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Abstract. We propose a new formulation of the conceptual clustering problem where the goal is to explicitly
output a collection of simple and meaningful conjunctions of attributes that define the clusters. The formulation
differs from previous approaches since the clusters discovered may overlap and also may not cover all the points.
In addition, a point may be assigned to a cluster description even if it only satisfies most, and not necessarily all, of
the attributes in the conjunction. Connections between this conceptual clustering problem and the maximum edge
biclique problem are made. Simple, randomized algorithms are given that discover a collection of approximate
conjunctive cluster descriptions in sublinear time.
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1. Introduction

Clustering is the problem of grouping similar objects together. In this paper we study
the problem of identifying tight descriptions of large groups of points. As a motivating
application, consider the problem of selling two or more items at a single combined price,
also known as product bundling. For a collection of d products P , we are given customer
purchases P1, . . . , Pn ⊂ P and the goal is to identify k conjunctions of products, or product
bundles, C1, . . . , Ck , with the property that many customers purchase the bundle Ci for
each i . Such product bundles can then be used on a promotional basis by offering a discount
to individuals who purchase all items in the bundle in one transaction. While we use this
motivating example throughout, our formulation is useful in other application contexts such
as text clustering (Dhillon, 2001; Dhillon, Mallela, & Modha, 2003).

In Conjunctive Clustering, the goal is to identify long conjunctive cluster descriptions
that cover a dense region of space. More formally, a conjunctive cluster is a conjunction of
attributes c together with the points Y in the data set that satisfy the conjunction c. In general
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we are interested in longer, more specific conjunctions since then the points that satisfy the
conjunction have more in common. We are also interested in having a large number of
points satisfy that conjunction. A natural way to combine these objectives is to maximize
|c| · |Y | so that we simultaneously ensure many points are in the cluster and also that those
points have much in common. There may be other ways to combine these objectives as we
discuss in Section 8.

A convenient way to think about a conjunctive cluster is as a biclique in a bipartite graph.
For a bipartite graph G = (U, W, E), let U be the points to be clustered (for the sake of
simplicity, assume U ⊂ {0, 1}d ), and let W correspond to the attributes or dimensions.
Let there be an edge between u ∈ U and w ∈ W if the wth dimension of u is 1.1 A
biclique is a subgraph (U ∗, W ∗) where each vertex in U ∗ is adjacent to each vertex in W ∗.
A biclique naturally corresponds to a conjunctive cluster since each point u in U ∗ satisfies
the conjunction of attributes in W ∗. A maximum edge biclique corresponds to the best
conjunctive cluster, since |W ∗| is precisely the length of the conjunction and |U ∗| is the
number of points that satisfy the conjunction. We define the k best conjunctive clusters as
the k largest clusters that do not overlap too much. A formal definition can be found in
Section 2.

Since the maximum edge biclique problem is NP-hard (Peeters, 2003) and there is ev-
idence that it is difficult to approximate (Feige, 2002), we relax the problem to allow our
algorithm to produce bisubgraphs (U ′, W ′) where each vertex in W ′ connects to most ver-
tices in U ′. In practice such a relaxation is quite natural since it allows a point to be assigned
to a conjunctive cluster description even if it does not satisfy all attributes in the conjunction,
but rather most of the attributes. Moreover, our algorithm only outputs one side of each ap-
proximate biclique—the one that corresponds to the description, or the common attributes
of the cluster. The points that belong to the cluster can then be determined using this de-
scription. The running time required to obtain the description depends only logarithmically
on the number of data points.

The conjunctive clustering formulation possesses some characteristics that are desirable
in certain applications. The first characteristic is that conjunctive cluster descriptions are
identified. Returning to the product bundling example, the algorithm will directly output
what is required: a conjunctive description of products that many customers have purchased.
A second characteristic is that not all points are clustered. In this application, it is in fact
desirable to ignore the customers with unusual buying patterns. Another characteristic is
that clusters overlap; it may be desirable to allow some shopping baskets to belong to
multiple clusters since customers may actually purchase multiple bundles in one shopping
excursion. In addition, the algorithm’s running time is sublinear in the number of points
to be clustered. This may be desirable for companies with a large number of customers.
Finally, instead of requiring an input metric space, the formulation allows for clustering
categorical data which is more suitable for the product bundling scenario.

While there have been approaches to clustering that either find cluster descriptions (Pitt
& Reinke, 1987; Mishra, Oblinger, & Pitt, 2001), do not require a strict partition (Dempster,
Laird, & Rubin, 1997), have algorithms with sublinear running time (Indyk, 1999; Mishra,
Oblinger, & Pitt, 2001; Alon et al., 2003), or cluster categorical data (Guha, Rastogi, &
Shim, 2000; Gibson, Kleinberg, & Raghavan, 2000; Ganti, Gehrke, & Ramakrishnan, 1999),
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conjunctive clustering is an attempt at designing a problem formulation with all of these
characteristics.

1.1. Our results

Maximum conjunctive cluster/maximum edge biclique. We start by considering the prob-
lem of finding a maximum conjunctive cluster, that is, a biclique (U ∗, W ∗) with the most
edges. As mentioned, since this problem is hard, we consider a relaxation where the goal is
to identify a subgraph that is both very dense and also very large. For Û ⊆ U , Ŵ ⊆ W and
0 < ε ≤ 1, we say that (Û , Ŵ ) is ε-close to being a biclique if every vertex in Û neighbors
at least (1 − ε) of the vertices in Ŵ . We say in such a case that it is an ε-biclique. For any
given ε, our algorithm outputs a subgraph that is both an ε-biclique and also has almost as
many edges as an optimum biclique. Actually, rather than outputting the subgraph (Û , Ŵ ),
the algorithm only outputs Ŵ which corresponds to the cluster description. Û is implicitly
determined from Ŵ , i.e., Û contains all vertices in U that neighbor at least (1 − ε) of the
vertices in Ŵ .

Our algorithm runs efficiently provided that the fraction of points in both U ∗ and W ∗

is sufficiently large. Indeed, if |U ∗| ≥ ρU · |U | and |W ∗| ≥ ρW · |W |, for certain param-
eters ρU, ρW where 0 < ρU, ρW ≤ 1, then our algorithm draws a sample from U of size
polynomial in the input parameters 1/ε, 1/ρU , and 1/ρW, and runs in time linear in |W |,
quasi-polynomial in 1/ρU and 1/ρW, and exponential in poly(1/ε). Thus, the number of
sample points is independent of |U |. The running time depends logarithmically on |U | only
because O(log |U |) bits are required to specify an element of U . Since log |U | ≤ |W | there
is no explicit dependence on |U | in the running time.

While it would be more desirable to have an algorithm with running time polynomial in
all problem parameters, we cannot expect to have polynomial dependence on 1/ε since in
such a case we could use the algorithm to solve the original NP-hard problem in polynomial
time by setting ε < 1

|U |·|W | . We leave open the question of whether it is possible to obtain
an algorithm with polynomial dependence on 1/ρU and 1/ρW. This paper addresses the
situation when both 1/ρU and 1/ρW are small, for example, when ρU, ρW are constants like
1/3. Such a situation has practical motivation. For instance, product bundling schemes are
often designed to affect large portions, e.g., 10–30%, of the customer population.

Collection of large conjunctive clusters. We next discuss the more general problem of
identifying a collection of large ε-bicliques. For a subgraph A, let E(A) denote the edges
in A. We say that a subgraph A dominates another subgraph B if the ratio of |E(A)\E(B)|
to |E(A) ∪ E(B)| is small. The goal of Conjunctive Clustering is to find k large ε-bicliques
where no ε-biclique dominates another. More precisely, given parameters ρU and ρW and
a parameter k that denotes the number of desired clusters, we give an algorithm that out-
puts k subsets, Ŵ 1, . . . , Ŵ k where Ŵ i ⊆ W , for which the following holds: (1) For every
1 ≤ i ≤ k, |Ŵ i | ≥ ρW · |W |. (2) For every 1 ≤ i ≤ k, the subset Û i consists of all vertices
in U that neighbor at least (1 − ε) of the vertices in Ŵ i . (3) The different ε-bicliques do
not dominate each other. (4) For every biclique (U ′, W ′) such that |U ′| ≥ ρU · |U | and
|W ′| ≥ ρW · |W |, either there is an ε-biclique in our collection that dominates (U ′, W ′) or all



118 N. MISHRA, D. RON, AND R. SWAMINATHAN

ε-bicliques in our collection are almost as large as (U ′, W ′). If the fourth condition is satis-
fied, we say that our collection swamps the large bicliques. The running time of our algorithm
is quasi-polynomial in k, 1/ρU and 1/ρW, exponential in poly(1/ε), and linear in |W |.

Finding approximations to ε-bicliques. The problems described so far assume that the
optimum true single cluster is a biclique. But in practice, the optimum true cluster is likely
to be an ε-biclique. Thus we also consider the problem of closely approximating the largest
ε-biclique. Specifically, we describe an algorithm that outputs a 4ε1/3-biclique that is almost
as large as the largest ε-biclique.

Finding very small, implicit representations of dense subgraphs. By slightly modifying
our algorithms we can obtain very small, implicit representations of dense large subgraphs.
In the case of finding an approximation to the maximum biclique, the algorithm will find
small subsets S ⊂ U and S′ ⊂ W that can be used to obtain a bisubgraph (Û , Ŵ ) that
contains at least (1 − O(ε)) · |Û | · |Ŵ | edges. In addition, the number of edges is almost as
large as the size of a maximum biclique. Thus, we improve our running time at the expense
of the quality of the output, since it is no longer the case that every vertex in Û neighbors
almost all vertices in Ŵ , but rather that almost all vertices in Û neighbor almost all vertices
in Ŵ . This result is more appealing in the general context of sublinear graph algorithms
than in the particular context of conjunctive clustering, since in the latter we would like to
know that every two members of the cluster share much in common.

Data streams. A data stream is a sequence of points u1, . . . , ui , . . . , u|U | that can only be
read once in increasing order of the indices i . For many modern applications, the notion of
a data stream is more appropriate than a static dataset. We give an algorithm that stores a
sketch of the stream that can be used to identify conjunctive clusters. If the data is actually
arriving in sequenced chunks, C1, . . . , CJ , where each Ci is a collection of points, then
the size of the sketch is quasi-polynomial in J

ρU
and J

ρW
, linear in |W |, and exponential in

poly(1/ε).

1.2. The algorithms

Our algorithms are based on the following idea. Consider a fixed biclique (U ∗, W ∗) such
that |U ∗| ≥ ρU|U | and |W ∗| ≥ ρW|W |. In particular, this may be a maximum edge biclique.
Assume that W ∗ is maximal in the sense that it is not possible to add any vertex to W ∗ and
still obtain a biclique. Then, by definition of bicliques, W ∗ is simply the intersection of the
sets of neighbors that vertices in U ∗ have in W . Let us denote this intersection by �(U ∗).

Suppose, as a mental experiment, we were given the ability to sample from U ∗. Then
for any sample S ⊆ U ∗, we have that W ∗ ⊆ �(S). The problem is that �(S) may include
additional vertices that do not belong to W ∗, so that it is not immediately clear how to use
the fact that �(S) contains all vertices in W ∗, as W itself also contains all vertices in W ∗.
However, it can be shown that if we uniformly select a sample of sufficiently large size then
the following holds with high probability: If we take all vertices in U that neighbor all but
at most an ε-fraction of the vertices in �(S), then we obtain an ε-biclique that has at least
as many edges as (U ∗, W ∗). We shall say in such a case that S is a good seed U ∗.
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Since we cannot actually sample from U ∗, we instead consider all subsets of the sam-
ple whose size is lower bounded by a certain threshold. This technique is sometimes re-
ferred to as exhaustive sampling (Fernandez de la Vega, 1996; Arora, Karger, & Karpinski,
1995; Goldreich, Goldwasser, & Ron, 1998; Frieze & Kanan, 1999). It can be verified that
if the sample is sufficiently large, then with high probability one of these subsets is a good
seed. However, now we have to address a new problem: How do we decide which subset is
the good seed? We could of course check the resulting ε-biclique for each subset, but this
would take time linear in |U |, and we are interested in an algorithm having time sublinear
in |U |. As one may guess at this point, we solve this by sampling again from U . While
we described the ideas for the case of finding an approximate biclique, the ideas can be
extended to finding a collection of bicliques.

1.3. Related work

Clustering. The field of clustering is quite extensive so we briefly comment on some of the
more popular and/or recent clustering problems. One of the most widely studied clustering
objectives is known as k-Median. Here we are given a set of points S in a metric space and
must find a collection of k centers, which are themselves points in the metric space, such
that the average distance from a point in S to its nearest center is minimized. Numerous
clustering algorithms have been proposed for identifying approximately good clusterings,
including (Jain & Vazirani, 1999; Charikar & Guha, 1999; Arya et al., 2001; Thorup, 2001).
Sublinear versions of these algorithms can be found in Indyk (1999) and Mishra, Oblinger,
and Pitt (2001). Related to the k-Median objective is the k-Median-squared objective of
minimizing the average squared distance from a point its nearest center. Theoretical results
for k-Median typically also apply to the k-Median-squared objective, but approximation
algorithms have also been explicitly derived for this objective (Kanungo et al., 2002).

Among the more widely-used practical algorithms are k-Means (Duda, Hart, & Stork,
2000), which is known to find a local optimum solution to the k-Median2 objective (Selim
& Ismail, 1984), and EM (Dempster, Laird, & Rubin, 1997) which can for example be used
to estimate the parameters of a mixture of Gaussians.

In the k-Center problem, the goal is to minimize the maximum radius of a cluster where
the radius is defined to be the largest distance from a point to its nearest center. This problem
is known to have a 2-approximation (Feder & Greene, 1988; Hochbaum & Shmoys, 1986).
Sublinear algorithms are also known for the k-center problem (Alon et al., 2003).

Many other clustering objectives have recently been proposed for which approximation
algorithms are also known, e.g., correlation clustering (Bansal, Blum, & Chawla, 2002;
Charikar, Guruswami, & Wirth, 2003; Emmanuel & Fiat, 2003; Demaine & Immorlica,
2003), conductance-based clustering (Kannan, Vempala, & Vetta, 2000), and catalog seg-
mentation (Kleinberg, Papadimitriou, & Raghavan, 1998).

Simultaneously clustering points and attributes, commonly known as biclustering, was
introduced in Hartigan (1972), and has regained renewed interest recently. Specifically, a
polynomial-time algorithm for identifying bounded width axis-parallel hyper-rectangles
containing a constant fraction of the input points was described in Procopiuc et al. (2002).
Biclustering has also been used to cluster gene expression data (e.g., Cheng & Church,
2000; Tanay, Sharan, & Shamir, 2002; Murali & Kasif, 2003). For a survey see Madeira
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and Oliveira (2004). Finally, Dhillon, Mallela, and Modha (2003) provide an information-
theoretic formulation of biclustering and present an iterative algorithm for reaching a local
minimum.

Graph algorithms. As mentioned previously, the maximum-edge biclique problem is
NP-hard (Peeters, 2003). Under the assumption that refuting 3SAT is hard on average,
Feige (2002) shows that it is hard to approximate the maximum-edge biclique problem to
within a certain constant. Furthermore, for certain constants α < β, it is hard to distinguish
between the case in which the maximum biclique has size at least β · |U | · |W | and the case
in which the maximum biclique has size less than α · |U | · |W |. This implies that it is hard
to obtain a (1 + γ )-approximation for a sufficiently small constant γ .

If the graph G is weighted, then approximating the weight of a maximum weighted
edge biclique is as hard as the problem of approximating the size of a maximum clique in
an arbitrary graph. The NP-hardness proof given in Hochbaum (1998) essentially shows
that approximation is hard. Hochbaum (1998) gives a 2-approximation to the problem of
minimizing the number of edges that need to be deleted so that the remaining graph is a
biclique. Finding the biclique with the largest number of vertices is NP-hard when both
sides of the biclique have to be of the same size (Garey & Johnson, 1979), but can be solved
in polynomial time when this constraint is removed (Yannakakis, 1981).

Another problem concerning the search for large bicliques is that of finding a small
collection of bicliques that form a partition of the edge set of the graph, also known as a
biclique partition. The order of the partition is the sum of the numbers of vertices in the
different bicliques, and the goal is to find a biclique partition having minimum order. Feder
and Motwani (1995) study this problem in the context of graph compression. They show
that the problem is NP-hard, and provide an efficient algorithm that finds a partition of order
O( m log(n2/m)

log n ) where n is the number of vertices and m is the number of edges.
Related to the problem of finding relaxed bicliques is finding subgraphs with maximum

average degree, sometimes called dense subgraphs. Finding a maximum density subgraph
of a particular size is NP-hard, since CLIQUE is NP-hard. The algorithm in Peleg, Feige,
and Kortsarz (2001) gives an approximation factor of O(n1/3) and the algorithm of Arora,
Karger, and Karpinski (1995) gives a polynomial-time approximation scheme for dense
graphs. A maximum density subgraph without size constraints can be found in polynomial
time (Goldberg, 1984; Charikar, 2000).

Property testing. Our algorithms are related to Property Testing algorithms on dense
graphs (Goldreich, Goldwasser, & Ron, 1998), and in particular, are inspired by the
CLIQUE-testing algorithm in that paper. Such algorithms are designed to decide whether
a given dense graph has a certain property or whether many edge modifications should be
performed so that it obtains the property. In a manner that is similar to the approximate
solutions studied in this paper, many testing algorithms can be modified so as to obtain
approximate solutions to the corresponding search problems. However, none of the known
property testing algorithms, or their extension to approximation algorithms, directly apply
to our problem. In particular, the most general family of graph properties studied in Goldre-
ich, Goldwasser, and Ron (1998) does not capture our definition of clustering which allows
for overlapping subsets of vertices. Other related work on approximation algorithms and



NEW CONCEPTUAL CLUSTERING FRAMEWORK 121

testing algorithm on dense graphs includes (Arora, Karger, & Karpinski, 1995; Frieze &
Kanan, 1999; Alon et al., 2000).

Conceptual clustering. The general notion of finding cluster descriptions is known as
conceptual clustering (Michalski, 1980; Fisher & Langley, 1985). Pitt and Reinke (1987)
show that the Hierarchical Agglomerative Clustering (HAC) algorithm finds an optimum
clustering under particular conditions on intra cluster distance, described by the distance
between points within a cluster, and inter cluster distance, described by the distance between
clusters. We discuss one instantiation of their results that is relevant to conjunctive clustering.
Let the distance between two conjunctions ci , c j be the number of literals x such that x is
in ci and x̄ is in c j . For a clustering c1, . . . , ck , let the intercluster distance be the minimum
distance between two conjunctions, and let the intracluster distance be the length of the
shortest conjunction. If the goal is to maximize the difference between the inter and intra
cluster distance, then the HAC algorithm can find the optimum clustering. One advantage
of this algorithm is that the number of clusters k need not be specified a priori. A separate
conjunctive clustering problem, considered in Mishra, Oblinger, and Pitt (2001), is that of
finding k ≥ 2 conjunctive descriptions c1, . . . , ck such that

∑k
i=1 |ci | · |Yi | is maximized,

and no point satisfies both ci and c j . An algorithm for finding the optimum solution was
shown to have running time O(d O(k2)), where d is the number of attributes. These two results
are not applicable to our problem since we do not require that each point be assigned to a
cluster, that the clusters be disjoint, or that a point exactly satisfy a conjunction in order to
be assigned to it. A separate paper on identifying descriptions of clusters by Agrawal et al.
(1998) gives algorithms for identifying DNF descriptions for each cluster. In this work the
objective function is different in that a cluster is a union of connected regions with more
density within the region than the area around it.

Frequent itemsets. The frequent itemset problem (Agrawal, Imielinski, & Swami, 1993;
Gunopulos et al., 1997) is also closely related to conjunctive clustering. Given a collection
of points U in {0, 1}d , the frequent itemset problem is that of identifying all subsets of
variables that satisfy a sufficiently large fraction of U , also known as support. Since all the
frequent subsets can be deduced from the maximally frequent subsets, many algorithms are
specifically designed to identify the smaller collection of maximally frequent subsets. A
large conjunctive cluster is in some sense a maximally frequent itemset. The key difference
between the two formulations is in the required output. In the frequent set formulation, one
is interested in identifying all frequent itemsets, or possibly all maximally frequent itemsets.
As such, the identification of a border separating the frequent from the infrequent is crucial
to solving the problem. In contrast, our objective is to find a collection of k conjunctions that
do not overlap too much and that swamp all the large conjunctions. Thus, we seek a subset
of the frequent itemsets which may be significantly smaller in cardinality than the number
of maximally frequent sets and also serve a different purpose in terms of overlapping with
or being larger than all the frequent sets. Finally, while the Apriori (Agrawal, Imielinski,
& Swami, 1993) algorithm could be used to find all conjunctive clusters, the running time
would be prohibitive.

Web communities. Research on discovering web communities (Kumar et al., 1999;
Gibson, Kleinberg, & Raghavan, 1998; Flake, Lawrence, & Giles, 2000) is also related
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to conjunctive clustering. A web community is a set of web pages that are all relevant
to each other. One way to view the community discovery problem is as a bipartite graph
G = (U, W, E) where U = W are the pages on the web and E consists of edges (u, w)
if there is a hyperlink from u to w or if u = w. A biclique (U ′, W ′) forms a community
since each page in U ′ is linked to each page in W ′. Our results can be used to identify a
collection of communities that dominate the large communities on the web. In contrast, our
algorithms are not designed to find small communities, also known as “cores” as studied
by Kumar et al. (1999), where the goal is to, for example, find all K3,2’s.

1.4. Overview

In Section 2 we define bicliques and their relationship to conjunctive clusters. We then
define the conjunctive clustering problem that we study. In Section 3, we describe a method
called Good Seed for almost reconstructing a biclique given the ability to sample from one
side of the biclique. In Section 4, we use the Good Seed algorithm as a basis for identifying
a collection of conjunctive clusters. In the event that there are no ‘true’ bicliques in the
bipartite graph but only ‘relaxed’ bicliques, we show in Section 5 that the algorithm can
find a collection of more-relaxed bicliques that dominate the relaxed bicliques. In Section 6,
we present a variant of our algorithm for finding an approximate maximum biclique that
runs in time logarithmic in both |U | and |W |. Finally, in Section 7, we describe a streaming
version of the algorithm.

2. Preliminaries and problem definitions

As noted in the introduction, it will be convenient to define our problems using a graph-
theoretic formulation. Given a bipartite graph G = (U, W, E) and two subsets U ′ ⊆ U
and W ′ ⊆ W , we denote by E(U ′, W ′) the subset of all edges between vertices in U ′ and
vertices in W ′. We refer to such a pair (U ′, W ′) as a bisubgraph. The size of a bisubgraph is
the number of edges contained in the bisubgraph. For a vertex v we denote the neighbor set
of v by �(v). For a subset S of vertices, we let �(S)

def= ∩v∈S�(v) denote the set of vertices
each of which neighbor every vertex in S. For a subset S and a parameter ε ≤ 1/2, we let
�ε(S)

def= {w : |�(w) ∩ S| ≥ (1 − ε)|S|} denote the set of vertices that neighbor all but an
ε-fraction of S. For an illustration of �(S) and �ε(S) see figure 1.

Definition 1. Given a bipartite graph G = (U, W, E), a bisubgraph (U ′, W ′) is a biclique
if E(U ′, W ′) = U ′ × W ′. The size of a biclique (U ′, W ′) is |U ′| · |W ′|, and a maximum
biclique is a biclique (U ′, W ′) for which |U ′| · |W ′| is maximized over all bicliques.

A maximum biclique is uniquely determined by either of its sides: U ∗ or W ∗. Given W ∗,
we can obtain U ∗ = �(W ∗), and vice versa.

As noted previously, the maximum biclique problem is NP-hard. Here we suggest a
relaxation of the maximum biclique problem which allows the output to be close to a
biclique.
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Figure 1. An illustration of a set S, and of �(S) and �ε(S), for ε = 1/3. The set �ε(S) is enclosed in
a dashed ellipse. To avoid clutter, only the edges incident to vertices in S are depicted.

Definition 2. We say that (U ′, W ′) is ε-close to being a biclique, for 0 ≤ ε ≤ 1, if every
vertex in U ′ neighbors at least (1 − ε) of the vertices in W ′. For the sake of succinctness,
we say that (U ′, W ′) is an ε-biclique.

In the context of conjunctive clusters, an ε-biclique corresponds to a pair (Y, c) such that
every point in Y satisfies at least (1 − ε) of the attributes in c. The asymmetry between
U ′ and W ′ in the definition of an ε-biclique corresponds to our needs in the context of
clustering where the two sides of the ε-biclique in fact have a different role. Similarly to
what was noted above for bicliques, if an ε-biclique (U ′, W ′) is maximal then it is completely
determined by W ′, that is, (U ′, W ′) = (�ε(W ′), W ′). This is especially useful in the context
of clustering since W ′ = c is the description of the cluster, and therefore we do not need to
output explicitly all points Y in the cluster.

Our first problem formulation follows.

Problem 1. Given a bipartite graph G = (U, W, E), find a subset W ′ ⊆ W such that the
ε-biclique (�ε(W ′), W ′) is at least (1 − bε) times as large as the maximum biclique for a
small constant b.

We present an algorithm that solves this problem for b = 2. The running time of the
algorithm depends linearly on |W | and only logarithmically on |U |. If we allow running
time linear in |U |, the ε-biclique output by the algorithm contains at least as many edges as
the maximum biclique, in other words, b = 0.

Collections of large bicliques. The above relaxation addresses the issue of finding a single
approximate maximum biclique. We now turn to defining a good collection of at most k
bicliques.

A natural way to define the k best conjunctive clusters is as the k largest clusters, i.e.,
the k bicliques with the most total number of edges. The problem with this definition is
that clusters may overlap in terms of both the attributes that define the conjunctions and in
terms of the points that satisfy the conjunctive descriptions. Thus the two largest clusters
(U1, W1) and (U2, W2) may be such that U1 ∩ U2 is almost identical to both U1, U2 and
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that W1 ∩ W2 is almost identical to both W1, W2. In such a case, we would prefer that the
algorithm output just one of these bicliques since they are so similar.

Before defining the k best clusters, we first discuss what it means for one cluster to
“dominate” another. Any definition of dominate must address overlap in terms of both the
descriptions and the points satisfied by the description. In other words, it is possible that
two cluster descriptions are very similar, but that the descriptions satisfy disjoint point sets.
In such a case, we would say that the clusters do not overlap since they satisfy distinct sets
of points. In the other direction, if two very similar sets of points are satisfied by completely
different conjunctions, then we would also say that the clusters do not overlap. Thus any
definition of dominates should address overlap in terms of both U and W .

Next we observe that “dominates” is not symmetric. Consider the situation when U1 ⊆
U2, W1 ⊆ W2, |U2| 
 |U1|, and |W2| 
 |W1|. In such a case, we would say that (U2, W2)
dominates (U1, W1) since each point/attribute combination of (U1, W1) appears in (U2, W2).
However, we would not say that (U1, W1) dominates (U2, W2) since most of the point/
attribute combinations from (U2, W2) are missing from (U1, W1).

Having established that we want a definition of dominates that takes into account both U
and W and is asymmetric, there may be several natural definitions of dominates. Since our
clusters correspond to bisubgraphs with large edge density, we define dominates in terms
of the subsets of edges in each bisubgraph.

Definition 3. Let G = (U, W, E) be a bipartite graph and let U1, U2 ⊆ U and W1, W2 ⊆
W . We say that (U1, W1) δ-dominates (U2, W2) if the number of edges in E(U2, W2)
that do not belong to E(U1, W1) is at most a δ fraction of the union of the two sets of
edges:

|E(U2, W2)\E(U1, W1)|
|E(U2, W2) ∪ E(U1, W1)| ≤ δ.

In the above definition, the size of the uncovered set of edges, |E(U2, W2)\E(U1, W1)| is
normalized by the size of the union of the two sets of edges, |E(U2, W2)∪E(U1, W1)|, rather
than by the the number of edges in the covered bisubgraph, |E(U2, W2)|. While the latter
seems to be the more natural choice, we have chosen the former for technical reasons (e.g., it
obeys a certain triangle-like inequality). Note that if the size of the dominating bisubgraph,
|E(U1, W1)| is not much larger than the size of the dominated bisubgraph, |E(U2, W2)|,
then the two measures are roughly the same. Since we will be interested in dominating
relatively large bisubgraphs, namely, such that |U2| ≥ ρU · |U | and |W2| ≥ ρW · |W |, the
ratio between the two measures is always upper bounded by 1/(ρU · ρW).

We use the definition of dominates in two ways: to make sure that the clusters our
algorithm outputs dominate the clusters in the optimum solution, and also to ensure that the
clusters we output are distinct enough from each other.

Since our clustering objective is to identify a collection of k ε-bicliques, we need some
method of comparing our discovered ε-bicliques to the true bicliques. Consider a fixed large
true biclique (U ′, W ′). We say that our collection of k ε-bicliques swamps a fixed large true
biclique (U ′, W ′) if either (a) we have one in our collection that δ-dominates (U ′, W ′) or (b)
(U ′, W ′) is smaller than every ε-biclique we find. Actually, since our interest is in sublinear
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algorithms, condition (b) is replaced with a relaxation where we ensure that (U ′, W ′) is not
much larger than every ε-biclique we find.

Definition 4. Let G = (U, W, E) be a bipartite graph and let C = {(Ui , Wi )}k
i=1 be a

collection of pairs of vertex subsets where Ui ⊆ U , and Wi ⊆ W . We say that C (δ,ε)-
swamps a pair (U ′, W ′) if either there exists a pair (Ui , Wi ) ∈ C that δ-dominates (U ′, W ′),
or |E(U ′, W ′)| ≤ (1 + ε) · min j {|E(U ′

j , W ′
j )|}.

We will also sometimes say that a collection C1 of subgraphs swamps another collection of
subgraphs C2 if C1 swamps each subgraph (U2, W2) ∈ C2.

We introduce one more important definition that is based on the notion of dominates. This
definition ensures that in the collection of subgraphs output by the algorithm no subgraph
dominates another.

Definition 5. Let G = (U, W, E) be a bipartite graph and let C = {(Ui , Wi )}k
i=1 be a

collection of pairs of vertex subsets where Ui ⊆ U , and Wi ⊆ W . We say that C is δ-
diverse if for every two different pairs (Ui , Wi ) and (U j , W j ) in C, neither δ-dominates the
other.

Since this paper is focused on identifying large conjunctive clusters, we introduce two
lower-bound parameters, ρU and ρW, which the algorithm is provided with, and consider
only bicliques (U ′, W ′) such that |U ′| ≥ ρU · |U | and |W ′| ≥ ρW · |W |. In the conjunctive
clustering formulation, these parameters are quite natural since a bisubgraph with too few
attributes or too few points may not be an interesting cluster. Let B(ρU, ρW) denote the set
of all bicliques (U ′, W ′) in G such that |U ′| ≥ ρU · |U | and |W ′| ≥ ρW · |W |.

Given the above definitions, a natural problem is to find a collection of at most k bicliques
in B(ρU, ρW) that is both δ-diverse and (δ, ε)-swamps every (U ′, W ′) ∈ B(ρU, ρW). Here we
define a relaxation of this problem where we can output ε-bicliques. Let Bε(ρU, ρW) denote
the set of all ε-bicliques (U ′, W ′) in G such that |U ′| ≥ ρU · |U | and |W ′| ≥ ρW · |W |.

Problem 2. Let G = (U, W, E) be a given bipartite graph, 0 < ρU, ρW ≤ 1 two size
parameters, k a positive integer, 0 ≤ δ ≤ 1 a diversity/dominating parameter, and 0 ≤ ε ≤ 1
an approximation parameter. Find a collection C̃ of at most k ε-bicliques in Bε(ρU, ρW) such
that C̃ is δ-diverse and for every (U ′, W ′) ∈ B(ρU, ρW), (U ′, W ′) is (b·(δ+ε), b′ ·ε)-swamped
by C̃ for some small constants b and b′. Furthermore, the collection C̃ must either be of
size k or, for some δ-diverse collection C∗ ⊆ B(ρU, ρW) of k bicliques (if such exists), every
biclique (U ∗

i , W ∗
i ) ∈ C∗ is (δ + b′′ · ε)-dominated by some ε-biclique in C̃.

As in Problem 1, it suffices that the algorithm output only the subset W ′ ⊆ W in each
ε-biclique (U ′, W ′). For this problem, we present an algorithm that works for b = b′′ = 4
and b′ = 2. Observe that without the additional requirement concerning a lower bound on
the size of C̃, Problem 2 would be no harder than Problem 1 (as the output of Problem 1
swamps all bicliques inB(ρU, ρW)). By adding this requirement we ensure that the algorithm
either outputs a diverse collection of k large ε-bicliques or it “well-dominates” a diverse
collection of k bicliques. Hence, the algorithm is allowed to output just a single ε-biclique
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but in such a case this ε-biclique should dominate many diverse bicliques. As an extreme
example, suppose (U, W ) is itself an ε-biclique. Then by outputting (U, W ), the algorithm
actually dominates all bicliques.

3. A good seed

In this section we discuss a central building block of our algorithms. Consider a fixed
biclique (U ∗, W ∗) and assume it is maximal. Suppose, as a mental experiment, that we can
obtain a small, random sample S from U ∗. We think of the sample S as being a “good seed”
for the biclique (U ∗, W ∗). In this section we show how we can largely recover (U ∗, W ∗)
with just a good seed by using the ideas discussed in Section 1.2. In the next section we
remove the imaginary assumption that we can directly sample from U ∗ in order to obtain
the good seed.

Let ρW be a lower bound on |W ∗|/|W |, and let m̂ = 16
ε2 log 80

ρWε
.

Good Seed Algorithm

1. Let S be a sample of size m̂ drawn uniformly and independently from U ∗.
2. Let Ŵ ← �(S).
3. Output Ŵ .

Lemma 1. Let Ŵ be as constructed in the Good Seed Algorithm. With probability at least
19
20 over the choice of S ⊂ U ∗, |E(�ε(Ŵ ), Ŵ )| ≥ |U ∗| · |W ∗|.

In order to prove the lemma, it will be helpful to partition the vertices in Ŵ into three
subsets. The first subset is W ∗; while the second subset consists of vertices that do not
belong to W ∗ but that neighbor a significant fraction of vertices in U ∗. The second subset
will be referred to as “high degree” vertices. The third subset consists of those vertices that
neighbor relatively few vertices in U ∗. These will be referred to as “low degree” vertices.
We show that, with high probability, the size of the subset of vertices in Ŵ that have low
degree with respect to U ∗ is small. Thus, since most of the vertices in Ŵ are either in the
optimum biclique or have high degree with respect to U ∗, we shall argue that the bisubgraph
(�ε(Ŵ ), Ŵ )) has at least as many edges as the optimum. We now precisely define the terms
“high degree” and “low degree”.

Definition 6. A vertex w ∈ W has high degree with respect to U ∗ if

|�(w) ∩ U ∗|
|U ∗| ≥ 1 − (ε/4)2.

Otherwise it has low degree with respect to U ∗.

Note that every w ∈ W ∗ has high degree with respect to U ∗, since for every w ∈ W ∗,
|�(w)∩U ∗|

|U ∗| = 1. We will be interested in samples of U ∗ that are “good seeds” as defined
below.
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Definition 7. We say that a subset S ⊆ U ∗ is a good seed of U ∗ if the number of vertices
in �(S) ⊆ W that have low degree with respect to U ∗ is at most (ε/4)|W ∗|.
Lemma 2. With probability at least 19

20 , the sample S drawn in Step 1 of the Good Seed
Algorithm is a good seed of U ∗.

Proof: Consider a fixed vertex w ∈ W that has low degree with respect to U ∗. Then, by
definition of low degree vertices,

Pr
S

[w ∈ �(S)] < (1 − (ε/4)2)m̂ < exp(−(ε/4)2 · m̂) = ε · ρW

80
(1)

where the last inequality follows from the definition of m̂ = 16
ε2 log 80

ε·ρW
. Hence, the expected

number of vertices in �(S) that have low degree with respect to U ∗ is bounded by |W | · ρW·ε
80 .

By Markov’s inequality, and using |W ∗| ≥ ρW · |W |, the probability that Ŵ = �(S) contains
more than ε

4 |W ∗| vertices with low degree with respect to U ∗ is at most 1
20 .

We next show that if S is a good seed of U ∗ then the ε-biclique (�ε(Ŵ ), Ŵ ) = (�ε(�(S)),
�(S)) has as many edges as (U ∗, W ∗).

Lemma 3. Let S be a good seed of U ∗ and let Ŵ = �(S). Then we have the following: (1)
|�ε(Ŵ )| ≥ (1 − ε/4)|U ∗|, (2) (�ε(Ŵ ), Ŵ ) ε/4-dominates (U ∗, W ∗), and (3) |E(�ε(Ŵ ),
Ŵ )| ≥ |U ∗| · |W ∗|.

An illustration for Lemma 3 can be found in figure 2.

Proof: The subset Ŵ consists of three parts: (1) the vertices of W ∗; (2) a subset of vertices,
denoted H , that do not belong to W ∗ and have high degree with respect to U ∗; (3) a subset
of vertices, denoted L , that have low degree with respect to U ∗. Note that since S is a good
seed of U ∗, we have that |L| ≤ ε

4 |W ∗|. In what follows, let Û
def= �ε(Ŵ ). We consider two

cases based on whether |H | is small or large.

|H| ≤ ε
2 |W∗|: In this case,

|W ∗|
|Ŵ | = |W ∗|

|H | + |L| + |W ∗| >
|W ∗|

ε
2 |W ∗| + ε

4 |W ∗| + |W ∗| (2)

= 1

1 + ε
2 + ε

4

≥ (1 − ε) (3)

This implies that every vertex in U ∗, which by definition neighbors every vertex in W ∗,
neighbors at least (1 − ε) of the vertices in Ŵ . That is, U ∗ ⊆ Û , so that in particular,
|Û | ≥ |U ∗|. Since we also have that W ∗ ⊆ Ŵ we get that (Û , Ŵ ) completely dominates
(U ∗, W ∗) and so |E(Û , Ŵ )| ≥ |U ∗| · |W ∗|.
|H| > ε

2 |W∗|: In this case we first show that all but at most an ε/4-fraction of the vertices
in U ∗ have at least (1 − ε/4)|H | neighbors in H . Let the subset of vertices in U ∗ having
at least (1 − ε/4)|H | neighbors in H be denoted Q∗. Thus we would like to show that
|Q∗| ≥ (1 − ε/4)|U ∗|.
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Figure 2. An illustration for Lemma 3. All subsets of vertices are denoted by ellipses. If a pair of
subsets form a biclique, then there are two solid lines connecting them. If they form an ε-biclique, then
there are dashed lines. Specifically, U ∗ and W ∗ are subsets of U and W , respectively, where (U ∗, W ∗)
is a biclique. The small subset S∗ ⊂ U ∗ is a good seed of U ∗. The subset Ŵ = �(S∗) (⊆ W ), which is
marked in bold, contains all vertices in W ∗ and possibly additional vertices, some having high degree
with respect to U ∗ and very few having low degree. Finally, the subset Û = �ε(Ŵ ) (⊆ U ), which is
also marked in bold, contains almost all vertices in U ∗. The resulting ε-biclique (Û , Ŵ ) has at least
as many edges as the biclique (U ∗, W ∗).

Let α be such that |Q∗| = (1 − α)|U ∗|. Observe that the total number of edges between
U ∗ and H can be strictly upper bounded as follows:

|E(U ∗, H )| < |Q∗| · |H | + |U ∗\Q∗| · (1 − ε/4)|H |
= (1 − α)|U ∗| · |H | + α|U ∗| · (1 − ε/4)|H |
= (1 − α + α − (α · ε/4))|U ∗| · |H |

By definition of H , we can also lower bound the number of edges between U ∗ and H :
|E(U ∗, H )| ≥ |H | · (1 − (ε/4)2)|U ∗|. Combining the two previous equations, we have
that

(1 − (ε/4)2)|U ∗| · |H | ≤ (1 − (α · ε/4))|U ∗| · |H |

which implies that α ≤ ε/4 as desired.
Since |L| ≤ (ε/4)|W ∗|, every vertex in Q∗ has at least (1 − ε)|Ŵ | neighbors in Ŵ ,

and hence Q∗ ⊆ Û . Since we have shown that |Q∗| ≥ (1 − ε/4)|U ∗| (where Q∗ ⊆ U ∗),
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we have that |Û | ≥ (1 − ε/4)|U ∗| and E(Û , Ŵ ) contains all edges in E(U ∗, W ∗) but at
most (ε/4) · |U ∗| · |W ∗|. Hence, (Û , Ŵ ) certainly (ε/4)-dominates (U ∗, W ∗). Finally, by
definition of Q∗ and what we have shown concerning its size,

|E(Q∗, Ŵ )| ≥ |Q∗| · (|W ∗| + (1 − ε/4)|H |) (4)

≥ (1 − ε/4)|U ∗| · (|W ∗| + |H |(1 − ε/4)
)

> |U ∗| · |W ∗| · (1 − ε/4) · (1 + (ε/2)(1 − ε/4)) (5)

> |U ∗| · |W ∗| (6)

Since |E(Û , Ŵ )| ≥ |E(Q∗, Ŵ )|, together with Eq. (6), the lemma follows.

The proof of Lemma 1 directly follows from Lemmas 2 and 3.

4. Conjunctive clustering algorithm

We now turn to the problem of identifying conjunctive clusters. We begin by considering
the problem of finding one large approximate conjunctive cluster. Then we consider the
problem of finding a good collection of approximate conjunctive clusters.

4.1. Approximate maximum biclique

Given ρU and ρW for which B(ρU, ρW) is non-empty we show how to find an ε-biclique
in which the number of edges is almost as large as in a maximum biclique in
B(ρU, ρW).2 Solving this problem is interesting in its own right since no solution to the
maximum edge relaxed biclique problem is known. In addition, the solution to this
problem is used to identify k large, approximate, conjunctive clusters later in this
section.

We cannot directly sample from the left-hand side, U ∗, of a maximum biclique since the
maximum biclique is unknown. Instead, we sample from U and consider all subsets S of
size m̂, where m̂ is as defined in the Good Seed Algorithm. As we shall show, with high
probability, at least one of these subsets, denoted S∗, is contained within U ∗ and furthermore,
S∗ is a good seed of U ∗. In particular, for this subset S∗, the ε-biclique (�ε(�(S∗)), �(S∗))
has at least as many edges as the maximum biclique (U ∗, W ∗).

How do we determine which of the subsets S is the good seed S∗? One straightforward
solution is to simply construct the sets �ε(�(S)), and to output �(S) for which |�ε(�(S))| ·
|�(S)| (or |E(�ε(�(S)), �(S))|) is maximized. This however comes at a cost linear in
|U |, while we are interested in an algorithm that only depends linearly on |W |, the set of
attributes. Hence, we use additional sampling from U in order to approximate the size of
|�ε(�(S))| · |�(S)| for every S.

Let m̂ be as defined in the Good Seed Algorithm, let m = 2
ρU

· m̂, and let t =
96

ρU·ε2 · m.
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Algorithm Approximate Maximum Biclique

1. Draw a sample X of m vertices uniformly and independently from U .
2. Draw an additional sample T of t vertices uniformly and independently

from U .
3. For each subset S of X that has size m̂ do:

(a) Ŵ (S) ← �(S).
(b) T̂ (S) ← T ∩ �ε(Ŵ (S)).

4. Among all subsets S considered by the algorithm for which |Ŵ (S)| ≥
ρW|W | and |T̂ (S)| ≥ (1 − ε/2)ρUt , let S+ be the one for which |T̂ (S+)| ·
|Ŵ (S+)| is maximized. Output Ŵ (S+).

Theorem 1. Let ρ∗ · |U | · |W | be the size of a maximum biclique in B(ρU, ρW). With
probability at least 2/3, Algorithm Approximate Maximum Biclique outputs a subset Ŵ =
Ŵ (S+) so that

|E(�ε(Ŵ ), Ŵ ))| ≥ (1 − 2ε) · ρ∗ · |U ∗| · |W ∗|

where |Ŵ | ≥ ρW|W | and |�ε(Ŵ )| ≥ (1 − ε)ρU|U |. The running time of the algorithm is
exponential in poly(1/ε), quasi-polynomial in 1

ρU
and 1

ρW
, and linear in |W |.

In order to prove Theorem 1, we first introduce some notation and then prove a few
lemmas from which the theorem will follow. Let (U ∗, W ∗) be a maximum biclique in
B(ρU, ρW). For any subset S, let Ŵ (S) and T̂ (S) be as defined in the algorithm. Let Û (S) =
�ε(Ŵ (S)) and let Ĝ(S) = (Û (S), Ŵ (S)) be the bisubgraph determined by S. We define
the true relative size of Ĝ(S) to be |Û (S)|·|Ŵ (S)|

|U |·|W | and the estimated relative size of Ĝ(S) to
be |T̂ (S)|·|Ŵ (S)|

t ·|W | (recall that |T | = t). We also define a good subset Sg to be one for which
|Û (Sg)|

|U | ≥ (1 − ε)ρU and a bad subset Sb to be one for which |Û (Sb)|
|U | < (1 − ε)ρU.

The analysis of the algorithm works via the following reasoning. We first show that, with
high probability, one of the subsets, S, considered in Step 3 of the algorithm is a good
seed of U ∗. Denote this subset by S∗. By Lemma 3 we know that (with high probability)
|Û (S∗)| ≥ (1 − ε/4)ρU|U |, so that S∗ is a good subset, and we know that the bisubgraph
(Û (S∗), Ŵ (S∗)) has at least as many edges as the maximum biclique (U ∗, W ∗). We then
show that, with high probability, only good subsets are candidates for determining the set,
Ŵ , that is output by the algorithm. Furthermore, the estimated relative size of Ĝ(Sg) for
every good subset Sg is close to its true relative size. Thus, the estimated relative size of
Ĝ(S∗) for the seed S∗ is close to its true relative size. It will then follow that for the set
Ŵ (S+) that is output by the algorithm, the bisubgraph (Û (S+), Ŵ (S+)) must have almost
as many edges as the maximum biclique (U ∗, W ∗).

We begin by showing that one of the subsets S considered in Step 3 of the algorithm is a
good seed of U ∗.

Lemma 4. With probability at least 9/10, one of the subsets considered in Step 3 of
Algorithm Approximate Maximum Biclique is a good seed of U ∗.
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Proof: Since m = (2/ρU) · m̂, by a multiplicative Chernoff bound, with probability at
least 1 − exp(−(1/2)3ρUm) = 1 − exp(−m̂/4) > 19/20, at least m̂ of the sampled vertices
belong to U ∗. Assume that this event in fact occurs. Since our algorithm enumerates over all
subsets of size m̂, it will come across a subset, call it S∗, that is contained in U ∗. Since the m
vertices drawn in Step 2 are drawn uniformly from U , the subset S∗ is uniformly distributed
in U ∗. Recall that |S∗| = m̂. Hence, by Lemma 2, with probability at least 19/20, S∗ is a
good seed of U ∗. Summing the probabilities of failure, the lemma follows.

Lemma 5. With probability at least 19/20, for every bad subset Sb, |T (Sb)|/t < (1 −
ε/2)ρU.

Proof: Consider a subset R ⊂ W such that |Û (R)|/|U | is exactly (1 − ε)ρU. For such a
subset, by a multiplicative Chernoff bound

Pr

[ |T̂ (R)|
t

≥ (1 − ε/2)ρU

]
≤ Pr

[ |T̂ (R)|
t

≥ (1 + ε/2) · (1 − ε)ρU

]
(7)

≤ e−(1/2)t(ε/2)2(1−ε)ρU

where the probability is taken over the choice of the sample T . Given our choice of t = |T |,
and since ε ≤ 1/2, the above probability is upper bounded by e−4m . Next consider any
fixed bad subset Sb. Since the probability of obtaining a vertex in Û (Sb) when uniformly
selecting a vertex in U is at most (1 − ε)ρU, we have that

Pr

[ |T̂ (Sb)|
t

≥ (1 − ε/2)ρU

]
≤ Pr

[ |T̂ (R)|
t

≥ (1 − ε/2)ρU

]
≤ e−4m (8)

By the union bound, the probability that for any bad subset Sb we have |T̂ (Sb)|
t ≥ (1 − ε/2)ρU

is at most ( m
m̂ ) · e−4m < 2m · 2−4m , which for our choice of m is clearly strictly smaller than

1/20 and the lemma follows.

We next show that the estimated relative size of Ĝ(Sg) for any good subset Sg is close to
its true relative size.

Lemma 6. With probability at least 19/20, for every good subset Sg of X of size m̂,

(1 − ε/4)
|Û (Sg)|

|U | ≤ |T̂ (Sg)|
t

≤ (1 + ε/4)
|Û (Sg)|

|U | .

Proof: For any fixed good subset Sg , by a multiplicative Chernoff bound, with probability
at least 1 − exp(−(1/2)t |Û (Sg)|

|U | (ε/4)2),

|T̂ (Sg)|
t

≥ (1 − ε/4)
|Û (Sg)|

|U | . (9)
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Similarly, for any fixed good subset Sg , by a multiplicative Chernoff bound, with probability
at least 1 − exp(−(1/3)t |Û (Sg)|

|U | (ε/4)2),

|T̂ (Sg)|
t

≤ (1 + ε/4)
|Û (Sg)|

|U | . (10)

Thus, by the union bound, the probability that for some good subset, Sg , the inequalities in
the lemma do not hold is at most

(
m

m̂

)
· exp

(
−1

2
t(1 − ε)ρU(ε/4)2

)
+

(
m

m̂

)
exp

(
−1

3
t(1 − ε)ρU(ε/4)2

)
.

For our choice of t and m, each of the above terms is clearly upper bounded by 1/40. The
lemma follows.

By Lemmas 4–6, with probability at least 4/5 > 2/3: (1) the algorithm comes across
a good seed S∗; (2) no bad subset is a candidate for determining the output Ŵ (S+), and
in particular, |Û (S+)| ≥ (1 − ε)ρU|U |; and (3) for all good subsets Sg , the inequalities in
Lemma 6 hold. For the rest of the proof, assume that these events in fact occur.

First we show that, conditioned on the above events, the specific subset S∗ will not be
excluded in Step 4 of the algorithm. Observe that the subset S∗ is good since by Lemma 3
|Û (S∗)| ≥ (1 − ε/4)|U ∗| ≥ (1 − ε/4)ρU|U |. Since S∗ is good, we know that |T̂ (S∗)|

t ≥
(1 − ε/4) |Û (S∗)|

|U | . Therefore,

|T̂ (S∗)|
t

≥ (1 − ε/4)
|Û (S∗)|

|U | ≥ (1 − ε/4)(1 − ε/4)ρU ≥ (1 − ε/2)ρU,

and hence S∗ will not be excluded in Step 4.
Next we show that the number of edges in (Û (S+), Ŵ (S+)) is not much smaller than the

number of edges in the maximum biclique (U ∗, W ∗).

|E(Û (S+), Ŵ (S+))| ≥ (1 − ε) · |Û (S+)| · |Ŵ (S+)| (11)

≥ 1 − ε

1 + ε/4
· |U |

t
· |T̂ (S+)| · |Ŵ (S+)| (12)

≥ 1 − ε

1 + ε/4
· |U |

t
· |T̂ (S∗)| · |Ŵ (S∗)| (13)

≥ (1 − ε)(1 − ε/4)

1 + ε/4
· |Û (S∗)| · |Ŵ (S∗)| (14)

≥ (1 − 2ε) · |U ∗| · |W ∗| (15)

In the above sequence of equations, Eq. (11) follows from the definition of Û (S+) =
�ε(Ŵ (S+)); Eq. (12) follows from Eq. (10), which holds for every good subset (recall that
by the second event we condition on, S+ cannot be a bad subset); Eq. (13) holds by our
choice of S+ as the subset for which |T̂ (S+)| · |Ŵ (S+)| is maximized and the fact that S∗
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is considered by the algorithm since it is good; Eq. (14) follows from the fact that |T̂ (S∗)|
t ≥

(1 − ε/4) |Û (S∗)|
|U | , and Eq. (15) follows from the fact that |Û (S∗)| · |Ŵ (S∗)| ≥ |U ∗| · |W ∗|

(recall that (Û (S∗), Ŵ (S∗)) contains at least as many edges as (U ∗, W ∗) where the latter is
a biclique), and from elementary mathematical manipulations.

The bound on the running time follows from the fact that we enumerate over all subsets
of size m̂ of the m vertices drawn in Step 1. The total number of such subsets is ( m

m̂ ). For
each subset S we compute �(S) and T ∩ �ε(�(S)). Thus for each subset S, the algorithm
spends time O(t · |W |). Hence the total running time is

O(mm̂ |W |t) = O




(
1

ρUε2
log

1

ρWε

)O
(

1
ε2 log 1

ρWε

)
|W |


 .

4.2. Conjunctive clustering

Recall that given ρU, ρW, k, ε and δ, our goal is to output a collection C̃ of at most k ε-
bicliques that is δ-diverse and that (b(δ + ε), b′ε)-swamps every biclique in B(ρU, ρW) for
small constants b and b′. Furthermore, either |C̃| = k or, for some δ-diverse collection
C∗ ⊆ B(ρU, ρW) of k bicliques, every biclique (U ∗

i , W ∗
i ) ∈ C∗ is (δ + bε)-dominated by

some ε-biclique in C̃.
We reset m̂, m and t as follows: m̂ = c1 · 1

ε2 · log k
ρW·ε , m = c2 · log k

ρU
· m̂, and t = c3 ·

log(1/ε)
(ρU·ρW·ε)3 · m. Here c1, c2, and c3 are constants that can be determined from the analysis.

Theorem 2. With probability at least 4/5, Algorithm Conjunctive Clustering outputs a
collection W̃ of at most k subsets such that C̃ = {(�ε(Ŵ ), Ŵ ) : Ŵ ∈ W̃} is δ-diverse, and C̃
((2δ+4ε), 3ε)-swamps every biclique in B(ρU, ρW). The collection C̃ is either of size k or for
some δ-diverse collection C∗ ⊆ B(ρU, ρW) of k bicliques, every biclique (U ∗

i , W ∗
i ) ∈ C∗ is

(δ+4ε)-dominated by some ε-biclique in C̃. Furthermore, for every Ŵ ∈ W̃, |Ŵ | ≥ ρW|W |
and |�ε(Ŵ )| ≥ (1−ε)ρU|U |. The running time of the algorithm is exponential in poly(1/ε),
quasi-polynomial in k, 1/ρU, and 1/ρW, and linear in |W |.

Before proving the theorem, we prove a couple of lemmas. For the sake of simplicity, in
all that follows we use the term “with high probability” to mean with probability at least
1 − γ for some sufficiently small constant γ . By selecting the constants c1, c2, and c3 to be
sufficiently large, we can ensure that the sum of all the γ ’s is at most 1/5 as required.

We shall use the same notations and terms as in the previous subsection. Specifically,
for S ⊂ X , Û (S) = �ε(Ŵ (S)) (so that T̂ (S) = T ∩ Û (S)) and Ĝ(S) = (Û (S), Ŵ (S)). We
say that a subset S is good if |Û (S)|/|U | ≥ (1 − ε)ρU; otherwise it is bad. Recall that by
Lemmas 5 and 6, with high probability, for every Ŵ (S) ∈ Ŵ , the subset S is good, and for
every good subset S,

(1 − ε/4)
|Û (S)|
|U | ≤ |T̂ (S)|

t
≤ (1 + ε/4)

|Û (S)|
|U | . (16)
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Conjunctive Clustering Algorithm

1. Draw a sample X of m vertices uniformly and independently from U .
2. Draw an additional sample T of t vertices uniformly and independently

from U .
3. Let Ŵ ← ∅.
4. For each subset S of X that has size m̂ do

(a) Ŵ (S) ← �(S).
(b) T̂ (S) ← T ∩ �ε(Ŵ (S)).
(c) If |Ŵ (S)| ≥ ρW|W | and |T̂ (S)| ≥ (1 − ε/2)ρUt then add Ŵ (S) to Ŵ .

5. Order the subsets Ŵ (S) inŴ according to the magnitude of |T̂ (S)|·|Ŵ (S)|.
Perform the following at most k times: Add to W̃ the next subset Ŵ (S)
(according to the above order) such that (T̂ (S), Ŵ (S)) is not yet (δ + 2ε)-
dominated by any (T̂ (S′), Ŵ (S′)) where Ŵ (S′) ∈ W̃ .

Assume from this point on that these events in fact occur. The lemma below follows from
Lemma 3 using similar arguments to those used to prove Theorem 1.

Lemma 7. Let C∗ = {(U ∗
i , W ∗

i )}k
i=1 be a fixed collection of bicliques in B(ρU, ρW). With

high probability over the choice of the samples X and T, for every (U ∗
i , W ∗

i ) ∈ C∗, there
exists a subset Ŵ (S) ∈ Ŵ, such that Ĝ(S) = (Û (S), Ŵ (S)) (ε/4)-dominates (U ∗

i , W ∗
i ),

and furthermore, |E(Û (S), Ŵ (S))| ≥ |U ∗
i | · |W ∗

i |.

Proof: For any fixed (U ∗
i , W ∗

i ) ∈ C∗, given the setting of the sample size and the size of
the subsets, S, considered by the algorithm, with probability at least 1 − 1

ck (where c is a
large constant), there is a subset S ⊂ X that is a good seed of U ∗

i . This is proved using the
same basic arguments as those used in the proof of Lemma 4. Let us denote this subset by
S∗

i .
By Lemma 3 we know that |Û (S∗

i )| ≥ (1 − ε/4)|U ∗
i |, Ĝ(S∗

i ) = (Û (S∗
i ), Ŵ (S∗

i )) (ε/4)-
dominates (U ∗

i , W ∗
i ) and |E(Û (S∗

i ), Ŵ (S∗
i ))| ≥ |U ∗

i | · |W ∗
i |. Since |C∗| = k, by a union

bound, with probability at least 1 − 1/c, each biclique in C∗ is (ε/4)-dominated by some
ε-biclique Ĝ(S). Since for each such S∗

i , |Û (S∗
i )| ≥ (1 − ε/4)ρU|U |, by Eq. (16) T̂ (S∗

i ) is
sufficiently large, and hence Ŵ (S∗

i ) will be added to Ŵ as required.

For each subset Si , we denote Ti
def= T̂ (Si ) and Wi

def= Ŵ (Si ).

Lemma 8. With high probability over the choice of T, for every pair of subsets S1 and S2

such that W1, W2 ∈ Ŵ,

∣∣∣∣ |E(T2, W2)\E(T1, W1)|
t · |W | − |E(U2, W2)\E(U1, W1)|

|U | · |W |
∣∣∣∣ ≤ ερUρW

c
, (17)
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and

∣∣∣∣ |E(T2, W2) ∪ E(T1, W1)|
t · |W | − |E(U2, W2) ∪ E(U1, W1)|

|U | · |W |
∣∣∣∣ ≤ ερUρW

c
, (18)

where c is a large constant.

Proof: We prove that Eq. (17) holds with high probability. The argument for Eq. (18)
is proved analogously. Consider the edges in E(Û (S2), Ŵ (S2))\E(Û (S1), Ŵ (S1)). They
consist of two disjoint sets of edges: (1) edges between Û (S2)\Û (S1) and Ŵ (S2), and
(2) edges between Û (S2) ∩ Û (S1) and Ŵ (S2)\Ŵ (S1). To simplify notation, let U2\1 =
Û (S2)\Û (S1), U2∩1 = Û (S2) ∩ Û (S1), W2 = Ŵ (S2), and W2\1 = Ŵ (S2)\Ŵ (S1). Finally,
let T2\1 = T ∩ U2\1, and T2∩1 = T ∩ U2∩1. We would like to show that 1

t ·|W | · |E(T2\1, W2)|
is a good estimate of 1

|U |·|W | · |E(U2\1, W2)|, and that 1
t ·|W | · |E(T2∩1, W2)| is a good estimate

of 1
|U |·|W | · |E(U2∩1, W2)|.
Consider first the edges between U2\1 and W2. Note that every vertex in U2\1 neighbors

at least (1 − ε) of the vertices in W2. Hence, if we ensure that the number of vertices in
T2\1 is close to its expected value, then the number of edges between T2\1 and W2 is close
to its expected value. Specifically, by applying an additive Chernoff bound we can ensure
that with high probability, for every good S1 and S2,

∣∣∣∣ |T2\1|
t

− |U2\1|
|U |

∣∣∣∣ ≤ ερUρW

c′ , (19)

for some sufficiently large constant c′. Using the fact that every vertex in U2\1 (and hence
in T2\1), neighbors at least (1 − ε) of the vertices in W2 (and at most all vertices in W2), we
can derive that

∣∣∣∣ |E(T2\1, W2)|
t · |W | − |E(U2\1, W2)|

|U | · |W |
∣∣∣∣ ≤ ερUρW

2c
(20)

where c is the constant stated in the lemma.
Consider next the edges between U2∩1 and W2\1. Since the vertices in U2∩1 may vary in

the number of neighbors they have in W2\1, we need to do a slightly more careful analysis.
Let ε′ = ρUρWε/6c. Suppose we partition the vertices in U2∩1 into M = 1/ε′� subsets such
that in each subset all vertices have roughly the same number of neighbors in W2\1. More
precisely, for j = 1, . . . , M , let U j

2∩1 ⊆ U2∩1 consist of all vertices in U2∩1 that neighbor
between ( j −1) ·ε′ of the vertices in W2\1 , and j ·ε′ of these vertices. Let T j

2∩1 = T ∩ U j
2∩1.

By a Chernoff bound we can ensure that, with high probability, for every U j
2∩1 such that

|U j
2∩1|

|U | ≥ (ε′)2/c′ (where c′ is a sufficiently large constant),

(1 − ε′) ·
∣∣U j

2∩1

∣∣
|U | ≤

∣∣T j
2∩1

∣∣
t

≤ (1 + ε′) ·
∣∣U j

2∩1

∣∣
|U |
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while for every U j
2∩1 such that |U j

2∩1|
|U | < (ε′)2/c′, we have |T j

2∩1|
t < 2(ε′)2/c′. Assuming that

these inequalities hold, we have that

|E(T2∩1, W2\1)|
t · |W |

≤
∑M

j=1

∣∣T j
2∩1

∣∣ · |W2\1| · j · ε′

t · |W | (21)

≤ (1 + ε′) · ∑M
j=1

∣∣U j
2∩1

∣∣ · |W2\1| · j · ε′

|U | · |W | + M · 2(ε′)2

c′ · |W2\1|
|W | (22)

≤
∑M

j=1

∣∣U j
2∩1

∣∣ · |W2\1| · ( j − 1) · ε′

|U | · |W | +
∑M

j=1

∣∣U j
2∩1

∣∣ · |W2\1| · ε′

|U | · |W |

+ ε′ · |W2\1|
|W | ·

∑M
j=1

∣∣U j
2∩1

∣∣ · j · ε′

|U | + 2 · M · (ε′)2

c′ (23)

≤ |E(U2∩1, W2\1)|
|U | · |W | + ε′

(
1 + M · ε′ + 2 · M · ε′

c′

)
(24)

≤ |E(U2∩1, W2\1)|
|U | · |W | + 3ε′ (25)

= |E(U2∩1, W2\1)|
|U | · |W | + ερUρW

2c
. (26)

Similarly,

|E(T2∩1, W2\1)|
t · |W | ≥ |E(U2∩1, W2\1)|

|U | · |W | − ερUρW

2c
. (27)

The lemma follows from Eqs. (20), (26) and (27).

As a corollary of Lemma 8:

Corollary 9. With high probability over the choice of T, for every pair of good subsets
S1 and S2 that are considered by the algorithm in Step 5, if Ĝ(S1) α-dominates Ĝ(S2) then
ĜT (S1) (α + ε)-dominates ĜT (S2), and if Ĝ(S1) does not α-dominate Ĝ(S2) then ĜT (S1)
does not (α − ε)-dominate ĜT (S2).

Proof: As before, let Ti
def= T̂ (Si ), Ui

def= Û (Si ), and Wi
def= Ŵ (Si ), Suppose that Ĝ(S1)

α-dominates Ĝ(S2), that is,

|E(U2, W2)\E(U1, W1)|
|E(U2, W2) ∪ E(U1, W1)| ≤ α.
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Then, by Lemma 8

|E(T2, W2)\E(T1, W1)|
|E(T2, W2) ∪ E(T1, W1)|

= |E(T2, W2)\E(T1, W1)|/(t · |W |)
|E(T2, W2) ∪ E(T1, W1)|/(t · |W |)

≤ |E(U2, W2)\E(U1, W1)|/(|U | · |W |) + ερUρW/c

|E(U2, W2) ∪ E(U1, W1)|/(|U | · |W |) − ερUρW/c

≤ |E(U2), W2)\E(U1, W1)|/(|U | · |W |) + ερUρW/c(
1 − 4ε

c

) · |E(U2, W2) ∪ E(U1, W1)|/(|U | · |W |) (28)

≤ α + ε. (29)

Equation (28) follows from the fact that

|E(Û (S2), Ŵ (S2)) ∪ E(Û (S1), Ŵ (S1))|
|U | · |W | ≥ ρUρW/4 (30)

which is true because Ŵ (S2), Ŵ (S1) ∈ Ŵ , and S1 and S2 are good. Equation (29) follows
for an appropriate setting of the constant c.

By a similar argument, we establish the second part of the corollary.

Proof of Theorem 2: Recall that C̃ is the set of all bisubgraphs Ĝ(S) = (Û (S), Ŵ (S))
such that Ŵ (S) ∈ W̃ . In what follows, we assume that the events that are proved to hold
with high probability in Lemma 7 and Corollary 9, in fact hold. When we say that we apply
Lemma 7 or Corollary 9, then we mean that we rely on the events stated in them.

We first prove that C̃ is δ-diverse. Recall that for any subset S, ĜT (S) = (T̂ (S), Ŵ (S))
denotes the bisubgraph that is actually considered by the algorithm in Step 5. Consider any
iteration in Step 5 of the algorithm, where we add to W̃ a new subset Ŵ (Snew). Let Sprev ⊂ X
be any subset such that Ŵ (Sprev) already belongs to W̃ . We need to show that: (1) Ĝ(Sprev)
does not δ-dominate Ĝ(Snew), and (2) Ĝ(Snew) does not δ-dominate Ĝ(Sprev). By definition
of Step 5 of the algorithm we know that ĜT (Sprev) does not (δ + 2ε)-dominate ĜT (Snew).
By Corollary 9, we have that Ĝ(Sprev) does not (δ + ε)-dominate Ĝ(Snew)—and hence does
not δ-dominate Ĝ(Snew).

We now turn to showing that Ĝ(Snew) does not δ-dominate Ĝ(Sprev). Note first that if
Ĝ(Sprev) contains at least as many edges as Ĝ(Snew), then we are done. Specifically, in this
case:

|E(Û (Sprev), Ŵ (Sprev))\E(Û (Snew), Ŵ (Snew))|
|E(Û (Sprev), Ŵ (Sprev)) ∪ E(Û (Snew), Ŵ (Snew))|

≥ |E(Û (Snew), Ŵ (Snew))\E(Û (Sprev), Ŵ (Sprev))|
|E(Û (Sprev), Ŵ (Sprev)) ∪ E(Û (Snew), Ŵ (Snew))|

> (δ + 2ε) > δ. (31)
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In the above equation we used the fact that for two sets A and B if |A| ≥ |B| then
|A\B| ≥ |B\A|. However, while we cannot be certain that Ĝ(Sprev) contains at least as
many edges as Ĝ(Snew), we can show that the number of edges in Ĝ(Sprev) cannot be much
smaller than the number of edges in Ĝ(Snew). This is due to the fact that the bisubgraphs
are sorted according to a related size measure in Step 5. Specifically, using Eq. (16) and the
fact that Ĝ(Snew) and Ĝ(Sprev) are ε-bicliques, we have

|E(Û (Sprev), Ŵ (Sprev))|
≥ (1 − ε) · |Û (Sprev)| · |Ŵ (Sprev)| (32)

≥ 1 − ε

1 + ε/4
· |U |

t
· |T̂ (Sprev)| · |Ŵ (Sprev)| (33)

≥ 1 − ε

1 + ε/4
· |U |

t
· |T̂ (Snew)| · |Ŵ (Snew)| (34)

≥ (1 − ε)(1 − ε/4)

1 + ε/4
· |Û (Snew)| · |Ŵ (Snew)| (35)

≥ (1 − 2ε) · |E(Û (Snew), Ŵ (Snew))|. (36)

In this case, we can modify Eq. (31) using the fact that for any two sets, A and B, such that
|A| ≥ |B|(1 − 2ε) and |B\A|/|A ∪ B| > δ + 2ε, we have |A\B|/|A ∪ B| > δ (proved in
the appendix in Lemma 13). We will then have that

|E(Û (Sprev), Ŵ (Sprev))\E(Û (Snew), Ŵ (Snew))|
|E(Û (Sprev), Ŵ (Sprev)) ∪ E(Û (Snew), Ŵ (Snew))| > δ. (37)

Consequently the bisubgraph Ĝ(Snew) does not δ-dominate Ĝ(Sprev), implying that C̃ is
δ-diverse, as required.

We next show that C̃ ((2δ + 4ε), 3ε)-swamps every biclique in B(ρU, ρW). Let C∗ =
{(U ∗

i , W ∗
i )}k

i=1 be a collection of k bicliques that (δ, 0)-swamps every biclique in B(ρU, ρW).
The existence of such a collection follows from a greedy procedure that constructs such a
collection in a manner that is similar to the last step of our algorithm. Namely, it orders
the bicliques in B(ρU, ρW) according to their size, and in each of the k iterations, it takes
into C∗ the next biclique that is not δ-dominated by any previously added biclique. (If this
process ends before k bicliques are selected, then this collection actually has the stronger
property that it δ-dominates every biclique in B(ρU, ρW), and the rest of our argument is still
applicable.)

Let Ĉ = {(Û (S), Ŵ (S)) : Ŵ (S) ∈ Ŵ} be the collection of all ε-bicliques that may
be considered in Step 5 of the algorithm. By Lemma 7, with high probability, for each
(U ∗

i , W ∗
i ) ∈ C∗, there exists a subset S∗

i ⊂ X for which Ŵ (S∗
i ) ∈ Ŵ and such that

(Û (S∗
i ), Ŵ (S∗

i )) (ε/4)-dominates (U ∗
i , W ∗

i ) and |E(Û (S∗
i ), Ŵ (S∗

i ))| ≥ |E(U ∗
i , W ∗

i )|.
We need to consider two cases. In the first case, there exists a subset S̃i ⊂ X such that

ĜT (S̃i ) (δ + 2ε)-dominates ĜT (S∗
i ). By Corollary 9 we have that Ĝ(S̃i ) (δ + 3ε)-dominates

Ĝ(S∗
i ). By applying a triangle-like inequality (proved in the appendix in Lemma 14), we

get that Ĝ(S̃i ) (δ + 4ε)-dominates (U ∗
i , W ∗

i ).
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In the second case, |T̂ (S∗
i )| · |Ŵ (S∗

i )| ≤ |T̂ (S̃)| · |Ŵ (S̃)| for all S̃ such that Ŵ (S̃) ∈ W̃ .
Hence

|E(U ∗
i , W ∗

i )| ≤ |E(Û (S∗
i ), Ŵ (S∗

i ))| (38)

≤ |U ∗
i | · |W ∗

i | (39)

≤ 1 + ε/4

(1 − ε/4)(1 − ε)
· |E(Û (S̃), Ŵ (S̃))| (40)

≤ (1 + 3ε) · |E(Û (S̃), Ŵ (S̃))|, (41)

where we have used Eq. (16) and the fact that the bisubgraphs considered are ε-bicliques.
Recall that C∗ (δ, 0)-swamps every biclique in B(ρU, ρW). Hence, by applying Lemma 14
once again, we get that C̃ ((2δ + 4ε), 3ε)-swamps every such biclique.

We next show that the collection C̃ is either of size k or, for some δ-diverse collection
C∗ of k true bicliques (if such exists), each G∗

i = (U ∗
i , W ∗

i ) in C∗ is (δ + 4ε)-dominated
by some ε-biclique in C̃. Consider any such fixed δ-diverse collection C∗ = {(U ∗

i , W ∗
i )}k

i=1.
(In particular, this may be the same collection considered above, but not necessarily).
Once again let Ĉ = {(Û (S), Ŵ (S)) : Ŵ (S) ∈ Ŵ} be the collection of all ε-bicliques that
may be considered in Step 5 of the algorithm. By Lemma 7, with high probability, for
each (U ∗

i , W ∗
i ) ∈ C∗, there exists a subset S∗

i ⊂ X for which Ŵ (S∗
i ) ∈ Ŵ and such that

(Û (S∗
i ), Ŵ (S∗

i )) (ε/4)-dominates (U ∗
i , W ∗

i ).
Suppose that the algorithm selects less then k subsets from Ŵ . Then it must be the case

that for each S∗
i as above, either Ŵ (S∗

i ) ∈ W̃ , or there exists some subset S̃i ⊂ X such that
ĜT (S̃i ) (δ + 2ε)-dominates ĜT (S∗

i ). By Corollary 9 we have that Ĝ(S̃i ) (δ + 3ε)-dominates
Ĝ(S∗

i ). By applying a triangle-like inequality (proved in the appendix in Lemma 14), we
get that Ĝ(S̃i ) (δ + 4ε)-dominates (U ∗

i , W ∗
i ).

The lower bound on the size of Ŵ for each Ŵ ∈ Ŵ follows by definition of the algorithm,
and the lower bound on the size of Û = �ε(Ŵ ) holds because the algorithm considers only
good subsets (with high probability).

In the case that there is no δ-diverse collection of k bicliques inB(ρU, ρW) and |C̃| < k then
the proof of Theorem 2 implies that (with high confidence) that every biclique in B(ρU, ρW)
is (2δ + 4ε)-dominated by some ε-biclique in C̃.

5. Finding approximate ε-bicliques

In Section 4.1, we showed that if the graph contains a large biclique (U ∗, W ∗), then we
can find a subset Ŵ such that |E(�ε(Ŵ ), Ŵ )| ≥ (1 − 2ε) · |U ∗| · |W ∗|. Suppose we know
that there exists an ε-biclique (U �, W �) such that |U �| ≥ ρU · |U | and |W �| ≥ ρW · |U |,
but there is not necessarily such a large biclique. We next show how the Approximate
Maximum Biclique algorithm can be modified so as to obtain a 4ε1/3-biclique (Û , Ŵ ) such
that |E(Û , Ŵ )| ≥ (1 − 5ε1/3)|E(U �, W �)|. The extension of finding a collection of large
O(ε1/3)-bicliques can be done analogously to what is described in Section 4.2.
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Let m̂ = c1 · 1
ε2 · log 1

ρW·ε , m = c2 · 1
ρU

· m̂, and t = c3 · 1
ρU·ε2 · m. Here c1, c2, and c3 are

constants that can be determined from the analysis, and we assume that ρU|U | and ρW|W |
are lower bounds on the sizes of U � and W �, respectively.

Algorithm Approximate Maximum ε-Biclique

1. Draw a sample X of m vertices uniformly and independently from U .
2. Draw an additional sample T of t vertices uniformly and independently

from U .
3. For each subset S of X that has size m̂ do:

(a) Ŵ (S) ← �2ε2/3 (S)
(b) T̂ (S) ← T ∩ �4ε1/3 (Ŵ (S)).

4. Among all subsets S considered by the algorithm for which |Ŵ (S)| ≥
(1−2ε1/3)ρW|W | and |T̂ (S)| ≥ (1−3ε1/3)ρUt , let S+ be such that |T̂ (S+)|·
|Ŵ (S+)| is maximized. Output Ŵ (S+).

Theorem 3. Let ρ̃ · |U | · |W | be the size of a maximum ε-biclique whose sides are of size at
least ρU|U | and ρW|W |, respectively. With probability at least 2/3, Algorithm Approximate
Maximum ε-biclique outputs a subset Ŵ = Ŵ (S+) such that

|E(�4ε1/3 (Ŵ ), Ŵ )| ≥ (1 − 5ε1/3) · ρ̃ · |U | · |W |,

where |Ŵ | ≥ (1 − 2ε1/3)ρW|W | and |�4ε1/3 (Ŵ )| ≥ (1 − 4ε1/3)ρU|U |.

In order to prove the theorem, we first modify the definition of high-degree and low-
degree vertices and the definition of a good seed. Here (U �, W �) is a fixed maximum
ε-biclique (satisfying |U �| ≥ ρU · |U | and |W �| ≥ ρW · |W |). Recall that for a subset S,
Ŵ (S) = �2ε2/3 (S).

Definition 8. We say that a vertex w ∈ W has high degree with respect to U � if |�(w)∩U �|
|U �| ≥

1 − 3ε2/3. Otherwise it has low degree with respect to U �.

Using a calculation similar to the one in Eq. (4), it can be verified that since (U �, W �) is an
ε-biclique, all but at most an ε1/3-fraction of the vertices in W � neighbor at least (1 − ε2/3)
of the vertices in U �, and hence have high degree with respect to U �.

Definition 9. We say that a subset S ⊆ U � is a good seed of U � if the following two
conditions hold: (1) The number of vertices w in W � such that w �∈ Ŵ (S) is at most
2ε1/3|W �|, and (2) The number of vertices in Ŵ (S) that have low degree with respect to U �

is at most ε1/3|W �|.

By the above definition, S is a good seed of U � if Ŵ (S) contains almost all vertices from
W � and almost no vertices that have low degree with respect to U �.
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Lemma 10. With probability at least 19/20, a uniformly selected sample of m̂ vertices
from U � is a good seed of U �.

Lemma 10 is proved similarly to Lemma 2. As in the proof of Lemma 2, we need to
upper bound the number of low-degree vertices that have relatively many neighbors in
S, and hence, are included in Ŵ (S). In addition we need to upper bound the number of
vertices in W � that neighbor at least (1 − ε2/3) of the vertices in U �—but have relatively
few neighbors in S—and hence, are not included in Ŵ (S).

Given the size of the sample m we obtain as a corollary:

Corollary 11. With probability at least 2/3, the sample selected in Step 1 of the algorithm
contains a subset S that is a good seed of U �.

Lemma 12. If S is a good seed of U � and Ŵ (S) = �2ε2/3 (S), then

|E(�4ε1/3 (Ŵ (S)), Ŵ (S))| ≥ (1 − 4ε1/3)|E(U �, W �)|.

Proof: The proof is similar to the proof of Lemma 3, but is actually simpler since we
prove a somewhat weaker claim (which cannot be significantly strengthened). For the sake
of simplicity, let Ŵ = Ŵ (S), and let Û denote �4ε1/3 (Ŵ (S)). The set Ŵ consists of three
subsets: (1) the subset of vertices in W � ∩ Ŵ ; (2) the subset of vertices, denoted H , that do
not belong to W � and have high degree with respect to U �; and (3) the subset of vertices,
denoted L , that do not belong to W � and have low degree with respect to U �. By the
premise of the lemma, that S is a good seed, we know that |W � ∩ Ŵ | ≥ (1 − 2ε1/3)|W �|
and |L| ≤ ε1/3|W �|.

Let Q� ⊆ U � denote the subset of vertices in U � that have at least (1 − √
3ε1/3)|H |

neighbors in H . It can be verified, using a calculation similar to the one in Eq. (4), that by
definition of H , |Q�| ≥ (1 − √

3ε1/3)|U �|.
Since (U �, W �) is an ε-biclique, every vertex in Q� ⊆ U � has at least (1 − ε)|W �|

neighbors in W �. Since Ŵ contains all but at most 2ε1/3|W �| of the vertices in W �, every
vertex in Q� has at least (1− (ε+2ε1/3))|W �| ≥ (1−3ε1/3)|W � ∩ Ŵ | neighbors in W � ∩ Ŵ .
Combining this with what we have shown above concerning the number of neighbors that
every vertex in Q� has in H , we get that every vertex in Q� has at least

(1 − 3ε1/3)|W � ∩ Ŵ | + (1 −
√

3ε1/3)|H |

neighbors in Ŵ .
Since |L| ≤ ε1/3|W �|, |W � ∩ Ŵ | ≥ (1 − 2ε1/3)|W �| and |Ŵ | = |L|+ |H |+ |W � ∩ Ŵ |, it

can be verified that every vertex in Q� has at least (1−4ε1/3)|Ŵ | neighbors in Ŵ ; it follows
that Q� ⊆ Û . We have shown that |Q�| ≥ (1−√

3ε1/3)|U �| (where Q� ⊆ U �), and we know
that Ŵ contains all but at most 2ε1/3 of the vertices in W � (since S is a good seed). Therefore,
E(Û , Ŵ ) contains all edges in E(U �, W �) but at most (

√
3ε1/3 + 2ε1/3) · |U �| · |W �|. The

lemma follows.
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Theorem 3 follows from Lemma 12 in a similar fashion to the way Theorem 1 follows
from Lemma 3.

6. An algorithm that is sublinear in |U | and in |W|

In this section we present an algorithm that given ρU and ρW for which B(ρU, ρW) is non-
empty, outputs an implicit representation of a bisubgraph (Û , Ŵ ) such that with high prob-
ability, |E(Û , Ŵ )| ≥ (1 − 2ε) · |Û | · |Ŵ |, and |E(Û , Ŵ )| is almost as large as the size of a
maximum biclique in B(ρU, ρW). Note that (Û , Ŵ ) is not necessarily an ε-biclique, or even
a 2ε-biclique, but rather it is a very dense bisubgraph. By an implicit representation of a
bisubgraph (Û , Ŵ ), we mean a pair (Z , Y ), where Z ⊆ U , Y ⊆ �(Z ) ⊆ W , such that
Ŵ = �(Z ) and Û = �2ε(Y ). Both subsets Z and Y are of size polynomial in 1/ε, 1/ρU,
1/ρW, and independent of |U | and |W |. The total running time of the algorithm that finds
(Z , Y ) is logarithmic in both |U | and |W |.

This algorithm is a variant of the Approximate Maximum Biclique algorithm. The only
difference is that in order to reduce the dependency that algorithm has on |W |, we sample
from W instead of considering all of W (or, more precisely, all the neighbors that vertices
in S have in W ) in the third step of the algorithm. Analgous variants can be obtained for
the other algorithms as well.

We note that reducing the dependence on |W | comes at two costs. First, the pair (Û , Ŵ )
that is implicitly determined by the output of the algorithm is not necessary on O(ε)-biclique,
that is, it is not ensured that every vertex in Û neighbors almost all of Ŵ . Rather, (Û , Ŵ ) is a
very dense subgraph, so that almost every vertex in Û neighbors almost all of Ŵ . Secondly,
in the context of clustering, the output of the algorithm is less natural than the one in the
Maximum Biclique Algorithm since no conjunctive description is output. Nonetheless, in
the more general context of sublinear algorithms for graph theoretic problems, we obtain a
more efficient algorithm.

Let m̂ be as defined in the Good Seed Algorithm. Let m = c1
ρU

· m̂, q = c2·log 1
ρUρWε

ε2·ρW
· m and

t = c3
ρU·ρW·ε2 · m. Here c1, c2, and c3 are constants that can be determined from the analysis.

Algorithm Approximate Maximum Implicit Biclique

1. Draw the following samples:

– X and T are samples of m and t vertices, respectively, selected uniformly
and independently from U .

– Y is a sample of q vertices selected uniformly and independently from W .

2. For each subset S of X that has size m̂ do:

(a) Ŷ (S) ← Y ∩ �(S).
(b) T̂ (S, Y ) ← T ∩ �2ε(Ŷ (S)).

3. Among all subsets S, let Z be such that |Ŷ (Z )| ≥ (1 − ε)ρW|Y |, T̂ (S, Y ) ≥
(1−ε)ρU|T |, and |T̂ (Z , Y )| · |Ŷ (Z )| is maximized. Output the pair (Z , Ŷ (Z )).
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Theorem 4. Let ρ∗ · |U | · |W | be the size of a maximum biclique in B(ρU, ρW). With
probability at least 2/3, Algorithm Approximate Maximum Implicit Biclique outputs a pair
of subsets (Z , Ŷ (Z )) so that

|E(�2ε(Ŷ (Z )), �(Z ))| ≥ (1 − 4ε) · |�2ε(Ŷ (Z ))| · |�(Z )|

and

|E(�2ε(Ŷ (Z )), �(Z ))| ≥ (1 − 6ε) · ρ∗ · |U | · |W |,

where |�(Z )| ≥ (1 − 2ε)ρW|W | and |�2ε(Ŷ (Z ))| ≥ (1 − 2ε)ρU|U |. The running time of the
algorithm is exponential in poly(1/ε), quasi-polynomial in 1

ρU
and 1

ρW
, and logarithmic in

|U | and |W |.

Proof: For the sake of simplicity, in all that follows we use the term “with high probability”
to mean with probability at least 1 − γ for some sufficiently small constant γ . By selecting
the constants c1, c2, and c3 that determine the sample sizes to be sufficiently large, we can
ensure that the sum of all the γ ’s is at most 1/3 as required.

Let (U ∗, W ∗) be a maximum biclique in B(ρU, ρW). As shown in the proof of Theorem 1,
with high probability, there is a subset S of the sample X (having size m̂) for which the
ε-biclique (�ε(�(S)), �(S)) has at least as many edges as the maximum biclique (U ∗, W ∗).
Let us denote this subset by S∗.

For any given subset S of X , let �(S) be denoted by Ŵ (S), let �ε(Ŵ (S)) be denoted
by Û (S), and let T ∩ �ε(Ŵ (S)) be denoted by T̂ (S), so that all notations are as in the
original Approximate Maximum Biclique algorithm and Theorem 1. By definition, Ĝ(S) =
(Û (S), Ŵ (S)) is an ε-biclique. Recall, in the proof of Theorem 1, we showed that with
high probability over the choice of T , the subset Z ⊂ X that maximizes |T̂ (Z )| · |Ŵ (Z )|
is such that |E(Û (Z ), Ŵ (Z ))| ≥ (1 − 2ε) · |E(Û (S∗), Ŵ (S∗))|. Combining this with the
lemma stated in the previous paragraph, we have that for this subset Z , |E(Û (Z ), Ŵ (Z ))| ≥
(1 − 2ε) · |U ∗| · |W ∗|.

In the current algorithm, however, we are interested in a possibly different subset that
maximizes another quantity. For any subset S ⊂ X (|S| = m̂), let Û (S, Y ) denote the
set �2ε(Ŷ (S)), and recall that T̂ (S, Y ) = T ∩ �2ε(Ŷ (S)). Then, we are interested in the
bisubgraph (Û (Z , Y ), Ŵ (Z )) where Z is the subset that maximizes |T̂ (Z , Y )| · |Ŷ (Z )| (and
for which |Ŷ (Z )| is sufficiently large). First, it can be verified that by our choice of q = |Y |
(using a multiplicative Chernoff bound and a union bound) with high probability over the
choice of Y :

1. For every S such that |Ŵ (S)| ≥ (1−2ε)|W |, we have that |Ŷ (S)| ≥ (1 − (ε/4)) · |Ŵ (S)|
|W | · |Y |

2. For every S such that |Ŵ (S)| < (1 − 2ε)ρW|W |, we have that |Ŷ (S)| < (1 − ε)ρW|Y |.

Let us assume from now on that these events in fact occur. In particular this implies that no
S for which |Ŵ (S)| < (1−2ε)ρW|W | is a candidate output in the third step of the algorithm,
and for the subset S∗ (which satisfies |�(S∗)| ≥ ρW|W | since �(S∗) ⊇ W ∗), we have that
|Ŷ (S∗)| ≥ (1 − (ε/4)) · ρW · |Y |.
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Consider from this point on only subsets S such that |Ŵ (S)| ≥ (1 − ε)ρW|W | (so that
in particular |Ŷ (S)| ≥ (1 − 2ε)ρW|Y |). Since Ŷ (S) is uniformly distributed in �(S), we
can obtain the following using basic probabilistic arguments (similar to those required for
Lemma 2): With high probability over the choice of Y :

1. For every S as stated above, the number of vertices in Û (S, Y ) = �2ε(Ŷ (S)) that are not
in �3ε(Ŵ (S)) is at most (ε/4)ρUρW|U |

2. For the set S∗, the number of vertices that are in �ε(Ŵ (S∗)) = Û (S∗) but not in Û (S∗, Y )
is at most (ε/4)ρU|U |.

The second item implies that

|Û (S∗, Y )| ≥ |Û (S∗)| − (ε/4) · ρU · |U |, (42)

and the first item implies that for every candidate S,

|E(Û (S, Y ), Ŵ (S))| ≥ (1 − 3ε) · (|Û (S, Y )| − (ε/4)ρUρW|U |) · |Ŵ (S)|. (43)

Hereafter, assume that these events in fact occur. We also assume that the sample T is such
that for every candidate S, (1 − ε/4) Û (S,Y )

|U | ≤ |T̂ (S,Y )|
t ≤ (1 + ε/4) Û (S,Y )

|U | .
By Lemma 3, we know that |Û (S∗)| ≥ (1 − ε/4) · |U ∗|. Combining with Eq. (42) we

find that

|Û (S∗, Y )| ≥ (1 − ε/2) · |U ∗|. (44)

By applying a similar argument to that used in the proof of Theorem 1, we have that with high
probability over the choice of T , for the selected subset Z that maximizes |T̂ (Z , Y )|·|Ŷ (Z )|,

|Û (Z , Y )| · |Ŵ (Z )| ≥ (1 − ε) · |Û (S∗, Y )| · |Ŵ (S∗)|. (45)

The lower bounds on Ŵ (Z ) and Û (Z , Y ) are also easily established.
It remains to establish a lower bound on the denseness of the bisubgraph (Û (Z , Y )),

Ŵ (Z )). By Eq. (45) we know that

|Û (Z , Y )| ≥ (1 − ε) · |Û (S∗, Y )| · Ŵ (S∗)

Ŵ (Z )
. (46)

Using our bound on |Û (S∗, Y )| from Eq. (44), and our assumption that Ŵ (Z ) ≥ (ρW/2)|W |
(or otherwise Z would not be selected), we get that

|Û (Z , Y )| ≥ (ρUρW/4) · |U | (47)

Combining this with Eq. (43) we get that

|E(Û (Z , Y ), Ŵ (Z ))| ≥ (1 − 4ε) · |Û (Z , Y ))| · |Ŵ (Z )| (48)
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as required. Finally, using Eqs. (44) and (45) (and the fact that |Ŵ (S∗)| ≥ |W ∗|), we get
that |E(Û (Z , Y )), Ŵ (Z ))| is at least (1 − 6ε) times the size of the maximum biclique, as
claimed.

The bound on the running time is obtained similarly to the way the bound was obtained
in the proof of Theorem 1, with the exception that here we only consider a sample Y
from W .

7. Data streams

So far we have been concerned with clustering a static dataset in time that depends only
linearly on the number of attributes and not the number of data points. We now turn to
the problem of clustering a dynamic stream where, in contrast, we can read each point in
the stream but are memory constrained and thus cannot maintain the entire stream in main
memory. A data stream is a more fitting model when a large volume of data is continuously
arriving and it is not feasible to store all the data. In the product bundling example, it may
not be practical to store every transaction ever made by a customer.

A data stream is a sequence of points, u1, . . . , ui , . . . u|U |, that can be read only once
in increasing order of the indices i . We assume that each point ui ∈ {0, 1}d , although our
algorithm works if the points come from any categorical space. Note that the dimensions
are fixed ahead of time and thus the stream applies only to the addition of new points
and not new dimensions. In addition, we assume that the stream has been partitioned into
chunks, C1, . . . , CJ , where each Ci corresponds to a contiguous section of the stream. In
the agglomerative model, the goal is to output a collection of clusters after each of the
chunks, Ci , that are approximately as good as the optimum clusters for C1 ∪ · · · ∪ Ci . The
performance of an algorithm that operates on data streams is measured by the amount of
information it stores in main memory and the quality of the solution it finds.

Stream clustering has been previously studied under other definitions of clustering, e.g.,
k-Center (Charikar et al., 1997) and k-Median (Guha et al., 2003; Charikar, O’Callaghan,
& Panigrahy, 2003). Stream clustering has also been studied in the sliding window model
for the k-Median clustering objective (Babcock et al., 2003). We discuss how to find one
good conjunctive cluster in the agglomerative setting, but the argument can be extended to
the case of finding multiple clusters.

Note that the optimum biclique may drift from one chunk of the stream to the next. Let
(Ui , Wi ) be the optimum bicliques after the chunks C1 ∪ · · · ∪ Ci , for i = 1, . . . , J . A
straightforward algorithm for identifying the optimum biclique is to consistently maintain
separate random samples X and T (as in Algorithm Approximate Maximum Biclique) of
the data stream using Vitter’s reservoir sampling technique (Vitter, 1985), although with
a slightly larger sample to account for the fact that there might be J different optimum
bicliques. Such an approach would give guarantees similar to Theorem 1 in that at each
chunk the algorithm will have a biclique that has boundably fewer edges than the optimum.

However, since we are allowed to read each point in the stream, we can actually do better.
We show that we can identify a relaxed edge biclique with at least as many edges as the
optimum, as opposed to boundably fewer. The idea is to apply the Good Seed algorithm by
starting from the attributes, W , instead of from the points, U . At any chunk in the stream,
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this approach will yield a biclique with at least as many edges as the optimum. Let X be
a sample of vertices drawn from W . For each subset S of X of a specified size, and for
each wi in W the stream algorithm maintains the set of attributes S, the number of points
z(S) that have streamed by that are in �(S), and count(wi , S), the number of points that
have streamed by in �(S) that satisfy the attribute wi . If at any chunk we wish to output a
relaxed edge biclique, we determine ŴS for each subset S—these are the vertices wi in W
for which count(wi , S) ≥ (1 − ε)z(S)—and output the biclique corresponding to the subset
S with the most edges. Let m̂ = 	( 1

ε2 log J
ρUε

) and let m = O( log J
ρW

m̂).

Stream Approximate Max Edge Biclique Algorithm

1. X ← sample from W of size m; 
 ← 1
2. For each subset S of X of size m̂, initialize (S, z(S), {(wi , count(wi , S)) :

i = 1, . . . , |W |}) where z(S) = 0, and count(wi , S) = 0 for all i .
3. For each point u j in chunk C
 that streams by

(a) For each subset S of X

(i) If u j satisfies the attributes in the subset S then

(A) Increment z(S)
(B) If wi ∈ W is satisfied by u j then increment count(wi , S)

4. Output best biclique: For a given subset S of X let ŴS be the vertices for
which count(wi , S) ≥ (1 − ε)z(S). Over all subsets S of X , output the
conjunctive description ŴS with maximum

∑
i∈ŴS

count(wi , S).
5. Proceed to next chunk: Increment 
 and goto Step 3.

Theorem 5. Let (U
, W
) be the optimum biclique for the chunks C1 ∪ · · · ∪ C
 for

 = 1, . . . , J . Let S
 be the subset of X that yields ŴS


the output of the stream algorithm
after the chunks C1, . . . , C
. With probability at least 2

3 , for all 


|E(Û
, Ŵ
)| ≥ |E(U
, W
)|.

The amount of memory used by the algorithm is quasi-polynomial in J
ρU

and J
ρW

, exponential
in poly(1/ε), and linear in |W |.

Proof Sketch: For a given prefix of the stream C1 ∪ · · · ∪ C
, with probability at least
2

3J , |E(Û
, Ŵ
)| ≥ |E(U
, W
)| by an argument similar to that given in Lemma 1 and by
the sample sizes m and m̂. Thus, by the union bound, with probability at least 2

3 , for all 
,
|E(Û
, Ŵ
)| ≥ |E(U
, W
)|.

8. Conclusions and future work

We introduced a new, graph-theoretic formulation of the clustering problem where the goal
is to identify a collection of conjunctive cluster descriptions. The formulation differs from
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previous approaches in that the clusters discovered overlap and also do not necessarily
cluster all the points. In addition, a cluster has a looser interpretation in that a point may
be assigned to a cluster description even if it only satisfies most of the attributes in the
conjunctive description. A natural correspondence is shown between a conjunctive cluster
and a relaxed biclique in a bipartite graph. A simple algorithm is given that discovers a
collection of relaxed bicliques that are diverse, and also swamp the large, true bicliques in
the graph. The algorithm can be modified to identify such a collection even if the underlying
graph possesses no true bicliques, but rather only relaxed bicliques. A key property of the
algorithms is their sublinear behavior. Specifically, the algorithms’ running time does not
depend on the number of points to be clustered and depends only linearly on the number
of attributes. Finally, the algorithms can be modified to conjunctively cluster a stream of
points, which may be desirable if clusters change over time.

Many interesting problems remain to be solved. In terms of extending our current for-
mulation, it may be worthwhile to consider variants where vertices are weighted. Such
an extension might indicate that some variables matter more than others. In the product
bundling domain, it might indicate that some products or some customers matter more when
constructing clusters. Another extension is to consider variants where edges are weighted.

If U corresponds to some subset of points in {0, 1}d and W corresponds to d variables,
then U and W are at different scales since 1 ≤ |U | ≤ 2d and 1 ≤ |W | ≤ d. Thus our quality
measure of |U | · |W | implicitly favors clusters with more points over clusters with longer
description length. It may be worthwhile to measure the quality of a conjunctive cluster by
|U |α · |W |β for constants α, β as opposed to |U | · |W | to account for the discrepancy in the
scale of U and W .

In terms of clustering categorical data, the algorithms given in this paper can be run on a
bipartite graph where there is one vertex in W for each attribute/value combination in the
original dataset. While such an approach works, our algorithms do not exploit the fact that
if a point u ∈ U is adjacent to a specific attribute/value combination, it will not be adjacent
to any of the other values that that attribute can have. We leave open the question of whether
there are algorithms that can take advantage of this property.

Our brute force enumeration of all subsets of a fixed size is not so desirable given the
ensuing quasi-polynomial dependence on 1

ρU
and 1

ρW
. While heuristics of the kind proposed

in the Apriori (Agrawal, Imielinski, & Swami, 1993) algorithm may be useful in reducing the
number of bicliques considered, it would be interesting to eliminate the quasi-polynomial
dependence in the worst case bounds.

In terms of collections of clusters, our definition of “k-best-conjunctive-clusters” is just
one option, and it may be interesting to investigate other possibilities. Finally, we have
only considered k conjunctive clusters and it may be interesting to consider k disjunctive
clusters, or other cluster representations.

Appendix

Lemma 13. Let A, B be sets such that |A| ≥ (1− ε)|B| and |B\A|/|A ∪ B| ≥ δ +2ε.
Then |A\B|/|A ∪ B| ≥ (δ + ε).
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Proof:

|A\B| = |A| − |A ∩ B| = (|B| − |A ∩ B|) + (|A| − |B|)
≥ |B| − |A ∩ B| − ε|B|
≥ (δ + ε)|A ∪ B|

Lemma 14. Let I, J, K be bisubgraphs. If I α-dominates J and J β-dominates K then
I (α + β)-dominates K , provided that J has fewer edges than I .

Proof: For a bisubgraph X , let |X | denote the number of edges in X . For another bisub-
graph Y , let |X\Y | denote the number of edges in X that are not in Y , and let |X ∪ Y |
denote the number of edges in X and Y . We wish to show that if |J\I |/|I ∪ J | = α and
|K\J |/|K ∪ J | = β then |K\I |/|I ∪ K | ≤ (α + β).

Note that |J\I |/|I ∪ J | = α implies that |I |/|I ∪ J | = (1 − α). It thus follows that
|I ∪ J | = |I |/(1 − α) and consequently that |J\I | = α(|I |/(1 − α)). Similarly, |K\J | =
β(|J |/(1 − β)).

By the above argument, if we can show that |K\I | ≤ (α + β)(|I |/(1 − (α + β))), then
the lemma will be proved.

In order to show this we first need a simple triangle-inequality like property: |K\I | ≤
|K\J | + |J\I |. In particular, we show that (K\I ) ⊆ (K\J ) ∪ (J\I ). Let K ′ denote
the edges that are only in K (and not I or J ) and define J ′ similarly. Then observe that
(K\I ) = K ′∪ J ∩K , (K\J ) = K ′∪K ∩ I , and (J\I ) = J ′∪ J ∩K . The triangle-inequality
like property follows since (K ′ ∪ J ∩ K ) ⊆ (K ′ ∪ K ∩ I ) ∪ (J ′ ∪ J ∩ K ).

Getting back to the lemma, assuming that |J | ≤ |I |, we have:

|K\I | ≤ |K\J | + |J\I |
≤ (β|J |/(1 − β)) + (α|I |/(1 − α))

≤ (β|I |/(1 − (α + β))) + (α|I |/(1 − (α + β)))

≤ (α + β)|I |/(1 − (α + β))
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Notes

1. In the more general categorical case, there is a vertex w in W for each combination of attribute and value.
Furthermore, w is adjacent to a point in U if the point u possesses the attribute/value combination corresponding
to w.

2. If the algorithm is not provided with lower bounds ρU and ρW, then it can search for them using a standard
halving process.
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