration S that interoperates with any possible λ_o-configuration in a secure manner. We can thus define contextual equivalence as follows:

Definition 3. (Contextual equivalence for λ_s Configurations) $S_1 \simeq c S_2$ $\iff \forall A, (A || S_1) \uparrow \iff (A || S_2) \uparrow$

where \uparrow denotes divergence [20]. A program P diverges if it executes an unbounded number of reduction steps. Formally $P \uparrow \iff \forall n \in \mathbb{N} \exists P', t \rightarrow^* P'$.

Note that this formulation of contextual equivalence differs from the definition in Section 5.1.1. We adopt this divergence based definition of contextual equivalence to simplify the proof of congruence.

5.2.2 A Bisimulation for the λ^+-Calculus

The LTS is a triple $(S, \alpha^+, \alpha^+ \rightarrow)$ where configurations S are the states, α^+ the set of labels and $\alpha^+ \rightarrow$ the labelled transitions between states. The labels α^+ are defined as follows:

$$
\alpha^+ ::= \gamma^+ \mid \tau^+
$$

$$
\gamma^+ ::= (\lambda x.t) \mid @v \mid n \mid \cdots (\lambda x.t) : v \mid \cdots \mid n : v\quad \text{true} \mid \text{false} \mid \text{wrong} \mid \text{done}
$$

These labels describe what a λ_o-configuration A observes from its interactions with a configuration S. The labelled reductions of the LTS (Figure 4) are of the form $S \xrightarrow{\gamma^+} S'$. While the λ_o-configuration is not represented in these labelled reductions, the changes to the λ_o-configuration can be derived from the labels.

The labelled reduction rules O-True, O-False, O-Name and O-Lambda describe the values that a λ_o-configuration observes from a λ_s-configuration. The labelled reduction rules I-Bool, I-Name, and I-Lambda describe the values a
The proof that bisimilarity corresponds to contextual equivalence.

Proof Sketch. We assume that:

\[
S_1 \simeq_c S_2 \land S_1 \xrightarrow{\gamma^+} S'_1 \land S_2 \xrightarrow{\gamma^+} S'_2
\]

We must show that:

\[
S'_1 \simeq_c S'_2
\]

The proof proceeds by case analysis on the label \(\gamma^+ \). In this proof sketch we consider two broad cases: the labels:

\[
\emptyset v, \Rightarrow (\lambda x.t) : v
\]

describe the terms that the \(\lambda_a \)-context receives from either configuration. Because identical labels cannot be distinguished by a \(\lambda_a \)-context the thesis holds. The labels:

\[
\emptyset v, \Rightarrow n : v
\]

describe the modifications to the configuration \(S_1 \) and \(S_2 \).

We show that the thesis holds by *reductio ad absurdum*. For the thesis not to hold there must be an input label that results in a modification to the configurations \(S_1 \) and \(S_2 \) that cannot be performed by a \(\lambda_a \)-context \(\Lambda \). This is not the case for either label.

Lemma 1. (Preservation)

If \(S_1 \simeq_c S_2 \) and \(S_1 \xrightarrow{\gamma^+} S'_1 \) and \(S_2 \xrightarrow{\gamma^+} S'_2 \) then \(S'_1 \simeq_c S'_2 \)

To simplify the proof of the completeness lemma, we show that the LTS transitions preserve contextual equivalence.

Lemma 2. (Completeness) \(S_1 \simeq_c S_2 \Rightarrow S_1 \simeq_+ S_2 \)
A proof sketch for this lemma that relies on Lemma 1 is available in Appendix A.2.

As by Gordon [10] we show that contextual equivalence is itself a bisimulation relation, by case analysis on the LTS labels γ^+.

Lemma 3. (Soundness) $S_1 \equiv_+ S_2 \Rightarrow S_1 \simeq_c S_2$

A full proof of this lemma is available in Appendix A.3. The proof follows by induction on the number of reduction steps. We show that given $P_1 = \lambda | S_1$ and $P_2 = \lambda | S_2$ that P_2 diverges if P_1 diverges.

We now conclude that bisimilarity \equiv_+ coincides with contextual equivalence \simeq_c.

Theorem 4 (Full Abstraction of the Bisimilarity). $S_1 \simeq_c S_2 \iff S_1 \equiv_+ S_2$

Proof. The theorem follows from Lemma 2 and Lemma 3. \hfill \Box

5.3 A Fully Abstract Compilation Scheme

Securely compiling a λ_π-calculus term t is done by producing the following λ^+-configuration S:

$$t^\downarrow = \star \vdash e \cdot t : \sigma$$

where $\Gamma \vdash t : \sigma$.

We must now prove that this compilation scheme preserves and reflects the equivalences of the λ_π-calculus. We do so by showing that bisimilar terms in the λ_π-calculus coincide with bisimilar compiled terms in the λ^+-calculus. The proof is divided into three sublemmas:

Lemma 4. (Compiler Correctness) $t_1 \rightarrow^* v \iff N \vdash \Sigma \cdot t \rightarrow^* N \vdash \Sigma \cdot v$

Proof Sketch. This follows from the fact that the semantics of the λ_π-calculus are preserved in the λ^+-calculus. \hfill \Box

Lemma 5. (Comp. Preservation) $t_1 \equiv_+ t_2 \Rightarrow t_1^\downarrow \equiv_+ t_2^\downarrow$

A proof sketch is available in Appendix A.4. The proof sketch proceeds by coinduction and case analysis on the label γ^+.

Lemma 6. (Comp. Reflection) $t_1^\downarrow \equiv_+ t_2^\downarrow \Rightarrow t_1 \equiv_+ t_2$

A proof sketch is available in Appendix A.5. We prove the lemma by the contrapositive: $t_1 \not\equiv_+ t_2 \Rightarrow t_1^\downarrow \not\equiv_+ t_2^\downarrow$. The proof proceeds by induction because if we have that $t_1 \not\equiv_+ t_2$ then there is a finite sequence of LTS transitions until the bisimilarity \equiv_+ fails to hold. We show that any such sequence can be reproduced in the λ^+-calculus bisimulation.

We conclude that the compilation scheme is fully abstract.

Theorem 5 (Full Abstraction of the Compilation Scheme). $t_1 \equiv_+ t_2 \iff t_1^\downarrow \equiv_+ t_2^\downarrow$

Proof. The theorem follows from Lemma 5 and Lemma 6. \hfill \Box

6. Related Work

Language Interoperation Techniques that ensure secure interoperation between languages with different levels of abstraction, have been developed before. Furr and Foster address the complications that arise when OCaml interoperates with C, by developing a multi-language type system that embeds OCaml types in C and vice-versa [8]. They however do not consider the fact that a C program can be an attacker capable circumventing their typing system by directly accessing the OCaml memory structures.

Tan et al. tackle the issues that arise when Java interoperates with C through SafeJNI [23], a framework that ensures type safety through the Java foreign function interface. Their system however, requires both static and dynamic checks on the C code that Java interoperates with. Our technique for secure operational semantics, on the other hand, does not require any static checks on the attacker.

Gampe et. al present a technique that establishes the non-interference properties of two interoperating languages with different security typing mechanisms [9]. They do not consider any attacker model.

Matthews’ and Findler’s multi-language semantics [15] provide a technique for specifying operational semantics that allows two languages to interoperate in a way that preserves termination and type safety. In their work however, they aim to abstract away low-level details and instead focus on semantic properties. Our technique in contrast, focusses on lifting low-level properties into the operational semantics.

Zdancewic et al. present a multi-agent calculus that treats the different modules that make up a program as different principals, each with a different view of the environment [26]. Their work however models the different views each agents sees through typing.

Fully Abstract Compilation Secure (fully abstract) compilation was first introduced by Abadi [1] as a criticism of the way Java was translated into the Java bytecode language, and of the way π-calculus was translated into the spi-calculus. Secure compilation has since been applied on many different source languages, such as the λ-calculus [2], the λ-calculus extended with dynamic memory allocation [12] and JavaScript [7].

This paper further developed on the secure compilation schemes of Agten et. al [4] and Patrignani et al. [19], which extend the target language of their secure compilers with a memory protection mechanism.

Bisimulation Bisimulation has been applied to the λ-calculus before, most notably by Abramsky in his work on an applicative bisimulation for the lazy λ-calculus [3].

In this work we relied on Gordon’s proofs, LTS and bisimulation statement for FPC [10]. Gordon’s approach leverages Howe’s proof method for bisimulation [11], whose syntactical approach greatly simplifies Abramsky’s domain logic based technique.
Both Sumii and Pierce and Jeffrey and Rathke have defined bisimulations for a λ-calculus with name generation [13, 22]. Our definition of bisimulation is however much simpler than their respective definitions, as the names in our multi-language system are both global and enumerable.

7. Conclusions & Future Work

This paper introduced operational semantics that preserve the abstraction of a simply typed λ-calculus that interoperates with the λ-calculus model of an arbitrary machine-level attacker. These operational semantics lift the low-level memory protection techniques from the PMA mechanism into the resulting multi-language system.

There are several directions for future work. One is to investigate a more fine-grained approach to secure interoperation. One could imagine, for example, a multi-language system where one must consider different types of attackers. In such a scenario the goal should be to adapt the operational semantics between two interoperating components to the level of trust between both components. If a components attacker model is not capable of intercepting function calls, for example, the interoperation with that component should be more symmetrical.

Another possibility is to research secure interoperation semantics for concurrent languages. Given that our technique already removes the direct term embedding found in most existing multi-language techniques it might be interesting to remove the execution order dependencies as well.

Acknowledgments This work has been supported in part by the Intel Labs University Research Office. This research is also partially funded by the Research Fund KU Leuven, and by the EU FP7 project NESSoS. With the financial support from the Prevention of and Fight against Crime Programme 840 of the European Union (B-CCENTRE).

References

A. Proof Sketches and Proofs

A.1 The Bisimulation \(\approx_s \) is a congruence

The definition of contextual equivalence is extended with a definition of contextual order \(\simeq_s \).

Definition 5. Contextual equivalence (\(\approx_s \)) and Contextual Order (\(\simeq_s \)) are defined as:

1. \(t_1 \approx_s t_2 \iff \forall C, \exists b. C[t_1] \tau \Rightarrow b \Rightarrow C[t_2] \tau \Rightarrow b \)
2. \(t_1 \simeq_s t_2 \iff t_1 \simeq t_2 \land t_2 \simeq t_1 \)

A non-symmetrical definition of bisimilarity, similarity is introduced as well.

Definition 6. Simulation The relation \(S_s \) is defined as:

1. Given \(t_1 \Delta \Downarrow t_1' \) there is \(t_2' : t_2 \Delta \Downarrow t_2' \land t_1' \S_s t_2' \)

We denote similarity, as the largest simulation \(\lesssim_s \). Relying on the symmetry property of both bisimilarity and contextual equivalence, the proof is simplified to one that establishes that similarity equals contextual order. The proof is split into two sublemmas:

Lemma 7. (Completeness) \(t_1 \S_s t_2 \Rightarrow t_1 \lesssim_s t_2 \)

Proof sketch. To prove that contextual order implies similarity it is established that contextual order itself is a similarity. Assume that:

\[C[t_1] \S_s C[t_2] \text{ and } t_1 \Delta \Downarrow t_1' \]

We want to show that:

\[t_2 \Delta \Downarrow t_2' \land t_1' \S_s t_2' \]

We restrict this proof sketch to the most interesting case: the label \(\lambda v \).

From the contextual equivalence between \(t_1 \) and \(t_2 \) it follows that \(t_1 \) and \(t_2 \) are both function types and thus both reduce to \(\lambda \)-terms \(v_1 \) and \(v_2 \). Given that \(\gamma = \lambda v \) it now follows from the LTS that \(t_1' = (v_1 \ v) \) and \(t_2' = (v_2 \ v) \). The label \(\lambda v \) can thus be encoded as the context \(C = ([\cdot] \ v) \), because contextual order is closed under contexts we can now conclude that:

\[(v_1 \ v) \S_s (v_2 \ v) \]

Proving the reverse, that similarity implies contextual order, is done by applying Howe's method [11]. Doing so requires the construction of a similarity candidate \(\lesssim_s \) that includes its own compatible refinement \(\lesssim_s \). The compatible refinement \(\lesssim_s \) relates the following well-typed \(\lambda \)-terms: equal constants, variables and outer forms that are related by \(\lesssim_s \). It relates \(\lambda \)-terms, for example, as follows:

\[
\begin{array}{c}
\Gamma, x : \sigma \vdash t_1 \lesssim_s t_1' \\
\Gamma \vdash (\lambda x : \sigma \ t_1) \lesssim_s (\lambda x : \sigma \ t_1')
\end{array}
\]

in a sense this compatible refinement relation constructs all possible contexts a \(\lambda \)-term may be placed in.

The similarity candidate \(\lesssim_s \) is defined as:

\[
\begin{array}{c}
\Gamma \vdash t \lesssim_s t' \quad \Gamma \vdash t' \lesssim_s t'' \\
\Gamma \vdash t \lesssim_s t''
\end{array}
\]

Lemma 8. (Soundness) \(t_1 \lesssim_s t_2 \Rightarrow t_1 \S_s t_2 \)

Proof sketch. We first prove that the similarity candidate \(\lesssim_s \) is an alternative definition of \(\lesssim_s \): \(\lesssim_s = \lesssim_s \).

1. \(\lesssim_s \subseteq \lesssim_s \). Given that \(\lesssim_s \) is reflexive, it follows from structural induction on \(t \) that: \(\lesssim_s \) is reflexive and \(\lesssim_s \) is reflexive. Applying the fact that \(\lesssim_s \) is reflexive to the definition of \(\lesssim_s \) allows us to conclude that: \(\lesssim_s \subseteq \lesssim_s \).

2. \(\lesssim_s \subseteq \lesssim_s \). We show that \(\lesssim_s \) is a simulation, by rule induction on \(t \). The inductive case is: \(t_1 \Rightarrow t_1' \Rightarrow t_1'' \). We must show that \(t_1'' \lesssim_s t_2 \). This will allow us to conclude by the induction hypothesis that \(t_2 \Rightarrow t_2' \) and that \(t_1'' \leq t_2' \). To do so we must examine each internal reduction step.

The \(\lambda_s \)-calculus has two internal reduction steps: function application and if reduction. Both cases are covered in the Gordon proof [10].

Now assume that:

\[C[t_1] \Rightarrow b \text{ and } t_1 \lesssim_s t_2 \text{ and } C[t_1] \leq_s C[t_2] \]

There are two cases:

- \(b = \text{true} \). From the LTS it follows that:
 \[C[t_1] \Rightarrow \text{true} \Rightarrow \# t \]
 From the definition of \(\leq_s \) we conclude that:
 \[C[t_2] \Rightarrow \text{true} \Rightarrow \# t \text{ and thus that } C[t_2] \Rightarrow \# t. \]

- \(b = \text{false} \). From the LTS it follows that:
 \[C[t_1] \Rightarrow \# t \]
 From the definition of \(\leq_s \) we conclude that:
 \[C[t_2] \Rightarrow \text{false} \Rightarrow \# t. \]

We now conclude that bisimilarity is a full abstraction of contextual equivalence.

Proof. Proof of Theorem 3:

\[t_1 \simeq_s t_2 \Leftrightarrow t_1 \approx_s t_2 \]

The theorem follows from Lemma 7 and 8 and the symmetrical properties of bisimilarity and contextual equivalence.
A.2 Completeness

Proof Sketch. Proof sketch of Lemma 2:

\[S_1 \equiv_c S_2 \Rightarrow S_1 \equiv_+ S_2 \]

Proving that contextual equivalence implies bisimilarity is done by showing that the contextual equivalence relation is itself a bisimulation. Assume that: \(S_1 \equiv_c S_2 \).

Because bisimilarity is symmetrical, we divide the proof into two parts:

1. Assume that: \(S_1 \triangleright S'_1 \).

We now want to show that there exists a \(S'_2 \) such that:

(a) \(S_2 \triangleright S'_2 \)

(b) \(S'_1 \equiv_c S'_2 \)

The second thesis follows immediately from Lemma 1. We prove the first thesis by case analysis on the label \(\gamma^+ \). For every label \(\gamma^+ \) we establish the thesis by reduction ad absurdum. For reductio assume that \(\not\bowtie S'_2 \overset{\gamma^+}{\Rightarrow} S'_2 \) then \(S_1 \not\equiv_c S_2 \). Note that we don’t consider the case: \(\not\bowtie \gamma^+ S_2 \overset{\gamma^+}{\Rightarrow} S'_2 \) as this implies that the configuration \(S_2 \) diverges or gets stuck which by Theorem 1 is not possible. Also note that we further simplify the proof by only establishing that there exists a context that can distinguish between \(S_1 \) and \(S_2 \), to comply with the definition of contextual equivalence the context must also diverge in one case. In this proof sketch we restrict ourselves to the most informative cases:

- \(\gamma^+ = n_1:: \) By the reduction rule S-Name we have that the \(\lambda_a \)-context receives a name \(n_1 \) from the configuration \(S_1 \). A simple \(\lambda_a \)-context \(A = [_] \) can thus distinguish between \(S_1 \) and \(S_2 \) if \(S_2 \) does not produce the same observable label \(n_1 \).

- \(\gamma^+ = (\lambda x.t):: \) By the reduction rule S-Call we have that the \(\lambda_a \)-context receives a \(\lambda \)-term \((\lambda x.t) \) form the configuration \(S_1 \). A simple \(\lambda_a \)-context \(A = (\lambda x.t) \equiv \cdot \) can thus distinguish between \(S_1 \) and \(S_2 \) if \(S_2 \) does not produce an observable label \((\lambda x.t) \).

- \(\gamma^+ = @n:: \) By the reduction rule A-Name we have that the \(\lambda_a \)-context can only apply the label \(@n_1 \) if the configuration is passive and the name is of the correct type. A simple \(\lambda_a \)-context \(A = n_1 \) can thus distinguish between \(S_1 \) and \(S_2 \) if \(S_2 \) cannot produce the observable label \(@n_1 \).

- \(\gamma^+ = \gg (\lambda x.t) ; v:: \) By the reduction rules we have that the \(\lambda_a \)-context will observe \(((\lambda x.t) v) \) from the first configuration \(S_1 \). The context observes the application as a hole as by the LTS and the reductions rules we have that when the attacker resumes control it will either perceives the full term or wrong if an incorrect value was applied. In the latter case a different label wrong is observed from \(S_1 \). A \(\lambda_a \)-context \(A = ((\lambda x.t) v) \equiv [_] \) can thus distinguish between \(S_1 \) and \(S_2 \) if \(S_2 \) does not produce an observable label \(\gg (\lambda x.t) ; v \).

- \(\gamma^+ = \gg n_1 ; v:: \) By the reduction rule A-Call we have that the \(\lambda_a \)-context can apply the label \(\gg n_1 v \) if the configuration is passive and the name is in the domain. By the reduction rules WrongN, WrongC, WrongL and WrongB we have that the \(S_1 \) produces a label wrong if the \(\lambda_a \)-context passes an incorrectly typed value to \(S_1 \). For any value \(v \) that is incorrectly typed for the configuration \(S_1 \) a \(\lambda_a \)-context \(A = v \) can thus distinguish between \(S_1 \) and \(S_2 \) if \(S_2 \) does not produce the observable label wrong for the same context \(A \).

2. As in case 1, mutatis mutandis. \(\square \)
A.3 Soundness Proof

Proof: Proof of Lemma 3.

\[S_1 \approx^+ S_2 \Rightarrow S_1 \simeq_s S_2 \]

As mentioned in Section 5.2.1 the thesis \(S_1 \simeq_s S_2 \) becomes \(\forall A \quad S_1 \vdash \iff \quad S_2 \vdash \). The proof is divided into two cases, one case for each side of the co-implication.

1. \(\Rightarrow \): In this case the thesis is \(\forall A \quad S_1 \vdash \iff \quad S_2 \vdash \). The proof can be redefined as:

\[
\forall A, \forall k \in \mathbb{N}, A \mid S_1 \vdash \Rightarrow \quad S_1' \vdash \\
\forall m \in \mathbb{N}, A \mid S_2 \vdash \Rightarrow \quad S_2' \vdash
\]

The proof proceeds by induction on \(m \).

Base case: \(m = 0 \). Straightforward: \(A \mid S_2 \Downarrow^0 A \mid S_2 \).

Inductive case: \(m = h + 1 \). The thesis is:

\[A \mid S_2 \Downarrow^{h+1} A'_2 \mid S_2'. \]

The inductive hypotheses (IH) is:

\[
\forall A, \forall k \in \mathbb{N}, A \mid S_1 \Downarrow^h A'_1 \mid S_1' \Rightarrow \\
A \mid S_2 \Downarrow^h A'_2 \mid S_2'
\]

We know from this IH that:

\[\exists A, S_1, A \mid S_1 \Downarrow^h A'_1 \mid S_1' \Rightarrow \\
A \mid S_2 \Downarrow^h A'_2 \mid S_2'. \]

We prove the thesis by reasoning about what the presence or absence of the last observable label \(\gamma^+ \) tells us about the existence of a next reduction step \(h + 1 \). There are two cases: either the \(\lambda^+ \)-context \(A \) is passive or executing.

(a) The \(\lambda^+ \)-context is passive: \(A = \mathcal{C} \) and the \(\lambda^+ \)-configuration is executing: \(S = S_\alpha \).

In this case there are two sub-cases:

i. \(\exists \gamma^+, S_{\alpha} \Downarrow^h \Rightarrow S_{\alpha}^h \).

By the assumption \(S_{\alpha} \Downarrow^h \Rightarrow S_{\alpha}^h \), we conclude that \(S_{\alpha}^h \Downarrow^h \Rightarrow S_{\alpha}^h \). This, in conjunction with the IH, implies the thesis:

\[A \mid S_2 \Downarrow^{h+1} A'_2 \mid S_2'. \]

ii. \(\exists \gamma^+, S_{\alpha} \Downarrow^h \Rightarrow S_{\alpha}^h \).

An executing \(\lambda^+ \)-configuration \(S_\alpha \) does not produce an observable label if and only if it is diverging. However because \(\lambda^+ \)-configurations are stacks of well typed \(\lambda^+ \)-terms this is not possible.

(b) The \(\lambda^+ \)-context is executing: \(A = t \) and the \(\lambda^+ \)-configuration is passive: \(S = S_p \).

In this case there are two sub-cases as well:

i. \(\exists \gamma^+, S_p \Downarrow^h \Rightarrow S_p^h \).

Because the observable label \(\gamma^+ \) is produced by the respective \(\lambda^+ \)-configurations, we must thus show that: \(A^h_p = A^h_2 \), where the existence of \(A^h_2 \) derives from the induction hypothesis.

We know by the assumption: \(S_1 \Downarrow^h \Rightarrow S_1^h \) that both \(\lambda^+ \)-configurations were modified by the same stream of observable labels if there are any such labels: \(\exists k \in \mathbb{N}, k \leq h \quad \wedge \quad A \mid S_1 \Downarrow^h A^h_1 \mid S_1^h \quad \wedge \\
A^h_1 \mid S_1^h \Downarrow^{h-k} A^h_1 \mid S_1^h \) where \(S_1 \Rightarrow S_1^h \) and

that \(\exists k \in \mathbb{N}, k \leq h \quad \wedge \quad A \mid S_2 \Downarrow^h A^h_2 \mid S_2^h \quad \wedge \\
A^h_2 \mid S_2^h \Downarrow^{h-k} A^h_2 \mid S_2^h \) where \(S_2 \Rightarrow S_2^h \).

Combining the fact that the reduction rules of the \(\lambda^+ \)-calculus are deterministic and with the fact that the \(\lambda^+ \)-contexts are updated in the same way by identical labels \(\gamma^+ \) we conclude that \(A^h_1 = A^h_2 \) and that \(S_p \Downarrow^h \Rightarrow S_p^h \). This implies the thesis.

ii. \(\exists \gamma^+, S_p \Downarrow^h \Rightarrow S_p^h \).

If there exists no label \(\gamma^+ \) the \(\lambda^+ \)-context is diverging. In the previous case we established that \(A^h_1 = A^h_2 \). As such both \(A \mid S_1 \) and \(A \mid S_2 \) divergence, which implies the thesis.

2. \(\Leftarrow \): As in case 1, \textit{mutatis mutandis}.
A.4 Compiler Preservation

Proof Sketch. Proof sketch of Lemma 5:

\[t_1 \approx_s t_2 \Rightarrow t_1^+ \approx_s t_2^+ \]

We must develop a relation \(\mathcal{R} \) such that:

\[t_1^+ \mathcal{R} t_2^+ \quad (1) \]

and that for all \(S_1 \mathcal{R} S_2 \) we have that:

\[S_1 \Rightarrow S_2' \land \exists S_2' \cdot S_2 \Rightarrow S_2' \Rightarrow S_1 \mathcal{R} S_2' \quad (2) \]

\[S_2 \Rightarrow S_2' \land \exists S_1' \cdot S_1 \Rightarrow S_1' \Rightarrow S_1 \mathcal{R} S_2' \quad (3) \]

We build the following relation \(\mathcal{R} = \mathcal{R}_0 \cup \mathcal{R}_1 \):

\[\mathcal{R}_0 = \{ (N_1 \vdash \Sigma_1, N_2 \vdash \Sigma_2) \mid \forall N_1, N_2, \Sigma_1, \Sigma_2 \text{ such that } N_1 \approx_N N_2 \text{ and } \Sigma_1 \approx_N \Sigma_2 \} \]

\[\mathcal{R}_1 = \{ (N_1 \vdash \Sigma_1, N_2 \vdash \Sigma_2) \mid \forall N_1, N_2, \Sigma_1, \Sigma_2, t_1, t_2 \text{ such that } (N_1 \vdash \Sigma_1, N_2 \vdash \Sigma_2) \in \mathcal{R}_0 \text{ and } t_1 \approx_s t_2 \} \]

where \(\approx_N \) is defined as:

\[N_1 \approx_N N_2 \iff dom(N_1) = dom(N_2) \text{ and } \forall n \in dom(N_1). N_1(n) =_s N_2(n) \]

and where \(\approx_N \) is defined as:

\[\Sigma_1 \approx_N \Sigma_2 \iff \text{For } (E_1^1, ..., E_n^1) \vdash (\sigma_1^1, ..., \sigma_n^1) \text{ in } \Sigma_1 \text{ and } (E_1^2, ..., E_n^2) \vdash (\sigma_1^2, ..., \sigma_n^2) \text{ in } \Sigma_2 \text{ we have } n = n' \text{ and for every } 1 \leq i \leq n : \sigma_i^1 = \sigma_i^2 \text{ and } \forall t, t'. \Gamma \vdash t : \sigma_i^1 \land \Gamma \vdash t' : \sigma_i^1 \land t \approx_s t' \Rightarrow E_i^1[t] \approx_s E_i^2[t'] \]}

We now proof the three cases.

- In case (1) we have that \(\star \vdash \varepsilon \cdot t_1 \mathcal{R} \star \vdash \varepsilon \cdot t_2 \) as we have that \(t_1 \approx_s t_2 \) from the assumption.

- In case (2) we proceed by case analysis on \(\gamma^+ \). We restrict this proof sketch to the most interesting labels.

 - \(\gamma^+ = n \): By the LTS we have that:

 \[S_1 = N_1 \vdash \Sigma_1 \cdot (\lambda x.t_1) : \sigma \Rightarrow \]

 \[N_1[n] \vdash ((\lambda x.t_1), \sigma) \vdash \Sigma_1 = S_1' \]

 and that:

 \[S_2 = N_2 \vdash \Sigma_2 \cdot (\lambda x.t_2) : \sigma \Rightarrow \]

 \[N_2[n] \vdash ((\lambda x.t_2), \sigma) \vdash \Sigma_2 = S_1' \]

 - \(\gamma^+ = @n \): By the LTS we have that:

 \[S_1 = N_1[n] \vdash (\lambda x.t_1) \vdash \Sigma_1, E : \sigma_1 \Rightarrow \sigma_2 \Rightarrow \Rightarrow \]

 \[N_1 \vdash \Sigma_1 \cdot E[(\lambda x.t_1)] : \sigma_1 = S_1' \]
A.5 Compiler Reflection

Proof Sketch. Proof sketch of Lemma 6:

\[t_1 \vdash s \quad t_2 \vdash s \implies t_1 \approx_s t_2 \]

We prove the lemma by the contrapositive, the lemma is restated as:

\[t_1 \not\approx_s t_2 \implies t_1 \vdash \not\approx_s t_2 \]

The proof proceeds by induction because if we have that \(t_1 \not\approx_s t_2 \) then there is a finite sequence of LTS transitions until the bisimilarity \(\approx_s \) fails to hold. There are two base cases:

1. \(t_1 \not\approx \gamma \quad t_2 \not\approx \gamma \): We proceed by case analysis over the label \(\gamma \):

 - \textbf{true}: We have that: \(t_1 \rightarrow^* \# t \xrightarrow{\text{true}} t'_1 \). By the assumption, \(t_1 \not\approx_s t_2 \) and the LTS we have that: \(t_2 \rightarrow^* v_2 \) where \(v_2 \not\approx \# t \). By Lemma 4 we have that \(t_1 \vdash \not\approx t \) and \(t_2 \vdash \not\approx v_2 \). We conclude from the \(\lambda^+ \)-calculus LTS that the thesis holds.

 - \textbf{false}: analogous to \textbf{true}.

 - \(\llcorner v \rceil \): In this case \(t_1 \rightarrow^* (\lambda x. t_{11}) \xrightarrow{\llcorner v \rceil} t'_1 \) and \(t_2 \rightarrow^* v_2 \) where \(v_2 \not\approx (\lambda x. t_{22}) \).

 By Lemma 4 we have that \(t_1 \vdash \not\approx (\lambda x. t_{11}) \) and \(t_2 \vdash \not\approx v_2 \). We conclude from the \(\lambda^+ \)-calculus LTS that the thesis holds.

2. \(t_2 \not\approx t_2' \land \not\approx \gamma \); \(t_1 \not\approx t_1' \): Similar to case 1.

By the LTS of the \(\lambda \)-calculus we have that:

\[t_1 \not\approx \gamma \quad t_2 \not\approx \gamma \]

then \(\gamma = \llcorner v \rceil \), because if \(\gamma = \text{true} \) or \(\text{false} \) then \(t_1' \approx_s t_2' \). We thus have one inductive case. Given:

\[t_1 \xrightarrow{\llcorner v \rceil} t_1^{n+1} \land t_2 \xrightarrow{\llcorner v \rceil} t_2^{n+1} \land t_1^{n+1} \not\approx_s t_2^{n+1} \]

We must show that

\[t_1^{n+1} \xrightarrow{\llcorner v \rceil} S_1^{n+1} \land t_2^{n+1} \xrightarrow{\llcorner v \rceil} S_2^{n+1} \land S_1^{n+1} \not\approx S_2^{n+1} \]

By the inductive hypothesis:

\[t_1 \not\approx S_1^n \land t_2 \not\approx S_2^n \land t_1^n \not\approx S_2^n \]

By the \(\lambda \)-calculus LTS rule Label-App, the \(\lambda^+ \)-calculus LTS rules O-Name and Call-N and the observation that for any value \(v \) there is an equivalent value \(v \) we have that for any for any \((\lambda x. t) \):

\[(\lambda x. t) \xrightarrow{\llcorner v \rceil} (\lambda x. t) \]

\[\not\approx N \quad \not\approx (\lambda x. t) \]

This in conjunction with the IH implies the thesis.