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Abstract

Search engines today present results that are often oblivious to recent shifts in
intent. For example, the meaning of the query ‘independenceday’ shifts in early
July to a US holiday and to a movie around the time of the box office release.
While no studies exactly quantify the magnitude of intent-shifting traffic, studies
suggest that news events, seasonal topics, pop culture, etcaccount for 1/2 the
search queries. This paper shows that the signals a search engine receives can be
used to both determine that a shift in intent happened, as well as find a result that
is now more relevant. We present a meta-algorithm that marries a classifier with
a bandit algorithm to achieve regret that depends logarithmically on the number
of query impressions, under certain assumptions. We provide strong evidence that
this regret is close to the best achievable. Finally, via a series of experiments, we
demonstrate that our algorithm outperforms prior approaches, particularly as the
amount of intent-shifting traffic increases.

1 Introduction

Search engines typically use a ranking function to order results. The function scores a document by
the extent to which it matches the query, and documents are ordered according to this score. This
function is fixed in the sense that it does not change from one query to another and also does not
change over time. For queries such as ‘michael jackson’ traditional ranking functions that value
features such as high page rank will not work since documentsnew to the web will not have accrued
sufficient inlinks. Thus, a search engine’s ranking function should not be fixed; different results
should surface depending on the temporal context.

Intuitively, a query is “intent-shifting” if the most desired search result(s) change over time. More
concretely, a query’s intent has shifted if the click distribution over search results at some time
differs from the click distribution at a later time. For the query ‘tomato’ on the heels of a tomato
salmonella outbreak, the probability a user clicks on a newsstory describing the outbreak increases
while the probability a user clicks on the Wikipedia entry for tomatoes rapidly decreases. There
are studies that suggest that queries likely to be intent-shifting — such as pop culture, news events,
trends, and seasonal topics queries — constitute roughly half of the search queries that a search
engine receives [10].

The goal of this paper is to devise an algorithm that quickly adapts search results to shifts in user
intent. Ideally, for every query and every point in time, we would like to display the search result that
users are most likely to click. Since traditional ranking features like PageRank [4] change slowly
over time, and may be misleading if user intent has shifted very recently, we want to use just the
observed click behavior of users to decide which search results to display.

∗Full version of this paper [20] is available onarxiv.org. In the present version, all proofs are omitted.
†This work was done while the author was an intern at Microsoft Researchand a student in the Department

of Computer Science, Princeton University.
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There are many signals a search engine can use to detect when the intent of a query shifts. Query
features such as as volume, abandonment rate, reformulation rate, occurrence in news articles, and
the age of matching documents can all be used to build a classifier which, given a query, determines
whether the intent has shifted. We refer to these features asthe context, and an occassion when a
shift in intent occurs as anevent.

One major challenge in building an event classifier is obtaining training data. For most query and
date combinations (e.g. ‘tomato, 06/09/2008’), it will be difficult even for a human labeler to recall
in hindsight whether an event related to the query occurred on that date. In this paper, we propose a
novel solution that learns from unlabeled contexts and userclick activity.

Contributions. We describe a new algorithm that leverages the information contained in contexts.
Our algorithm is really a meta-algorithm that combines a bandit algorithm designed for the event-
free setting with an online classification algorithm. The classifier uses the contexts to predict when
events occur, and the bandit algorithm “starts over” on positive predictions. The bandit algorithm
provides feedback to the classifier by checking, soon after each of the classifier’s positive predic-
tions, whether the optimal search result actually changed.The key technical hurdle in proving a
regret bound is handling events that happen during the “checking” phase.

For suitable choices of the bandit and classifier subroutines, the regret incurred by our meta-
algorithm is (under certain mild assumptions) at mostO(k + dF )(

n
∆
log T ), wherek is the number

of events,dF is a certain measure of the complexity of the concept classF used by the classifier,
n is the number of possible search results,∆ is the “minimum suboptimality” of any search result
(defined formally in Section 2), andT is the total number of impressions. This regret bound has a
very weak dependence onT , which is highly desirable for search engines that receive much traffic.

The context turns out to be crucial for achieving logarithmic dependence onT . Indeed, we show that
any bandit algorithm that ignores context suffers regretΩ(

√
T ), even when there is only one event.

Unlike many lower bounds for bandit problems, our lower bound holds even when∆ is a constant
independent ofT . We also show that assuming a logarithmic dependence onT , the dependence on
k anddF is essentially optimal.

For empirical evaluation, we ideally need access to the traffic of a real search engine so that search
results can be adapted based on real-time click activity. Since we did not have access to live traf-
fic, we instead conduct a series of synthetic experiments. The experiments show that if there are
no events then the well-studiedUCB1 algorithm [2] performs the best. However, when many dif-
ferent queries experience events, the performance of our algorithm significantly outperforms prior
techniques.

2 Problem Formulation and Preliminaries

We view the problem of deciding which search results to display in response to user click behavior
as abandit problem, a well-known type of sequential decision problem. For a given queryq, the
task is to determine, at each roundt ∈ {1, . . . , T} thatq is issued by a user to our search engine, a
single resultit ∈ {1, . . . , n} to display.1 This result is clicked by the user with probabilitypt(it).
A bandit algorithmA choosesit using only observed information from previous rounds, i.e., all
previously displayed results and received clicks. The performance of an algorithmA is measured

by its regret: RA(T ) , E
[

∑T
t=1

pt(i
∗
t )− pt(it)

]

, where anoptimal resulti∗t ∈ argmaxi pt(i) is

one with maximum click probability, and the expectation is taken over the randomness in the clicks
and the internal randomization of the algorithm. Note our unusually strong definition of regret: we
are competing against the best result oneveryround.

We call aneventany roundt wherept−1 6= pt. It is reasonable to assume that the number of
eventsk ≪ T , since we believe that abrupt shifts in user intent are relatively rare. Most existing
bandit algorithms make no attempt to predict when events will occur, and consequently suffer regret
Ω(

√
T ). On the other hand, a typical search engine receives many signals that can be used to predict

events, such as bursts in query reformulation, average age of retrieved document, etc.

1For simplicity, we focus on the task of returning a single result, and not a listof results. Techniques
from [19] may be adopted to find a good list of results.
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We assume that our bandit algorithm receives acontextxt ∈ X at each roundt, and that there exists
a functionf ∈ F , in some knownconcept classF , such thatf(xt) = +1 if an event occurs at round
t, andf(xt) = −1 otherwise.2 In other words,f is anevent oracle. At each roundt, aneventful
bandit algorithmmust choose a resultit using only observed information from previous rounds, i.e.,
all previously displayed results and received clicks, plusall contexts up to roundt.

In order to develop an efficient eventful bandit algorithm, we make an additional key assumption: At
least one optimal result before an event issignificantlysuboptimal after the event. More precisely,
we assume there exists aminimum shiftǫS > 0 such that, whenever an event occurs at roundt,
we havept(i∗t−1) < pt(i

∗
t ) − ǫS for at least one previously optimal search resulti∗t−1. For our

problem setting, this assumption is relatively mild: the events we are interested in tend to have a
rather dramatic effect on the optimal search results. Moreover, our bounds are parameterized by
∆ = mint mini6=i∗t

pt(i
∗
t )− pt(i), theminimum suboptimalityof any suboptimal result.

3 Related Work

While there has been a substantial amount of work on ranking algorithms [11, 5, 13, 8, 6], all of these
results assume that there is a fixed ranking function to learn, not one that shifts over time. Online
bandit algorithms (see [7] for background) have been considered in the context of ranking. For
instance, Radlinski et al [19] showed how to compose severalinstantiations of a bandit algorithm
to produce a ranked list of search results. Pandey et al [18] showed that bandit algorithms can
be effective in serving advertisements to search engine users. These approaches also assume a
stationary inference problem.

Even though existing bandit work does not address our problem, there are two key algorithms that
we do use in our work. TheUCB1 algorithm [2] assumes fixed click probabilities and has regret at
mostO( n

∆
log T ). TheEXP3.S algorithm [3] assumes that click probabilities can change on every

round and has regret at mostO(k
√

nT log(nT )) for arbitrarypt’s. Note that the dependence of
EXP3.S onT is substantially stronger.

The “contextual bandits” problem setting [21, 17, 12, 16, 14] is similar to ours. A key difference
is that the context received in each round is assumed to contain information about theidentity of
an optimal resulti∗t , a considerably stronger assumption than we make. Our context includes only
side information such as volume of the query, but we never actually receive information about the
identity of the optimal result.

A different approach is to build a statistical model of user click behavior. This approach has been
applied to the problem of serving news articles on the web. Diaz [9] used a regularized logistic
model to determine when to surface news results for a query. Agarwal et al [1] used several models,
including a dynamic linear growth curve model.

There has also been work on detecting bursts in data streams.For example, Kleinberg [15] describes
a state-based model for inferring stages of burstiness. Thegoal of our work is not to detect bursts,
but rather to predict shifts in intent.

In a recent concurrent and independent work, Yu et al [22] studied bandit problems with “piecewise-
stationary” distributions, a notion that closely resembles our definition of events. However, they
make different assumptions than we do about the informationa bandit algorithm can observe. Ex-
pressed in the language of our problem setting, they assume that from time-to-time a bandit algo-
rithm receives information about how userswould haveresponded to search results that are never
actually displayed. For us, this assumption is clearly inappropriate.

4 Bandit with Classifier

Our algorithm is calledBWC, or “Bandit with Classifier”. The high-level idea is to use a bandit
algorithm such asUCB1, restart it every time the classifier predicts an event, anduse subsequent
rounds to generate feedback for the classifier. We will present our algorithm in a modular way,
as a meta-algorithm which uses the following two components: classifier andbandit. In

2In some of our analysis, we require contexts be restricted to a strict (concept-specific) subset ofX ; the
value off outside this subset will technically benull. See Section 5 for more details.
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each round,classifier inputs a contextxt and outputs a “positive” or “negative” prediction
of whether an event has happened in this round. Also, it may input labeled samples of the form
(x, l), wherex is a context andl is a boolean label, which it uses for training. Algorithmbandit
is a bandit algorithm that is tuned for the event-free runs and provides the following additional
functionality: after each roundt of execution, it outputs thet-th round guess: a pair (G+, G−),
whereG+ andG− are subsets of arms that it estimates to be optimal and suboptimal, respectively.3

Since bothclassifier andbandit make predictions (about events and arms, respectively), for
clarity we use the term “guess” exclusively to refer to predictions made bybandit, and reserve the
term “prediction” forclassifier.

The algorithm operates as follows. It runs in phases of two alternating types: odd phases are called
“testing” phases, and even phases are called “adapting” phases. The first round of phasej is denoted
tj . In each phase we run a fresh instance ofbandit. Each testing phase lasts forL rounds, where
L is a parameter. Each adapting phasej ends as soon asclassifier predicts “positive”; the
roundt when this happens is roundtj+1. Phasej is calledfull if it lasts at leastL rounds. For a full
phasej, let (G+

j , G
−
j ) be theL-th round guess in this phase. After each testing phasej, we generate

a boolean predictionl of whether there was an event in the first round thereof. Specifically, letting
i be the most recent full phase beforej, we setltj = false if and only if G+

i ∩ G−
j 6= ∅. If ltj

is false, the labeled sample(xtj , ltj ) is fed back to the classifier. Note thatclassifier never
receivestrue-labeled samples. Pseudocode forBWC is given in Algorithm 1.

Disregarding the interleaved testing phases for the moment, BWC restartsbandit whenever
classifier predicts “positive”, optimistically assuming that the prediction is correct. By our
assumption that events cause some optimal arm to become significantly suboptimal (see Section 2),
an incorrect prediction should result inG+

i ∩G−
j 6= ∅, wherei is a phase before the putative event,

andj is a phase after it. However, to ensure that the estimatesGi andGj are reliable, we require
that phasesi andj are full. And to ensure that the full phases closest to a putative event are not too
far from it, we insert a full testing phase every other phase.

Algorithm 1 BWC Algorithm

1: Given: ParameterL, a(L, ǫS)-testablebandit, and a safeclassifier.
2: for phasej = 1, 2, . . . do
3: Initialize bandit. Let tj be current round.
4: if j is oddthen
5: for roundt = tj . . . tj + L do
6: Select armit according tobandit.
7: Observept(it) and updatebandit.
8: Let i be the most recent full phase beforej.
9: If G+

i ∩G−
j 6= ∅ let ltj = false and pass training example(xtj , ltj ) to classifier.

10: else
11: for roundt = tj , tj + 1, . . . do
12: Select armit according tobandit.
13: Observept(it) and updatebandit; pass contextxt to classifier.
14: if classifier predicts “positive”then
15: Terminate inner for loop.

Let S be the set of all contexts which correspond to an event. When the classifier receives a context
x and predicts a “positive”, this prediction is called atrue positiveif x ∈ S, and afalse positive
otherwise. Likewise, when the classifier predicts a “negative”, the prediction is called atrue negative
if x 6∈ S, and afalse negativeotherwise. The sample(x, l) is correctly labeledif l = (x ∈ S).

We make the following two assumptions. First,classifier is safe for a given concept class:
if it inputs only correctly labeled samples, it never outputs a false negative. Second,bandit is
(L, ǫ)-testable, in the following sense. Consider an event-free run ofbandit, and let(G+, G−)
be itsL-th round guess. Then with probability at least1 − T−2, each optimal arm lies inG+ but
not inG−, and any arm that is at leastǫ-suboptimal lies inG− but not inG+. So an(L, ǫ)-testable

3Following established convention, we call the options available to a bandit algorithm “arms”. In our setting,
each arm corresponds to a search result.
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bandit algorithm is one that, afterL rounds, has a good guess of which arms are optimal and which
are at leastǫ-suboptimal.

For correctness, we requirebandit to be(L, ǫS)-testable, whereǫS is the minimum shift. The
performance ofbandit is quantified via itsevent-free regret, i.e. regret on the event-free runs.
Likewise, for correctness we needclassifier to be safe; we quantify its performance via the
maximum possible number of false positives, in the precise sense defined below. We assume that the
state ofclassifier is updated only if it receives a labeled sample, and considera game in which
in each roundt, classifier receives a contextxt 6∈ S, outputs a (false) positive, and receives
a (correctly) labeled sample(x,false). For a given context setX and a given concept classF ,
let theFP-complexity of the classifier be the maximal possible number of rounds in such a game,
where the maximum is taken over all event oraclesf ∈ F and all possible sequences{xt}. Put
simply, the FP-complexity ofclassifier is the maximum number of consecutive false positives
it can make when given correctly labeled examples.

We will discuss efficient implementations of a safeclassifier and a(L, ǫ)-testablebandit
in Sections 5 and Section 6, respectively. We present provable guarantees forBWC in a modular
way, in terms of FP-complexity, event-free regret, and the number of events. The main technical
difficulty in the analysis is that the correct operation of the components ofBWC — classifier
andbandit — is interdependent. In particular, one challenge is to handle events that occur during
the firstL rounds of a phase; these events may potentially “contaminate” theL-th round guesses and
cause incorrect feedback toclassifier.
Theorem 1. Consider an instance of the eventful bandit problem with number of roundsT , n
arms, k events and minimum shiftǫS . Consider algorithmBWC with parameterL and compo-
nentsclassifier andbandit such that for this problem instance,classifier is safe, and
bandit is (L, ǫS)-testable. If any two events are at least2L rounds apart, then the regret ofBWC
is

R(T ) ≤ (2k + d)R0(T ) + (k + d)R0(L) + kL. (1)
whered is the FP-complexity of the classifier andR0(·) is the event-free regret ofbandit.

Remarks.The proof is available in the full version [20]. In our implementations ofbandit, L =
Θ( n

ǫS
log T ) suffices. In the+kL term in (1), thek can be replaced by the number of testing phases

that contain both a false positive in round1 of the phase and an actual event later in the phase; this
number can potentially be much smaller thank.

5 Safe Classifier

We seek a classifier that is safe for a given concept classF and has low FP-complexity. We present
a classifier whose FP-complexity is bounded in terms of the following property ofF :
Definition 1. Define thesafe functionSF : 2X → 2X of F as follows:x ∈ SF (N) if and only
if there is no conceptf ∈ F such that:f(y) = −1 for all y ∈ N andf(x) = +1. Thediameter
of F , denoteddF , is equal to the length of the longest sequencex1, . . . , xm ∈ X such thatxt /∈
SF ({x1, . . . , xt−1}) for all t = 1, . . . ,m.

So if N contains only true negatives, thenSF (N) contains only true negatives. This property sug-
gests thatSF can be used to construct a safe classifierSafeCl, which operates as follows: It
maintains a set offalse-labeled examplesN , initially empty. When input an unlabeled contextx,
SafeCl outputs a positive prediction if and only ifx /∈ SF (N). After making a positive predic-
tion, SafeCl inputs a labeled example(x, l). If l = false, thenx is added toN ; otherwisex is
discarded. Clearly,SafeCl is a safe classifer.

In the full version [20], we show that the FP-complexity ofSafeCl is at most the diameterdF ,
which is to be expected: FP-complexity is a property of a classifier, and diameter is the completely
analogous property forSF . Moreover, we give examples of common concept classes with efficiently
computable safe functions. For example, ifF is the space of hyperplanes with “margin” at leastδ
(probably the most commonly-used concept class in machine learning), thenSF (N) is the convex
hull of the examples inN , extended in all directions by aδ.

By usingSafeCl as our classifier, we introducedF into the regret bound ofbwc, and this quantity
can be large. However, in Section 7 we show that the regret ofanyalgorithm must depend ondF ,
unless it depends strongly on the number of roundsT .
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6 Testable Bandit Algorithms

In this section we will consider the stochasticn-armed bandit problem. We are looking for(L, ǫ)-
testable algorithms with low regret. TheL will need to be sufficiently large, on the order ofΩ(nǫ−2).

A natural candidate would be algorithmUCB1 from [2] which does very well on regret. Un-
fortunately, it does not come with a guarantee of(L, ǫ)-testability. One simple fix is to choose
at random between arms in the firstL rounds, use these samples to form the best guess, in
a straightforward way, and then runUCB1. However, in the firstL rounds this algorithm in-
curs regret ofΩ(L), which is very suboptimal. For instance, forUCB1 the regret would be
R(L) ≤ O(min( n

∆
logL,

√
nL logL)).

In this section, we develop an algorithm which has the same regret bound asUCB1, and is(L, ǫ)-
testable. We state this result more generally, in terms of estimating expected payoffs; we believe it
may be of independent interest. The(L, ǫ)-testability is then an easy corollary.

Since our analysis in this section is for the event-free setting, we can drop the subscriptt from much
of our notation. Letp(u) denote the (time-invariant) expected payoff of armu. Letp∗ = maxu p(u),
and let∆(u) = p∗ − p(u) be the “suboptimality” of armu. For roundt, let µt(u) be the sample
average of armu, and letnt(u) be the number of times armu has been played.

We will use a slightly modified algorithmUCB1 from [2], with a significantly extended analysis.
Recall that in each roundt algorithm UCB1 chooses an armu with the highestindex It(u) =

µt(u)+rt(u), wherert(u) =
√

8 log(t)/nt(u) is a term that we’ll call theconfidence radiuswhose
meaning is that|p(u)− µt(u)| ≤ rt(u) with high probability. For our purposes here it is instructive
to re-write the index asIt(u) = µt(u) + α rt(u) for some parameterα. Also, to better bound the
early failure probability we will re-define the confidence radius asrt(u) =

√

8 log(t0 + t)/nt(u)
for some parametert0. We will denote this parameterized version byUCB1(α, t0). Essentially, the
original analysis ofUCB1 in [2] carries over; we omit the details.

Our contribution concerns estimating the∆(u)’s. We estimate the maximal expected rewardp∗ via
the sample average of an arm that has been played most often. More precisely, in order to bound the
failure probability we consider a arm that has been played most oftenin the lastt/2 rounds. For a
given roundt let vt be one such arm (ties broken arbitrarily), and let∆t(u) = µt(vt) − µt(u) will
be our estimate of∆(u). We express the “quality” of this estimate as follows:
Theorem 2. Consider the stochasticn-armed bandits problem. Suppose algorithmUCB1(6, t0) has
been played fort steps, andt+ t0 ≥ 32. Then with probability at least1− (t0 + t)−2 for any arm
u we have

|∆(u)−∆t(u)| < 1

4
∆(u) + δ(t) (2)

whereδ(t) = O(
√

n
t log(t+ t0)).

Remark.Either we know that∆(u) is small, or we can approximate it up to a constant factor.
Specifically, ifδ(t) < 1

2
∆t(u) then∆(u) ≤ 2∆t(u) ≤ 5∆(u) else∆(u) ≤ 4δ(t).

Let us convertUCB1(6, T ) into an(L, ǫ)-testable algorithm, as long asL ≥ Ω( n
ǫ2 log T ). Thet-th

round best guess(G+
t , G

−
t ) is defined asG+

t = {u : ∆t(u) ≤ ǫ/4} andG−
t = {u : ∆t(u) >

ǫ/2}. Then the resulting algorithm is(L, ǫ)-testable assuming thatδ(L) ≤ ǫ/4, whereδ(t) is from
Theorem 2. The proof is in the full version [20].

7 Upper and Lower Bounds

Plugging the classifier from Section 5 and the bandit algorithm from Section 6 into the meta-
algorithm from Section 4, we obtain the following numericalguarantee.
Theorem 3. Consider an instanceS of the eventful bandit problem with with number of rounds
T , n arms andk events, minimum shiftǫS , minimum suboptimality∆, and concept class diam-
eter dF . Assume that any two events are at least2L rounds apart, whereL = Θ( n

ǫ2
S

log T ).

Consider theBWC algorithm with parameterL and componentsclassifier and bandit
as presented, respectively, in Section 5 and Section 6. Thenthe regret of BWC is R(T ) ≤
(

(3k + 2dF )
n
∆
+ k n

ǫ2
S

)

(log T ).
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While the linear dependence onn in this bound may seem large, note that without additional as-
sumptions, regret must be linear inn, since each arm must be pulled at least once. In an actual
search engine application, the arms can be restricted to, say, the top ten results that match the query.

We now state two lower bounds about eventful bandit problems; the proofs are in the full ver-
sion [20]. Theorem 4 shows that in order to achieve regret that is logarithmic in the number of
rounds, a context-aware algorithm is necessary, assuming there is at least one event. Incidentally,
this lowerbound can be easily extended to prove that, in our model,no algorithm can achieve loga-
rithmic regret when an event oraclef is not contained in the concept classF .

Theorem 4. Consider the eventful bandit problem with number of roundsT , two arms, minimum
shift ǫS and minimum suboptimality∆, whereǫS = ∆ = ǫ, for an arbitrary ǫ ∈ (0, 1

2
). For any

context-ignoring bandit algorithmA, there exists a problem instance with a single event such that
regretRA(T ) ≥ Ω(ǫ

√
T ).

Theorem 5 proves that in Theorem 3, linear dependence onk + dF is essentially unavoidable. If
we desire a regret bound that has logarithmic dependence on the number of rounds, then a linear
dependence onk + dF is necessary.

Theorem 5. Consider the eventful bandit problem with number of roundsT and concept class
diameterdF . LetA be an eventful bandit algorithm. Then there exists a probleminstance withn
arms,k events, minimum shiftǫS , minimum suboptimality∆, whereǫS = ∆ = ǫ, for any given
values ofk ≥ 1, n ≥ 3, andǫ ∈ (0, 1

4
), such thatRA(T ) ≥ Ω(k n

ǫ ) log(T/k).

Moreover, there exists a problem instance with two arms, a single event, minimum shiftΘ(1) and
minimum suboptimalityΘ(1) such that regretRA(T ) ≥ Ω(max(T 1/3, dF )) log T .

8 Experiments

To truly demonstrate the benefits ofBWC requires real-time manipulation of search results. Since we
did not have the means to deploy a system that monitors click/skip activity and correspondingly al-
ters search results with live users, we describe a collection of experiments on synthetically generated
data.

We begin with a head-to-head comparison ofBWC versus a baselineUCB1 algorithm and show
that BWC’s performance improves substantially uponUCB1. Next, we compare the performance of
these algorithms as we vary the fraction of intent-shiftingqueries: as the fraction increases,BWC’s
performance improves even further upon prior approaches. Finally, we compare the performance
as we vary the number of features. While our theoretical results suggest that regret grows with the
number of features in the context space, in our experiments,we surprisingly find thatBWC is robust
to higher dimensional feature spaces.

Setup: We synthetically generate data as follows. We assume that there are 100 queries where the
total number of times these queries are posed is 3M. Each query has five search results for a user
to select from. If a query does not experience any events — i.e., it is not “intent-shifting” — then
the optimal search result is fixed over time; otherwise the optimal search result may change. Only
10% of the queries are intent-shifting, with at most 10 events per such query. Due to the random
nature with which data is generated, regret is reported as anaverage over 10 runs. The event oracle
is an axis-parallel rectangle anchored at the origin, wherepoints inside the box are negative and
points outside the box are positive. Thus, if there are two features, say query volume and query
abandonment rate, an event occurs if and only if both the volume and abandonment rate exceed
certain thresholds.

Bandit with Classifier (BWC): Figure 1(a) shows the average cumulative regret over time ofthree
algorithms. Our baseline comparison isUCB1 which assumes that the best search result is fixed
throughout. In addition, we compare to an algorithm we callORA, which uses the event oracle
to resetUCB1 whenever an event occurs. We also compared toEXP3.S, but its performance was
dramatically worse and thus we have not included it in the figure.

In the early stages of the experiment before any intent-shifting event has happened,UCB1 performs
the best.BWC’s safe classifier makes many mistakes in the beginning and consequently pays the
price of believing that each query is experiencing an event when in fact it is not. As time progresses,
BWC’s classifier makes fewer mistakes, and consequently knows when to resetUCB1 more accu-
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ORA
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UCB1 0 1/8 1/4 3/8 1/2

ORA 17.2 22.8 30.4 33.8 39.5
BWC 17.8 24.6 39.9 46.7 99.4
UCB1 17.2 34.1 114.9 84.2 140.0
EXP3.S 78.4 123.7 180.2 197.6 243.1

10 20 30 40
ORA 21.9 23.2 21.9 22.8
BWC 23.1 24.4 22.9 23.7
UCB1 32.3 33.5 31.1 37.4
EXP3.S 111.6 109.4 112.5 121.3

Figure 1: (a) (Left)BWC’s cumulative regret compared toUCB1 andORA (UCB1 with an oracle
indicating the exact locations of the intent-shifting event) (b) (Right, Top Table) Final regret (in
thousands) as the fraction of intent-shifting queries varies. With more intent-shifting queries,BWC’s
advantage over prior approaches improves. (c) (Right, Bottom Table) Final regret (in thousands) as
the number of features grows.

rately. UCB1 alone ignores the context entirely and thus incurs substantially larger cumulative regret
by the end.

Fraction of Intent-Shifting Queries: In the next experiment, we varied the fraction of intent-
shifting queries. Figure 1(b) shows the result of changing the distribution from 0, 1/8, 1/4, 3/8 and
1/2 intent-shifting queries. If there are no intent-shifting queries, thenUCB1’s regret is the best. We
expect this outcome sinceBWC’s classifier, because it is safe, initially assumes that allqueries are
intent-shifting and thus needs time to learn that in fact no queries are intent-shifting. On the other
hand, BWC’s regret dominates the other approaches, especially as thefraction of intent-shifting
queries grows.EXP3.S’s performance is quite poor in this experiment – even when all queries are
intent-shifting. The reason is that even when a query is intent-shifting, there are at most 10 intent-
shifting events, i.e., each query’s intent is not shifting all the time.

With more intent-shifting queries, the expectation is thatregret monotonically increases. In general,
this seems to be true in our experiment. There is however a decrease in regret going from 1/4 to 3/8
intent-shifting queries. We believe that this is due to the fact that each query has at most 10 intent-
shifting events spread uniformly and it is possible that there were fewer events with potentially
smaller shifts in intent in those runs. In other words, the standard deviation of the regret is large.
Over the ten 3/8 intent-shifting runs forORA, BWC, UCB1 andEXP3.S, the standard deviation was
roughly 1K, 10K, 12K and 6K respectively.

Number of Features: Finally, we comment on the performance of our approach as thenumber of
features grows. Our theoretical results suggest thatBWC’s performance should deteriorate as the
number of features grows. Surprisingly,BWC’s performance is consistently close to the Oracle’s.
In Figure 1(b), we show the cumulative regret after 3M impressions as the dimensionality of the
context vector grows from 10 to 40 features.BWC’s regret is consistently close toORA as the
number of features grows. On the other hand,UCB1’s regret though competitive is worse thanBWC,
while EXP3.S’s performance is across the board poor. Note that bothUCB1 andEXP3.S’s regret is
completely independent of the number of features. The standard deviation of the regret over the 10
runs is substantially lower than the previous experiment. For example, over 10 features, the standard
deviation was 355, 1K, 5K, 4K forORA, BWC, UCB1 andEXP3.S, respectively.

9 Future Work

The main question left for future work is testing this approach in a realistic setting. Since gaining
access to live search traffic is difficult, it would be interesting to find ways to use the search logs to
simulate live traffic.

Acknowledgements.We thank Rakesh Agrawal, Alan Halverson, Krishnaram Kenthapadi, Robert
Kleinberg, Robert Schapire and Yogi Sharma for their helpful comments and suggestions.
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